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We review natural topological vectorspaces of functions on relatively simple geometric objects, such as R or
the circle T.

In all cases, we specify a natural topology, in which differentiation or other natural operators are continuous,
and so that the space is suitably complete.

Many familiar and useful spaces of continuous or differentiable functions, such as C*¥[a,b], have natural
metric structures, and are complete. Often, the metric d(,) comes from a norm |- |, on the functions, giving
Banach spaces.

Other natural function spaces, such as C*[a, b], C°(R), are not Banach, but still do have a metric topology
and are complete: these are Fréchet spaces, appearing as (projective) limits of Banach spaces, as below.
These lack some of the conveniences of Banach spaces, but their expressions as limits of Banach spaces is
often sufficient.

Other important spaces, such as compactly-supported continuous functions C2(R) on R, or compactly-
supported smooth functions (test functions) D(R) = C°(R) on R, are not metrizable so as to be complete.
Nevertheless, some are expressible as colimits (sometimes called inductive limits) of Banach or Fréchet spaces,
and such descriptions suffice for many applications. An LF-space is a countable ascending union of Fréchet
spaces with each Fréchet subspace closed in the next. These are strict colimits or strict inductive limits of
Fréchet spaces. These are generally not complete in the strongest sense, but, nevertheless, as demonstrated
earlier, are quasi-complete, and this suffices for applications.

1. Non-Banach limits C*(R), C*(R) of Banach spaces C*|a, 1]

For a non-compact topological space such as R, the space C°(R) of continuous functions is not a Banach
space with sup norm, because the sup of the absolute value of a continuous function may be +oo.

But, C°(R) has a Fréchet-space structure: express R as a countable union of compact subsets K,, = [-n,n].
Despite the likely non-injectivity of the map C°(R) — C°(K;), giving C°(R) the (projective) limit topology
lim; C°(K;) is reasonable: certainly the restriction map C°(R) — C°(Kj;) should be continuous, as should
all the restrictions C°(K;) — C°(K;_1), whether or not these are surjective.

The argument in favor of giving C°(R) the limit topology is that a compatible family of maps f; : Z — C°(K;)
gives compatible fragments of functions F' on R. That is, for z € Z, given x € R take K; such that = is in
the interior of K;. Then for all j > i the function x — f;(2)(z) is continuous near x, and the compatibility
assures that all these functions are the same.
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That is, the compatibility of these fragments is exactly the assertion that they fit together to make a function
x — F.(z) on the whole space X. Since continuity is a local property, © — F,(z) is in C°(X). Further,
there is just one way to piece the fragments together. Thus, diagrammatically,

T

C°(R) e O(Ky) — C°(K)
\\ f2 /1 fl///7
z—>Fz' _ // - - -
- so—
7=

Thus, C°(X) = lim,, C°(K,,) is a Fréchet space. Similarly, C*(R) = lim,, C*(K,) is a Fréchet space.

[1.1] Remark: The question of whether the restriction maps C°(K,) — C°(K,_1) or C°(R) — C°(K,)
are surjective need not be addressed.

Unsurprisingly, we have

[1.2] Theorem: L : C*¥(R) — C*~(R) is continuous.

Proof: The argument is structurally similar to the argument for % : C®[a,b] — C>la,b]. The
differentiations - : C*(K,) — C*~!(K,,) are a compatible family, fitting into a commutative diagram

CF1(R) i —=CF YK, ) —= CFYK,) —— ...
Ck(R) i > C*(K,y1) CHEK,) —— ...

Composing the projections with d/dz gives (dashed) induced maps from C*(R) to the limitands, inducing a
unique (dotted) continuous linear map to the limit, as in

C*1(R) ...HCk_l(K,Hl)*;Ck_l(Kn)H...

That is, there is a unique continuous linear map % : C*(R) — C*~1(R) compatible with the differentiations
on finite intervals. ///

Similarly,

[1.3] Theorem: C*(R) = lim; C¥(R), also C®(R) = lim, C®(K,), and & : C=®(R) — C*®(R) is

continuous.

Proof: From C*(R) = lim, C*(R) we can obtain the induced map d/dx, as follows. Starting with the
commutative diagram

C>=(R) ...Hckl(R)ﬁ»ckl(R);i...
C>(R) o> C*(R) ——> C*(R) ——> ...

—

2
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Composing the projections with d/dz gives (dashed) induced maps from C*(R) to the limitands, inducing a
unique (dotted) continuous linear map to the limit, as in

K\

C*(R) ...Hck_l(R)—;Ck_l(R)H...
A -7 - //

Fh _ -

d‘né //// _ - -

C*®R)”~ ...— = C*R) CHR) —> ...

A novelty is the assertion that (projective) limits commute with each other, so that the limits of C*(K,,) in
k and in n can be taken in either order. Generally, in a situation

-
— ~

— — —

— — ~
lim; (lim; V) > lim; Vig — lim; V;
// \\ \
V4 \ \
7 1 |
; \\ : : ’, }
a y /
VoA /
hmj ‘/2]' Vs

cee 22 ‘/21
N u
\
N
tim; Va; WV "

the maps lim; (lim; V;;) — Vi induce a map lim; (lim; V;;) — limg Vi, which induce a unique lim; (lim; V;;) —
limy (limg Vie). Similarly, a unique map is induced in the opposite direction, and, for the usual reason, these
are mutual inverses. ///

[1.4] Claim: For fixed z € R and fixed non-negative integer k, the evaluation map f — f*)(z) is continuous.

Proof: Take n large enough so that 2 € [-n,n]. Evaluation f — f*)(z) was shown to be continuous on
C*[—n,n]. Composing with the continuous C*(R) — C*¥(R) — C¥[—n,n] gives the continuity. ///

2. Banach completion C*(R) of C*(R)

It is reasonable to ask about the completion of the space C?(R) of compactly-supported continuous functions
in the metric given by the sup-norm, and, more generally, about the completion of the space Cf(R) of
compactly-supported k-times continuously differentiable functions in the metric given by the sum of the
sups of the k derivatives.

The spaces C¥(R) are not complete with those norms, because supports can leak out to infinity: for example,
in fix any u such that u(zx) =1 for |z| <1, 0 <wu(x) <1 for 1 < |z| <2, and u(zx) =0 for |z| > 2. Then
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converges in sup-norm, the partial sums have compact support, but the whole does not have compact support.

[2.1] Claim: The completion of the space C2(R) of compactly-supported continuous functions in the metric
given by the sup-norm |f|co = sup,cg |f(z)| is the space CI(R) of continuous functions f vanishing at
infinity, in the sense that, given ¢ > 0, there is a compact interval K = [-N, N] C X such that |f(z)| < ¢
for x € K.

[2.2] Remark: Since we need to distinguish compactly-supported functions C2(R) from functions C2(R)
going to 0 at infinity, we cannot use the latter notation for the former, unlike some sources.

Proof: This is almost a tautology. Given f € C2(R), given € > 0, let K = [-N, N] C X be compact such
that |f(z)| < € for z ¢ K. It is easy to make an auxiliary function ¢ that is continuous, compactly-supported,
real-valued function such that ¢ =1 on K and 0 < ¢ <1on X. Then f — ¢ f is 0 on K, and of absolute
value |¢(x) - f(z)| < |f(z)] < e off K. That is, supg |f — ¢ - f| < &, so C2(R) is dense in C2(R).

On the other hand, a sequence f; in C?(R) that is a Cauchy sequence with respect to sup norm gives a
Cauchy sequence in each C°[a,b], and converges uniformly pointwise to a continuous function on [a,b] for
every [a,b]. Let f be the pointwise limit. Given € > 0 take i, such that sup, |fi(z) — f;(z)] < ¢ for all
1,J > i,. With K the support of f;_,

sup |f(z)| < sup |f(x) — fi,(x)] + sup |fi, ()| = sup |f(z) = fi,(x)]| +0 < & < 2
g K g K g K zgK

showing that f goes to 0 at infinity. /]

[2.3] Corollary: Continuous functions vanishing at infinity are uniformly continuous.

Proof: For f € C2(R), given ¢ > 0, let g € C2(R) be such that sup |f — g| < . By the uniform continuity
of g, there is 6 > 0 such that | — y| < ¢ implies |g(x) — g(y)| < €, and

[f(@) = fW)l < |f(@) —g9(@)] +1f(y) =9 +19(z) —g(y)| < 3¢
as desired. /1]
The arguments for C*(R) are completely parallel: the completion of the space C*(R) of compactly supported
k-times continuously differentiable functions is the space CK(R) of k-times continuously differentiable

functions whose k derivatives go to zero at infinity. Similarly,

[2.4] Corollary: The space of C* functions whose k derivatives all vanish at infinity have uniformly
continuous derivatives. ///

[2.5] Claim: The limit limy C*(R) is the space C°(R) of smooth functions all whose derivatives go to 0 at
infinity. All those derivatives are uniformly continuous.

Proof: As with C*[a,b] = (), C*[a,b] = limy, C*[a,b], by its very definition C2°(R) is the intersection of
the Banach spaces C¥(R). For any compatible family Z — C*(R), the compatibility implies that the image
of Z is in that intersection. ///

[2.6] Corollary: The space C°(R) is a Fréchet space, so is complete.
Proof: As earlier, countable limits of Banach spaces are Fréchet. ///

[2.7] Remark: In contrast, the space of merely bounded continuous functions does not behave so well.
Functions such as f(z) = sin(z?) are not wuniformly continuous. This has the bad side effect that

4
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sup, |f(z + h) — f(z)] = 1 for all h # 0, which means that the translation action of R on that space of
functions is not continuous.

3. Rapid-decay functions, Schwartz functions

A continuous function f on R is of rapid decay when

sup(1 +22)" - |f(z)| < +oo (for every n =1,2,...)
zeR

With norm v,,(f) = sup,er(1 + 2%)™ - | f(x)], let the Banach space B, be the completion of C2(R) with
respect to the metric v, (f — g) associated to v,.

[3.1] Lemma: The Banach space B, is isomorphic to C¢(R) by the map T : f — (1 +22)" - f. Thus, B,
is the space of continuous functions f such that (1 + 22)" - f(z) goes to 0 at infinity.

Proof: By design, v,(f) is the sup-norm of T'f. Thus, the result for C2(R) under sup-norm gives this
lemma. /1]

[3.2] Remark: Just as we want the completion C2(R) of C¢(R), rather than the space of all bounded
continuous functions, we want B,, rather than the space of all continuous functions f with sup, (1 + 2?) -
|f(z)| < co. This distinction disappears in the limit, but it is only via the density of C2(R) in every B,, that
it follows that C?(R) is dense in the space of continuous functions of rapid decay, in the corollary below.

[3.3] Claim: The space of continuous functions of rapid decay on R is the nested intersection, thereby the
limit, of the Banach spaces B,,, so is Fréchet.

PT’OOf.' The key issue is to show that rapid-decay f is a v,-limit of compactly-supported continuous functions
for every n. For each fixed n the function f,, = (1 + 22)"f is continuous and goes to 0 at infinity. From
earlier, f,, is the sup-norm limit of compactly supported continuous functions F,;. Then (1 + 2?)""F,; — f
in the topology on B,,, and f € B,. Thus, the space of rapid-decay functions lies inside the intersection.

On the other hand, a function f € (), By is continuous. For each n, since (1 + z2)"*!|f(z)| is continuous
and goes to 0 at infinity, it has a finite sup o, and

sup(1+2%)" - [£(&)] = sup(l+22)~"- (1 + 22| f(@)] < sup(l+a%) -0 < +oo
This holds for all n, so f is of rapid decay. ///

[3.4] Corollary: The space C2(R) is dense in the space of continuous functions of rapid decay.

Proof: That every B,, is a completion of C¢(R) is essential for this argument.

Use the model of the limit X = lim,, B,, as the diagonal in [], B, with the product topology restricted to
X. Let p, : [, Bx = By be the projection. Thus, given x € X, there is a basis of neighborhood N of z in
X of the form N = X NU for an open U in the product of the form U =[], U, with all but finitely-many
Un = By. Thus, for y € C2(R) such that p,(y) € pn(N) = pn(U) for the finitely-many indices such that
U, # B,, we have y € N. That is, approximating x in only finitely-many of the limitands B,, suffices to
approximate « in the limit. Thus, density in the limitands B,, implies density in the limit. ///

[3.5] Remark: The previous argument applies generally, showing that a common subspace dense in all
limitands is dense in the limit.

Certainly the operator of multiplication by 1 + 22 preserves C2(R), and is a continuous map B,, — By, _1.
Much as d/dz was treated earlier,
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[3.6] Claim: Multiplication by 1 + 22 is a continuous map of the space of continuous rapidly-decreasing
functions to itself.

Proof: Let T denote the multiplication by 1422, and let B = lim,, B,, be the space of rapid-decay continuous
functions. From the commutative diagram

B ..—B,——B,_1——...
B ..—B,——=B,_1 ——...

composing the projections with 7" giving (dashed) induced maps from B to the limitands, inducing a unique
(dotted) continuous linear map to the limit, as in

:
!
l

giving the continuous multiplication map on the space of rapid-decay continuous functions. ///

Similarly, adding differentiability conditions, the space of rapidly decreasing C* functions is the space of k-
times continuously differentiable functions f such that, for every £ =0,1,2,...,k and for every n =1,2,.. .,

sup(1 + z2)" - |f(€)(x)| < 4o0
zeR

Let BX be the completion of C¥(R) with respect to the metric from the norm

va(f) = Y sup(l+2?)"|fY(2)]

0<t<k zeR

Essentially identical arguments give

[3.7] Claim: The space of C* functions of rapid decay on R is the nested intersection, thereby the limit, of
the Banach spaces BY, so is Fréchet. ///

[3.8] Corollary: The space C*(R) is dense in the space of C* functions of rapid decay. ///

Identifying B¥ as a space of C* functions with additional decay properties at infinity gives the obvious map
d . -

4. BF — B

[3.9] Claim: & : BfF — BE=1 is continuous.

z -

Proof: Since B! is the closure of C*(R), it suffices to check the continuity of -= : C¥(R) — C¥~(R) for
the BF and BF~! topologies. As usual, that continuity was designed into the situation. ///

The space of Schwartz functions is
Z(R) = {smooth functions f all whose derivatives are of rapid decay}

One reasonable topology on . (R) is as a limit

Z(R) = ﬂ{Ck functions of rapid decay} = liin{Ck functions of rapid decay}
k
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As a countable limit of Fréchet spaces, this makes .#(R) Fréchet.
[3.10] Corollary: £ : #(R) — .#(R) is continuous.

Proof: This is structurally the same as before: from the commutative diagram

7(R) B! B
7 (R) By, By,

composing the projections with d/dx to give (dashed) induced maps from .(R) to the limitands, inducing
a unique (dotted) continuous linear map to the limit:

7 (R) . Byl —=Bi!
A -7 _ -
dx _ // _ -
SR .. B, Bkt
as desired. ///

Finally, to induce a canonical continuous map T : .7 (R) — . (R) by multiplication by 1+ 22, examine the
behavior of this multiplication map on the auxiliary spaces BY and its interaction with %:

[3.11] Claim: T: B¥ — B*~1 is continuous.

Proof: Of course,

d
(1409 f@)] = Po-s@)+ (1427 f@)] < 20U+ f@)]+ (1 +2%) -1 @)
Thus, T : C*(R) — C*~1(R) is continuous with the B¥ and B¥~] topologies. As noted earlier, cofinal limits
are isomorphic, so the same argument gives a unique continuous linear map .#(R). ///

It is worth noting
[3.12] Claim: Compactly-supported smooth functions are dense in ..

Proof: At least up to rearranging the order of limit-taking, the description of .# above is as a limit of spaces
in each of which compactly-supported smooth functions are dense. Thus, we claim a general result: for a
limit X = lim; X; and compatible maps f; : V — X; with dense image, the induced map f : V — X has
dense image. As earlier, the limit is the diagonal

D = {{l’z} € HXZ LTy — XTi—1, for all Z} C HXZ

7

with the subspace topology from the product. Suppose we are given a finite collection of neighborhoods
xy €Uy C Xipyooymy, €U, C X5, with z;, — x, if i; > ip. Take ¢ = max;i;, and U a neighborhood
of x; such that the image of U is inside every U;,, by continuity. Since the image of V' is dense in X;, there
is v € V such that f;(v) € U. By compatibility, f;, (v) € U;; for all j. Thus, the image of V' is dense in the

limit. /)
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4. Non-Fréchet colimit C2°(R) of Fréchet spaces

The space of compactly-supported continuous functions
C¢(R) = compactly-supported continuous functions on R
is an ascending union of the subspaces
Cl,n = {f€C°R) : sptf C [-n,n]}

Each space C["_nm] is a Banach space, being a closed subspace of the Banach space C°[—n,n|, further

requiring vanishing of the functions on the boundary of [—n,n|. A closed subspace of a Banach space is a
Banach space. Thus, C2(R) is an LF-space, and is quasi-complete.

Similarly,
C*(R) = compactly-supported C* functions on R

is an ascending union of the subspaces
C'[k_nm] = {f e C*R) : sptf C [-n,n]}

Each space C[’i ] is a Banach space, being a closed subspace of the Banach space C*[—n,n], further

requiring vanishing of the functions and derivatives on the boundary of [—n,n]. A closed subspace of a
Banach space is a Banach space. Thus, Cf (R) is an LF-space, and is quasi-complete.

The space of test functions is
D(R) = C°(R) = compactly-supported C*° functions on R
is an ascending union of the subspaces

Di_pn = CFF {f € C®°(R) : sptf C [-n,n]}

[_nvn] =

Bach space D_,, ,, is a Fréchet space, being a closed subspace of the Fréchet space C°°[—n,n], by further
requiring vanishing of the functions and derivatives on the boundary of [—n,n]. A closed subspace of a
Fréchet space is a Fréchet space. Thus, D(R) = C2°(R) is an LF-space, and is quasi-complete.

The operator % : C¥[—n,n] — C*¥~1[—n,n] is continuous, and preserves the vanishing conditions at the

endpoints, so restricts to a continuous map % : C[k_ nn] C[k:nln] on the Banach sub-spaces of functions

vanishing suitably at the endpoints. Composing with the inclusions C’[]:Lln] — Ck=1(R) gives a compatible

family of continuous maps % : C’[k o] Ck=(R). This induces a unique continuous map on the colimit:
i CE(R) = CI(R).

Similarly, chm : C®[—n,n] — C*[—n,n] is continuous, and preserves the vanishing conditions at the
endpoints, so restricts to a continuous map % : Di_nn) = Di—pn,n) on the Frechet sub-spaces of functions
vanishing to all orders at the endpoints. Composing with the inclusions D;_,, ,; — D(R) gives a compatible

family of continuous maps % : Di—p,m) — D(R). This induces a unique continuous map on the colimit:
% : D(R) — D(R). Diagrammatically,
— T
.—>C[7nn]—>... D(R)
id T~ \% d
dx ~ - da
~ N Y
O D(R)
T~ 7
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That is, - is continuous in the LF-space topology on test functions D(R) = C°(R).
[4.1] Claim: For fixed + € R and non-negative integer k, the evaluation map f — f*)(z) on D(R) = C=°(R)
is continuous.

Proof: This evaluation map is continuous on C*°[—n,n] for every large-enough n so that z € [—n,n], so is
continuous on the closed subspace D|_,, ) of C>°[~n,n]. The inclusions among these spaces are extend-by-0,
so the evaluation map is the 0 map on Dj_,, ,,j if [2] > n. These maps to C fit together into a compatible
family, so extend uniquely to a continuous linear map of the colimit D(R) to C. ///

[4.2] Claim: For F € C*®(R), the map f — F - f is a continuous map of D(R) to itself.

Cnn]>

on the larger Fréchet space C°°[—n,n] without vanishing conditions on the boundary. This is the limit of
C*[—n,n], so it suffices to show that f — F - f is a continuous map C¥[—n,n] — C¥[—n, n] for every k. The
sum of sups of derivatives is

Proof: By the colimit characterization, it suffices to show that such a map is continuous on C or

(LY En@)] < 2(( X s FO@) (X s FO)

Ogiék‘ﬂﬁn Ogigk‘ﬂﬁn

sup
0<i<k |z[<n

Although F' and its derivatives need not be bounded, this estimate only uses their boundedness on [—n,n].
This is a bad estimate, but sufficient for continuity. ///

[4.3] Claim: The inclusion D(R) — .#(R) is continuous, and the image is dense.

Proof: At least after changing order of limits, we have described .#(R) as a limit of spaces in which D(R)
is dense, so D(R) is dense in that limit.

The slightly more serious issue is that D(R) with its LF-space topology maps continuously to . (R). Since
D(R) is a colimit, we need only check that the limitands (compatibly) map continuously. On a limitand

C[O_Cn,n] , the norms

vni(f) = sup(l+ )N | f P ()|

]

of (1 +22)N on [-n,n]. Thus, we have the desired continuity on the limitands. ///

differ from the norms sup, | f*) ()| defining the topology on C merely by constants, namely, the sups

5. LF-spaces of moderate-growth functions

The space C?_4(R) of continuous functions of moderate growth on R is

°dR) = {feC°R) : sup (1+2%)"N.|f(x)] < 4oo for some N}
z€R

Literally, it is an ascending union

Cooa®) = [J{reco®) : sup (1427 [f(@) < +oo}

N zeR

However, it is ill-advised to use the individual spaces

By = {FeC°®) s sup(1+a%) - |f(w)] < +oo}
zeR

9
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with norms vn(f) = sup,er (1 + 2%)™Y - |f(z)| because C2(R) is not dense in these spaces By. Indeed,
in the simple case N = 0, the norm vg is the sup-norm, and the sup-norm closure of C¢(R) is continuous
functions going to 0 at infinity, which excludes many bounded continuous functions.

In particular, there are many bounded continuous functions f which are not wniformly continuous, and
the translation action of R on such functions cannot be continuous: no matter how small § > 0 is,
sup,cr | f(z + &) — f(z)| may be large. For example, f(z) = sin(z?) has this feature.

This difficulty does not mean that the characterization of the whole set of moderate-growth functions is
incorrect, nor that the norms vy are inappropriate, but only that the Banach spaces By are too large, and
that the topology of the whole should not be the strict colimit of the Banach spaces By. Instead, take the
smaller

VN = completion of C?(R) with respect to vy

As in the case of completion of C2(R) with respect to sup-norm vy,
[5.1] Claim: Viy = {continuous f such that (1+ %)~V f(x) goes to 0 at infinity}. ///

Of course, if (1 + 22)~N f(x) is merely bounded, then (1 4 22)~(N+1 f(z) then goes to 0 at infinity. Thus,
as sets, By C V41, but this inclusion cannot be continuous, since C2(R) is dense in Viyt1, but not in By.
That is, there is a non-trivial effect on the topology in setting

Cg'lod = COlimN VN

instead of the colimit of the too-large spaces By .

6. Strong operator topology

For X and Y Hilbert spaces, the topology on continuous linear maps Hom°(X,Y") given by seminorms
peu(T) = inf{t>0:Tx €tU} (for T € Hom°(X,Y))

where x € X and U is a convex, balanced neighborhood of 0 in Y, is the strong operator topology. Indeed,
every neighborhood of 0 in Y contains an open ball, so this topology can also be given by seminorms

¢:(T) = |Tx|y (for T € Hom°(X,Y))

where z € X. The strong operator topology is weaker than the uniform topology given by the operator
norm |T'| = sup, <y [Tx|y.

The uniform operator-norm topology makes the space of operators a Banach space, certainly simpler than
the strong operator topology, but the uniform topology is too strong for many purposes.

For example, group actions on Hilbert spaces are rarely continuous for the uniform topology: letting R act
on L*(R) by T f(y) = f(z +y), no matter how small § > 0 is, there is an L? function f with |f|p2 = 1 such
that |T5f — f|L2 = \/5

Despite the strong operator topology being less elementary than the uniform topology, the theorem on
quasi-completeness shows that Hom®(X,Y") with the strong operator topology is quasi-complete.

7. Generalized functions (distributions) on R

The most immediate definition of the space of distributions or generalized functions on R is as the dual
D* =DR)* = C*(R)* to the space D = D(R) of test functions, with the weak dual topology by seminorms
vi(u) = |u(f)| for test functions f and distributions u.

10
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Similarly, the tempered distributions are the weak dual * = (R)*, and the compactly-supported
distributions are the weak dual C>°* = C*°(R)*, in this context writing C*°(R) = C°°(R). Naming C*°*
compactly-supported will be justified below.

By dualizing, the continuous containments D C . C C° give continuous maps C®* — #* — D*. When
we know that D is dense in . and in C*°, it will follow that these are injections. The most straightforward
argument for density uses Gelfand-Pettis integrals, as in [?77]. Thus, for the moment, we cannot claim that
C>* and .* are distributions, but only that they naturally map to distributions.

The general result on quasi-completeness of Hom®(X,Y) for X an LF-space and Y quasi-complete shows
that D*, .#*, and C°°* are quasi-complete, despite not being complete in the strongest possible sense.

The description of the space of distributions as the weak dual to the space of test functions falls far short of
explaining its utility. There is a natural imbedding D(R) — D(R)* of test functions into distributions, by

fou o usle)= [ f@ale) de (for 1.9 € D(R))
That is, via this imbedding we consider distributions to be generalized functions. Indeed, test functions
D(R) are dense in D(R)*.

The simplest example of a distribution not obtained by integration against a test function on R is the Dirac
delta, the evaluation map &(f) = f(0), continuous for the LF-space topology on test functions.

This imbedding, and integration by parts, explain how to define % on distributions in a form compatible

with the imbedding D C D*: noting the sign, due to integration by parts,

(d )(f):_u(df) (for u € D* and f € D)

dr " dx
[7.1] Claim: % : D* — D* is continuous.

Proof: By the nature of the weak dual topology, it suffices to show that for each f € D and ¢ > 0 there are

g € D and 6 > 0 such that |u(g)| < & implies |(-2u)(f)| < e. Taking g = L f and § = ¢ succeeds. ///

From [?77], multiplications by F' € C*°(R) give continuous maps D to itself. These multiplications are
compatible with the imbedding D — D* in the sense that

/(F cu)(z) f(x) de = / u(z) (F - f)(z) de (for F € C*(R) and u, f € D(R))
R R

Extend this to a map D* — D* by

(F-u)(f) = uw(F-f) (for F € C*, u € D*, and f € D)

[7.2] Claim: Multiplication operators D* — D* by F' € C™ are continuous.

Proof: By the nature of the weak dual topology, it suffices to show that for each f € D and ¢ > 0 there are
g € D and 6 > 0 such that |u(g)| < ¢ implies |F - u)(f)| < e. Taking g = F - f and § = ¢ succeeds. ///

Since . is mapped to itself by Fourier transform [?7?77], this gives a way to define Fourier transform on .*,
as in [?77].

Recall that the support of a function is the closure of the set on which it is non-zero, slightly complicating
the notion of support for a distribution u: support of u is the complement of the union of all open sets U
such that u(f) = 0 for all test functions f with support inside U.

11
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[7.3] Theorem: A distribution with support {0} is a finite linear combination of Dirac’s § and its derivatives.

Proof: Since D is a colimit of Dk over K = [—n,n], it suffices to classify u in D} with support {0}. We
claim that a continuous linear functional on Dy = limy C}% factors through some limitand

= {f e C*(K): f© vanishes on 0K for 0 <i < k}
This is a special case of

[7.4] Claim: Let X = lim, B, be a limit of Banach spaces, with the image of X dense in each B,. A
continuous linear map 7T : lim,, B, — Z from a, to a normed space Z factors through some limitand B,,. For
Z = C, the same conclusion holds without the density assumption.

Proof: Let X = lim; B; with projections p; : X — B;. Each B; is the closure of the image of X. By the
continuity of T at 0, there is an open neighborhood U of 0 in X such that TU is inside the open unit ball
at 0 in Z. By the description of the limit topology as the product topology restricted to the diagonal, there
are finitely-many indices i1, ..., 4, and open neighborhoods V;, of 0 in B;, such that

(pi' (i, XNV;,) C U
t=1

We can make a smaller open in X by a condition involving a single limitand, as follows. Let j be any index
with j > 4, for all ¢, and

= (Vi 5(piiBiNVi,) © B;
t=1
By the compatibility pi_t1 = pj_1 opi_t)lj, we have p;, ;N C V;, for iy,...,4y,, and pj_l(ij N N) C U. By the
linearity of T', for any € > 0,
T(e -p;1 (ij N N)) = - T(pj*l(ij N N)) C e-ball in Z

We claim that T" factors through p; X with the subspace topology from B;. One potential issue in general is
that p; : X — Bj can have a non-trivial kernel, and we must check that kerp; C kerT". By the linearity of
T,

I 1 )
T(ﬁ ‘p; (pjNN)) C ﬁ-ball in Z

SO
1 1 .
T (m ~ 0 (p; XN N)) C E—ball in Z (for all m)

n

and then
1 1 .

T (On p; (P ﬂN)) C DE—ball in Z = {0}

Thus,

1
mp ijﬁf N) = mﬁp Y(p;XNN) C kerT

n

Thus, for x € X with p;z = 0, certainly p;x € %N forallm=1,2,..., and
1
-1
z € (p; (ijﬂEN) C kerT

This proves the subordinate claim that T factors through p; : X — B; via a (not necessarily continuous)
linear map 7" : p; X — Z. The continuity follows from continuity at 0, which is

T(c-p;'(p;XNN)) = e-T(p; " (p;X NN)) C e-ballin Z

12
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Then T" : p;X — Z extends to a map B; — Z by continuity: given ¢ > 0, take symmetric convex
neighborhood U of 0 in B; such that |T"y|z < € for y € p; X NU. Let y; be a Cauchy net in p; X approaching
b € B;. For y; and y; inside b+ LU, |T'y; — T'y;| = |T"(y; — y;)| < €, since y; —y; € 1 -2U = U. Then
unambiguously define T"b to be the Z-limit of the T"y;. The closure of p; X in B; is Bj, giving the desired
map.

When u is a functional, that is, a map to C, we can extend it by Hahn-Banach. ///

Returning to the proof of the theorem: thus, there is k£ > 0 such that u factors through a limitand C’f(. In
particular, v is continuous for the C* topology on Dy .

We need an auxiliary gadget. Fix a test function ¢ identically 1 on a neighborhood of 0, bounded between
0 and 1, and (necessarily) identically 0 outside some (larger) neighborhood of 0. For € > 0 let

Ye(x) = (e )
Since the support of u is just {0}, for all € > 0 and for all f € D(R™) the support of f — 1. - f does not

include 0, so

Thus, for implied constant depending on k and K, but not on f,

[Vefli = sup 32 D < 3 3 swpe [y (e e) £ ()

O<z<k i<k 0<5<4

For test function f vanishing to order k at 0, that is, f(*) (0) =0 for all 0 < i < k, on a fixed neighborhood
of 0, by a Taylor-Maclaurin expansion, |f(z)| < |z|**!, and, generally, for i*" derivatives with 0 < i < k,
|f@)(2)] < |z|*+1~%. By design, all derivatives 1’,4",... are identically 0 in a neighborhood of 0, so, for
suitable implied constants independent of ¢,

|w€f‘k < Z Z ‘¢(J) -1 )f(z J) ’ < Z ZE—J 1. Ek-‘rl i

0<i<k 0<5<4 0<i<k =0
§ : €k+172 < €k+1*k — ¢
0<i<k

Thus, for sufficiently small ¢ > 0, for smooth f vanishing to order k at 0, |u(f)| = |u(vef)| < &, and
u(f) = 0. That is,

keru D ﬂ ker §(*)

0<i<k

The conclusion, that u is a linear combination of the distributions d,6’,6®, ..., 5%*), follows from

[7.5] Claim: A linear functional A\ € V* vanishing on the intersection (), ker \; of kernels of a finite collection
A,y .e oy Ay € V*is a linear combination of the A;.

Proof: The linear map
qg:V — C*" by v — (Mu, ..., A\po)

is continuous since each \; is continuous, and A factors through ¢, as A = L o ¢ for some linear functional L
on C". We know all the linear functionals on C", namely, L is of the form

L(z1,...,20) = 121+ ...+ Cnzn (for some ¢; € C)

Thus,
Av) = (Logq)(v) = L(Av, ..., \pv) = M (v) + ...+ cpAn(v)

13
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expressing A as a linear combination of the ;. ///

The order of a distribution v : D — C is the integer k, if such exists, such that u is continuous when D is
given the weaker topology from colimy C%-. Not every distribution has finite order, but the claim [???] has
a useful technical application:

[7.6] Corollary: A distribution u € D* with compact support has finite order.

Proof: Let 1 be a test function that is identically 1 on an open containing the support of u. Then

u(f) = w((l=9)- f)+u@-f) = 0+u(y-f)

since (1 —1) - f is a test function with support not meeting the support of u. With K = spt, this suggests
that u factors through a subspace of Dk via f — - f — u(¢ - f), but there is the issue of continuity.
Distinguishing things a little more carefully, the compatibility embodied in the commutative diagram

i

/\

.——>Dg—— ... D

N

u(f) = u(@-f) = u(i(¥f)) = ux(®f)

The map ug is continuous, as is the multiplication f — ¢ f. The map ug is from the limit Dy of Banach
spaces Ck. to the normed space C, so factors through some limitand C%., by [???]. As in the proofs that
multiplication is continuous in the C> topology, by Leibniz’ rule, the C* norm of 1 f is

gives

Wil = > sup (WD) < Y > Sgpw(j)(z) £ (2)

0<i<k*€ i<k 0<j<i

< Y sw [fO@)] ) sup ()| = [flon - [l

OfigkxEK i<k T

Since v is fixed, this gives continuity in f in the C* topology. ///

[7.7] Claim: In the inclusion C®* C * C D*, the image of C'°°* really is the collection of distributions
with compact support.

Proof: On one hand the previous shows that u € D* with compact support can be composed as
u(f) = uk(¢f) for suitable ¢» € D. The map f — 1 - f is also continuous as a map C* — D, so the
same expression f — ¢ f — ug (Y f) extends u € D* to a continuous linear functional on C*°.

On the other hand, let © € C**. Composition of u with D — C* gives an element of D*, which we
must check has compact support. By [???], C™ is a limit of the Banach spaces C*(K) with K running
over compacts [—n,n], without claiming that the image of C°° is necessarily dense in any of these. By
[???], u factors through some limitand C*(K). The map D — C* is compatible with the restriction maps
Resg : D — C*(K): the diagram

A
> oo —= CHK) ——
D C
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commutes. For f € D with support disjoint from K, Resg(f) = 0, and u(f) = 0. This proves that the
support of the (induced) distribution is contained in K, so is compact. ///

8. Tempered distributions and Fourier transforms on R

One normalization of the Fourier transform integral is
fl©) = F1(©) = [ Vela) f(oydo (with v () = ¢27°)

converges nicely for f in the space . (R) of Schwartz functions.

[8.1] Theorem: Fourier transform is a topological isomorphism of .7 (R) to itself, with Fourier inversion

map ¢ — ¢ given by
= [ velo) Fi a

Proof: Using the idea [14.3] that Schwartz functions extend to smooth functions on a suitable one-point
compactification of R vanishing to infinite order at the point at infinity, Gelfand-Pettis integrals justify
moving a differentiation under the integral,

d J—
&0 = & [P f@ar = [ Z0e@ @) ao

= A(*2ﬂix)@g(x)f(w) dr = (*QWZ‘)/R@(SE) wf(x)de = (=2mi)zf(§)

Similarly, with an integration by parts,

—2mi& - f /3 (x)dx = _F@(f)

Thus, F maps . (R) to itself.

The natural idea to prove Fourier inversion for .#(R), that unfortunately begs the question, is the obvious:

(v f© as = [ we)( [ B smar) e = [ ([ vele—var)ar

If we could justify asserting that the inner integral is J,(¢), which it s, then Fourier inversion follows.
However, Fourier inversion for .7 (R) is used to make sense of that inner integral in the first place.

Despite that issue, a dummy convergence factor will legitimize the idea. For example, let g(z) = e~ be
the usual Gaussian. Various computations show that it is its own Fourier transform. For ¢ > 0, as e — 0,
the dilated Gaussian g.(z) = g(e - «) approaches 1 uniformly on compacts. Thus,

/ Ve(z) Fle) de = / lim g(c€) ve(x) F(€) de = lim | g(c€) de(x) (&) de
R R R

e—0t e—0t

by monotone convergence or more elementary reasons. Then the iterated integral is legitimately rearranged:

Lo vc@ feras = [ [ s ve@ Teor @ arde = [ [ o) velo =050 e ar
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By changing variables in the definition of Fourier transform, g. = % g1/e- Thus,

1 -1t 1

/ng(w)f(é) g = /Rgg( —) ) dt = /ng(é)'f(x—i—t) dt

e

The sequence of function g, ,./e is not an approximate identity in the strictest sense, since the supports are
the entire line. Nevertheless, the integral of each is 1, and as € — 0T, the mass is concentrated on smaller
and smaller neighborhoods of 0 € R. Thus, for f € .7(R),

Jim lg(é)-f(aH—t) dt = f(x)

e—0t JR €

This proves Fourier inversion. In particular, this proves that Fourier transform bijects the Schwartz space to

itself. /]

With Fourier inversion in hand, we can prove the Plancherel identity for Schwartz functions:

[8.2] Corollary: For f,g € ., the Fourier transform is an isometry in the L?(R) topology, that is,
(£.9) = (f.9).

Proof: There is an immediate preliminary identity:
Iy _ —2miéx — —2milx _ N
[Fone i = [ [ e oneacar = [ [ p@ne dode = [ 1@ h) da

To get from this identity to Plancherel requires, given g € ., existence of h € % such that h = g, with
complex conjugation. By Fourier inversion on Schwartz functions, h = (g)" succeeds. ///

[8.3] Corollary: Fourier transform extends by continuity to an isometry L?(R) — L?(R).
Proof: Schwartz functions are dense in in L?(R). ///
[8.4] Corollary: Fourier transform extends to give a bijection of the space tempered distributions .#* to

itself, by
u(p) = u(®) (for all ¢ € .%)

Proof: Fourier transform is a topological isomorphism of .7 to itself. ///

9. Test functions and Paley-Wiener spaces

Of course, the original [Paley-Wiener 1934] referred to L? functions, not distributions. The distributional
aspect is from [Schwartz 1952]. An interesting point is that rate-of-growth of the Fourier transforms in the
imaginary part determines the support of the inverse Fourier transforms.

The class PW of entire functions appearing in the following theorem is the Paley- Wiener space in one complex
variable. The assertion is that, in contrast to the fact that Fourier transform maps the Schwartz space to
itself, on test functions the Fourier transform has less symmetrical behavior, bijecting to the Paley-Wiener
space.

[9.1] Theorem: A test function f supported on [—7,7] C R has Fourier transform ]?extending to an entire
function on C, with

|]?(z)\ <y (14 |z))Nerl (for z =z + iy € C, for every N)
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Conversely, an entire function satisfying such an estimate has (inverse) Fourier transform which is a test
function supported in [—r, 7].

Proof: First, the integral for f(z) is the integral of the compactly-supported, continuous, entire-function-
valued function,

¢ — (20 £©) %)

where the space of entire functions is given the sups-on-compacts semi-norms sup,cx |f(2)]. Since C can
be covered by countably-many compacts, this topology is metrizable. Cauchy’s integral formula proves
completeness, so this space is Fréchet. Thus, the Gelfand-Pettis integral exists, and is entire. Multiplication
by z is converted to differentiation inside the integral,

= oN ; oN
T = [ e SOk = (O [ )

by integration by parts. Differentiation does not enlarge support, so

o~

|f(2’)| <N (1 + |Z|)_N . ‘/|£< e—iz~§ f(N)(g) dg’ < (1 + |Z|)_N .e%ly‘ . ‘ /|£|< e—imf f(N)(E) df

< ([Tl / FM@)dg < (L[ el
lgl<r

Conversely, for an entire function F' with the indicated growth and decay property, we show that

() = /]R ¢ F(x) de

is a test function with support inside [—r,7]. The assumptions on F' do not directly include any assertion that
F is Schwartz, so we cannot directly conclude that ¢ is smooth. Nevertheless, a similar obvious computation

would give
e R iy
)" e F(z)dx = —e””de:E:—/e”dex

Moving the differentiation outside the integral is necessary, justified via Gelfand-Pettis integrals by a
compactification device, as in [14.3], as follows. Since F strongly vanishes at oo, the integrand extends
continuously to the stereographic-projection one-point compactification of R, giving a compactly-supported
smooth-function-valued function on this compactification. The measure on the compactification can be
adjusted to be finite, taking advantage of the rapid decay of F"

dzr

ol6) = /Remg Flo) do = /Reiws F@) 0+ oy

Thus, the Gelfand-Pettis integral exists, and ¢ is smooth. Thus, in fact, the justification proves that such
an integral of smooth functions is smooth without necessarily producing a formula for derivatives.

To see that ¢ is supported inside [—r, |, observe that, taking y of the same sign as &,
‘F(az +iy) - €T« (14 [2)7N e IED vl
Thus, J
- r—|&|)- r—lg)- €T
lp(&)] <N /R(lHZD N =D 1yl gy < e(r=IED) \y\./RW
For €| > r, letting |y| — +oo shows that ¢(£) = 0. ///

17



Paul Garrett: Examples of function spaces (February 11, 2017)

[9.2] Corollary: We can topologize PW by requiring that the linear bijection D — PW be a topological
vector space isomorphism. ///

[9.3] Remark: The latter topology on PW is finer than the sups-on-compacts topology on all entire
functions, since the latter cannot detect growth properties.

Let ¢(t) = 5= [ €' 0(€) d€ be the inverse Fourier transform, mapping PW — D.

[9.4] Corollary: Fourier transform can be defined on all distributions u € D* by @(p) = u(p) for ¢ € PW,
giving an isomorphism D* — PW* to the dual of the Paley-Wiener space. ///

For example, the exponential ¢ — e*** with z € C but z ¢ R is not a tempered distribution, but is a
distributions, and its Fourier transform is the Dirac delta ¢, € PW’.

Compactly-supported distributions have a similar characterization:

[9.5] Theorem: The Fourier transform @ of a distribution u supported in [—~r, 7], of order N, is (integration
against) the function x — u(¢ — e~%¢), which is smooth, and extends to an entire function satisfying

[a(z)] < (142" - el

Conversely, an entire function meeting such a bound is the Fourier transform of a distribution of order N
supported inside [—r,r].

Proof: The Fourier transform @ is the tempered distribution defined for Schwartz functions ¢ by
() = u(@) = us > [ @ de) = [ul€ e g da
R R

since * — (6 — e ®Ep(¢) extends to a continuous smooth-function-valued function on the one-point
compactification of R, and Gelfand-Pettis applies. Thus, as expected, U is integration against © — u(§ —
e*ixg)'

The smooth-function-valued function z — (¢ — e7%*¢) is holomorphic in z. Compactly-supported
distributions constitute the dual of C*°(R). Application of u gives a holomorphic scalar-valued function
z = u(§ — e,

Let vn be the N*'-derivative seminorm on C>[—7, 7], so
()l << vn(p)
Then

[a(2)] = Ju(€ = e)| <o vn(€ = e ) < sup |(L+[)V e < (14 |2))Ver ]

[7"”17”]

Conversely, let F' be an entire function with |F(2)| < (14 |z|)Ve™!¥l. Certainly F is a tempered distribution,
so F' =1 for a tempered distribution. We show that u is of order at most N and has support in [—r, 7].

With n supported on [—1,1] with > 0 and [ = 1, make an approzimate identity n.(z) = n(z/e)/e for
e — 0. By the easy half of Paley-Wiener for test functions, 7). is entire and satisfies

e (2)] <env (L4 ]2))™N el (for all N)
Note that 7.(z) = 7(e - ) goes to 1 as tempered distribution
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By the more difficult half of Paley-Wiener for test functions, F'- 7. is ¢, for some test function . supported
in [—(r +e¢),r +¢]. Note that F -7, — F.

For Schwartz function g with the support of g not meeting [—r,r], - ¢. for sufficiently small £ > 0. Since
F - 7. is a Cauchy net as tempered distributions,

u@) = alg) = [Frg = [n(F-a)g = tim [(F7)g = tim [5g = tm [ 4.5 =0

This shows that the support of v is inside [—r, 7]. ///
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