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1. Weak-to-strong differentiability

A V -valued function f : [a, c]→ V on an interval [a, c] ⊂ R is differentiable if for every xo ∈ [a, c]

f ′(xo) = lim
x→xo

(x− xo)−1
(
f(x)− f(xo)

)
exists. The function f is continuously differentiable when it is differentiable and f ′ is continuous. A k-times
continuously differentiable function is Ck, and a continuous function is Co.

A V -valued function f is weakly Ck when for every λ ∈ V ∗ the scalar-valued function λ◦ f is Ck. This sense
of weak differentiability of a function f does not refer to distributional derivatives, but to differentiability of
every scalar-valued function λ ◦ f where λ ∈ V ∗ for V -valued f .

[1.1] Theorem: For quasi-complete, locally convex V , a weakly Ck V -valued function f on an interval [a, c]
is strongly Ck−1.

Proof: To have f be (strongly) differentiable at fixed b ∈ [a, c] is to have (strong) continuity at b of

g(x) =
f(x)− f(b)

x− b
(for x 6= b)

Weak C2-ness of f implies that every λ ◦ g extends to a C1 scalar-valued function on [a, c]. We need to get
from this to a (strongly) continuous extension of g to the whole interval.

The (strong) continuity of f ′ will follow from consideration of the function of two variables (initially for
x 6= y)

g(x, y) =
f(x)− f(y)

x− y

The weak C2-ness of f assures that g extends to a weakly C1 function on [a, c] × [a, c]. In particular, the
function x → g(x, x) of (the extended) g is weakly C1, and x → g(x, x) is f ′(x), so f ′ is weakly C1. From
above, f ′ is (strongly) Co. Suppose that we already know that f is C`, for ` < k − 1. As the `th derivative
g = f (`) of f is weakly C2, it is (strongly) C1 by the first part of the argument. That is, f is C`+1. ///
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2. Holomorphic vector-valued functions

Let V be a quasi-complete, locally convex topological vector space. A V -valued function f on a non-empty
open set Ω ⊂ C is (strongly) complex-differentiable when limz→zo

(
f(z) − f(zo)

)
/(z − zo) exists (in V )

for all zo ∈ Ω, where z → zo specificially means for complex z approaching zo. The function f is weakly
holomorphic when the C-valued functions λ◦f are holomorphic for all λ in V ∗. The useful version of vector-
valued meromorphy of f at zo is that (z − zo)n · f(z) extends to a vector-valued holomorphic function at zo
for some n. After some preparation, we will prove

[2.1] Theorem: Weakly holomorphic V -valued functions f are continuous. (Proof below.) ///

[2.2] Corollary: Weakly holomorphic V -valued functions are (strongly) holomorphic. The Cauchy integral
formula applies:

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw (as Gelfand-Pettis V -valued integral)

Proof: Since f(z) is continuous, the integral

I(z) =
1

2πi

∫
γ

f(w)

w − z
dw

exists as a Gelfand-Pettis integral. Thus, for any λ ∈ V ∗

λ
(
I(z)

)
=

1

2πi

∫
γ

(λ ◦ f)(w)

w − z
dw = (λ ◦ f)(z)

by the holomorphy of λ ◦ f . By Hahn-Banach, linear functionals separate points, so I(z) = f(z), giving the
Cauchy integral formula for f itself.

To prove (strong) complex-differentiability of f at zo, take zo = 0 and use f(0) = 0, for convenience. There
is a disk |z| < 3r such that for every λ ∈ V ∗

Fλ(z) =
(λ ◦ f)(z)

z
(on 0 < |z| < r)

extends to a holomorphic function on |z| < r. Continuity of f assures existence of

1

2πi

∫
γ

f(w)

w

dw

w − z

By Cauchy theory for C-valued functions, and Gelfand-Pettis,

λ
(f(z)

z

)
= Fλ(z) =

1

2πi

∫
γ

(λ ◦ f)(w)

w

dw

w − z
= λ

( 1

2πi

∫
γ

f(w)

w

dw

w − z

)
Since functionals separate points,

f(z)

z
=

1

2πi

∫
γ

f(w)

w

dw

w − z

From
1

w(w − z)
=

1

w2
+

z

w2(w − z)
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we have
f(z)

z
=

1

2πi

∫
γ

f(w)

w2
dw + z · 1

2πi

∫
γ

f(w)

w2(w − z)
dw

Using the continuity of f , given a convex balanced neighborhood U of 0 in V , the compact set
K = {f(w) : |w| = 2r} is contained in some multiple toU of U . Thus, for |z| < r,

f(z)

z
− 1

2πi

∫
γ

f(w)

w2
dw ∈ |z| · 1

(2r)2 r
· toU

so limz→0 f(z)/z exists. Since f(0) = 0,

lim
z→zo

f(z)− f(zo)

z − zo
=

1

2πi

∫
γ

f(w) dw

(w − zo)2

giving the complex differentiability of f . ///

[2.3] Corollary: The usual Cauchy-theory integral formulas apply. In particular, weakly holomorphic f is
(strongly) infinitely differentiable, in fact expressible as a convergent power series with coefficients given by
Cauchy’s formulas:

f(z) =
∑
n≥0

cn (z − zo)n with cn =
f (n)(zo)

n!
=

1

2πi

∫
γ

f(w)

(w − zo)n+1
dw

for γ a path with winding number +1 around zo.

Proof: Without loss of generality, treat zo = 0, and |z| < ρ|w| with ρ < 1, and |w| = r. The expansion

1

w − z
=

1

w

1

1− z
w

=
1

w

(
1 +

z

w
+
( z
w

)2
+ . . .+

( z
w

)N
+

(z/w)N+1

1− z
w

)
combined with an integration around γ against f(w), and the basic Cauchy integral formula, give

f(z) =

N∑
n=0

1

2πi

∫
γ

f(w) dw

wn+1
· zn +

1

2πi

∫
γ

1

wN+1

f(w) dw

w − z
· zN+1

Much as in the previous proof, given a convex balanced neighborhood U of 0 in V , the compact set
K = {f(w) : |w| = r} is contained in some multiple toU of U , and

1

2πi

∫
γ

1

wN+1

f(w) dw

w − z
· zN+1 ∈ 1

rN+1
· toU ·

1

r(1− ρ)
· (ρr)N+1 = U

to
r(1− ρ)

ρN+1

Since 0 < ρ < 1, ρN+1/r(1− ρ) < 1 for sufficiently large N , so the leftover term is inside given U . ///

An appendix discusses the differentiability of power series with coefficients in topological vector spaces.

The next section collects some important corollaries of the main result, prior to preparation for the proof
that weak holomorphy implies continuity,
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3. Holomorphic Hol(Ω, V )-valued functions

The vector-valued versions of Cauchy’s formulas have useful corollaries. First, recall some aspects of the
classical scalar-valued case.

For open φ 6= Ω ⊂ C, give the space Hol(Ω) of holomorphic functions on Ω the topology given by the
seminorms µK(f) = supz∈K |f(z)| for compacts K ⊂ Ω.

[3.1] Claim: Hol(Ω) is a Fréchet space.

Proof: Let {fn} be a Cauchy sequence in that topology. As in [13.5], the pointwise limit f(z) = limn fn(z)
is at least continuous. Then, for a small circle γ inside Ω and enclosing z,

f(z) = lim
n
fn(z) = lim

n

1

2πi

∫
γ

fn(w)

w − z
dw

Since γ is compact and the limit is uniformly approached on compacts, this gives

f(z) =
1

2πi

∫
γ

lim
n

fn(w)

w − z
dw =

1

2πi

∫
γ

f(w)

w − z
dw

Direct estimates (simpler than in the previous section) show that the latter integral is complex-differentiable
in w. ///

Let V be quasi-complete, locally convex, with topology given by seminorms {ν}. The space Hol(Ω, V ) of
holomorphic V -valued functions on Ω has the natural topology given by seminorms

µν,K(f) = sup
z∈K

ν(f(z)) (compacts K ⊂ Ω, seminorms ν on V )

This topology is obviously the analogue of the sups-on-compacts seminorms on scalar-valued holomorphic
functions, and there is the analogous corollary of the vector-valued Cauchy formulas:

[3.2] Corollary: Hol(Ω, V ) is locally convex, quasi-complete. ///

Proof: Let {fn} be a bounded Cauchy net. Just as in the scalar case, the pointwise limits limn fn(z) exist.
The same three-epsilon argument as for scalar-valued functions will show that the pointwise limit exists and
is continuous, as follows. First, using compact K = {z}, the value µ{z},ν(f) is just ν(f(z)). Thus, by quasi-
completeness of V , for each fixed z the bounded Cauchy net fn(z) converges to a value f(z). Given ε > 0 and
zo ∈ Ω, let K be a compact neighborhood of zo, and take N sufficiently large so that ν(fm(z)− fn(z′)) < ε
for all z, z′ ∈ K and all m,n ≥ N . Then

µK,ν(f(z)− f(zo)) ≤ µK,ν(f(z)− fn(z)) + µK,ν(fn(z)− fn(zo)) + µK,ν(fn(zo)− f(zo)) ≤ 3ε

proving the continuity of the pointwise limit. Then, as in the previous scalar-valued argument, the vector-
valued Cauchy formula gives, for a small circle γ inside Ω and enclosing z,

f(z) = lim
n
fn(z) = lim

n

1

2πi

∫
γ

fn(w)

w − z
dw

with Gelfand-Pettis integrals. Since γ is compact and the limit is uniformly approached on compacts, this
gives

f(z) =
1

2πi

∫
γ

lim
n

fn(w)

w − z
dw =

1

2πi

∫
γ

f(w)

w − z
dw

4



Paul Garrett: Holomorphic vector-valued functions (November 28, 2016)

Again, the differentiability of latter integral is directly verifiable, and f is holomorphic. ///

It is occasionally useful to iterate the previous ideas: A V -valued function f(z, w) on a non-empty open
subset Ω ⊂ C2 is complex analytic when it is locally expressible as a convergent power series in z and w, with
coefficients in V . The two-variable version of the discussion of convergence of power series with coefficients
in V in the appendix succeeds without incident in the two-variable case. [1]

[3.3] Corollary: Let f(z, w) be complex-analytic C-valued in two variables, on a domain Ω1 × Ω2 ⊂ C2.
Then the function w −→ (z → f(z, w)) is a holomorphic Hol(Ω1)-valued function on Ω2.

Proof: The issue is the uniformity in z in compacts K of the limit

lim
h→0

f(z, w + h)− f(z, w)

h

Using the scalar-valued Cauchy integral, for a small circle γ about w, letting f2 be the partial derivative of
f with respect to its second argument,

f(z, w + h)− f(z, w)

h
− f2(z, w) =

1

2πi

∫
γ

f(z, ζ)
( 1
ζ−(w+h) −

1
ζ−w

h
− 1

(ζ − w)2

)
dζ

=
1

2πi

∫
γ

f(z, ζ)
( 1

(ζ − (w + h))(ζ − h)
− 1

(ζ − w)2

)
dζ

The two-variable analytic function z, ζ → f(z, ζ) is certainly continuous as a function of two variables, so is
uniformly continuous on compacts K × γ. Thus, the limit as h→ 0 is approached uniformly. ///

Application of the vector-valued form of Cauchy’s integrals gives the same result for f(z, w) taking values
in a quasi-complete, locally convex V :

[3.4] Corollary: Let V be quasi-complete, locally convex. Let f(z, w) be complex-analytic V -valued in
two variables, on a domain Ω1 × Ω2 ⊂ C2. Then the function w −→ (z → f(z, w)) is a holomorphic
Hol(Ω1, V )-valued function on Ω2. ///

4. Banach-Alaoglu: compactness of polars

The polar Uo of an open neighborhood U of 0 in a topological vector space V is

Uo = {λ ∈ V ∗ : |λu| ≤ 1, for all u ∈ U}

[4.1] Theorem: (Banach-Alaoglu) In the weak dual topology on V ∗ the polar Uo of an open neighborhood
U of 0 in V is compact.

Proof: For every v in V there is real tv sufficiently large such that v ∈ tv · U , and |λv| ≤ tv for λ ∈ Uo.
Tychonoff gives compactness of the product

P =
∏
v∈V
{z ∈ C : |z| ≤ tv} ⊂

∏
v∈V

C

[1] We have no immediate need of subtleties concerning functions of several complex variables, such as Hartogs’

theorem that separate analyticity implies joint analyticity.
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Map V ∗ to
∏
v∈V C by j(λ) = {λ(v) : v ∈ V }. By design, j(Uo) ⊂ P . To prove the compactness of Uo it

suffices to show that the weak dual topology on Uo is identical to the subspace topology on j(Uo) inherited
from P , and that j(Uo) is closed in P .

The sub-basis sets
{λ ∈ V ∗ : |λv − λov| < δ} (for v ∈ V and δ > 0)

for V ∗ are mapped by j to the sub-basis sets

{p ∈ P : |pv − λov| < δ} (for v ∈ V and δ > 0)

for the product topology on P . That is, j maps Uo with the weak star-topology homeomorphically to j(Uo).

To show that j(Uo) is closed in P , consider L in the closure of Uo in P . Given x, y ∈ V , a, b ∈ C, the sets

{p ∈ P : |(p− L)x| < δ} {p ∈ P : |(p− L)y| < δ} {p ∈ P : |(p− L)ax+by| < δ}

are open in P and contain L, so meet j(Uo). Let λ ∈ j(Uo) lie in the intersection of these three sets and
j(Uo). Then

|aLx + bLy − Lax+by| ≤ |a| · |Lx − λx|+ |b| · |Ly − λy|+ |Lax+by − λ(ax+ by)|+ |aλx+ bλy − λ(ax+ by)|

≤ |a| · δ + |b| · δ + δ + 0 (for every δ > 0)

so L is linear. Given ε > 0, for N be a neighborhood of 0 in V such that x− y ∈ N implies λx− λy ∈ N ,

|Lx − Ly| = |Lx − λx|+ |Ly − λy|+ |λx− λy|δ + δ + ε

Thus, L is continuous. Also, |Lx − λx| < δ for all x ∈ U and all δ > 0, so L ∈ j(Uo), and j(Uo) is closed,
giving compactness. ///

5. Variant Banach-Steinhaus/uniform boundedness

This variant of the Banach-Steinhaus (uniform boundedness) theorem is used with Banach-Alaoglu to show
that weak boundedness implies boundedness in a locally convex space, the starting point for weak-to-strong
principles. It uses the version of Baire category for locally compact Hausdorff spaces, rather than complete
metric spaces.

[5.1] Theorem: (Variant Banach-Steinhaus) Let K be a compact convex set in a topological vectorspace
X, and T a set of continuous linear maps X → Y from X to another topological vectorspace Y . Suppose
that for every individual x ∈ K the collection of images T x = {Tx : T ∈ T } is bounded in Y . Then
B =

⋃
x∈K T x is bounded in Y .

Proof: Let U, V be balanced neighborhoods of 0 in Y so that U + U ⊂ V , and let

E =
⋂
T∈T

T−1(U)

By the boundedness of T x, there is a positive integer n such that T x ⊂ nU , and then x ∈ nE. For every
x ∈ K there is such n, so

K =
⋃
n

(K ∩ nE)

Since E is closed, the version of the Baire category theorem for locally compact Hausdorff spaces implies
that at least one set K ∩nE has non-empty interior in K. For such n, let xo be an interior point of K ∩nE.
Pick a balanced neighborhood W of 0 in X such that

K ∩ (xo +W ) ⊂ nE
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Since K is compact, it is bounded, so K − xo is bounded, and K ⊂ xo + tW for large enough positive real
t. Since K is convex, (1− t−1)x+ t−1x ∈ K for any x ∈ K and t ≥ 1. At the same time,

z − xo = t−1(x− xo) ∈W (for large enough t)

by the boundedness of K, so z ∈ xo +W . Thus, z ∈ K ∩ (xo +V ) ⊂ nE. From the definition of E, TE ⊂ U ,
so T (nE) = nT (E) ⊂ nU . And x = tz − (t− 1)xo yields

Tx ∈ tnU − (t− 1)nU ⊂ tn(U + U)

by the balanced-ness of U . Since U + U ⊂ V , we have B ⊂ tnV . Since V was arbitrary, this proves the
boundedness of B. ///

6. Weak boundedness implies (strong) boundedness

[6.1] Theorem: Let V be a locally convex topological vectorspace. A subset E of V is bounded if and only
if it is weakly bounded.

Proof: For the proof, we need the notion of second polar Noo of an open neighborhood N of 0 in a topological
vector space V :

Noo = {v ∈ V : |λ v| ≤ 1 for all λ ∈ No}

where No is the polar of N . Conveniently,

[6.2] Claim: (On second polars) For V a locally convex topological vectorspace and N a convex, balanced
neighborhood of 0, the second polar Noo of N is the closure N of N .

Proof: Certainly N is contained in Noo, and in fact N is contained in Noo since Noo is closed. By the
local convexity of V , Hahn-Banach implies that for v ∈ V but v 6∈ N there is λ ∈ V ∗ such that λv > 1 and
|λv′| ≤ 1 for all v′ ∈ N . Thus, λ is in No, and every element v ∈ Noo is in N , so Noo = N . ///

Returning to the proof of the theorem: clearly boundedness implies weak boundedness. On the other hand,
take E weakly bounded, and U be a neighborhood of 0 in V in the original topology. By local convexity,
there is a convex (and balanced) neighborhood N of 0 such that the closure N is contained in U .

By the weak boundedness of E, for each λ ∈ V ∗ there is a bound bλ such that |λx| ≤ bλ for x ∈ E. By
Banach-Alaoglu the polar No of N is compact in V ∗. The functions λ → λx are continuous, so by variant
Banach-Steinhaus there is a uniform constant b < ∞ such that |λx| ≤ b for x ∈ E and λ ∈ No. Thus,
b−1x is in the second polar Noo of N , shown by the previous proposition to be the closure N of N . That is,
b−1x ∈ N . By the balanced-ness of N , E ⊂ tN ⊂ tU for any t > b, so E is bounded. ///

7. Proof that weak C1 implies strong Co

The claim below, needed to complete the proof that weak Ck implies (strong) Ck−1, is an application of the
fact that weak boundedness implies boundedness.

[7.1] Claim: Let V be a quasi-complete locally convex topological vector space. Fix real numbers a ≤ b ≤ c.
Let g be a V -valued function defined on [a, b) ∪ (b, c]. Suppose that for λ ∈ V ∗ the scalar-valued function
λ◦g extends to a C1 function Fλ on the whole interval [a, c]. Then g(b) can be chosen such that the extended
g(x) is (strongly) continuous on [a, c].
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Proof: For each λ ∈ V ∗, let Fλ be the extension of λ ◦ g to a C1 function on [a, c]. The differentiability of
Fλ implies that for each λ the function

Φλ(x, y) =
Fλ(x)− Fλ(y)

x− y
(for x 6= y)

has a continuous extension Φ̃λ to the compact set [a, c] × [a, c]. The image Cλ of [a, c] × [a, c] under this
continuous map is compact in R, so bounded. Thus, the subset{λf(x)− λf(y)

x− y
: x 6= y

}
⊂ Cλ

is bounded in R. That is,

E =
{g(x)− g(y)

x− y
: x 6= y

}
⊂ V

is weakly bounded. Because weakly bounded implies (strongly) bounded, E is (strongly) bounded. That
is, for a balanced, convex neighborhood N of 0 in V , there is to such that (g(x) − g(y))/(x − y) ∈ tN for
x 6= y in [a, c] and t ≥ to. That is, g(x)− g(y) ∈ (x− y)tN . Given N and to as above, g(x)− g(y) ∈ N for
|x− y| < 1

to
. That is, as x→ b the collection g(x) is a bounded Cauchy net. By quasi-completeness, define

g(b) ∈ V as the limit of the values g(x). For x → y the values g(x) approach g(y), so this extension of g is
continuous on [a, c]. ///

8. Proof that weak holomorphy implies continuity

With the above preparation, we prove that weak holomorphy implies (strong) continuity, completing the
larger proof, as another application of the fact that weak boundedness implies boundedness, by an argument
parallel to that of the first section that weak C1 implies Co for vector-valued functions on [a, b].

[8.1] Claim: Weak holomorphy implies (strong) continuity.

Proof: To show that weak holomorphy of f implies f : D → V is (strongly) continuous, without loss
of generality prove continuity at z = 0 and suppose f(0) = 0 ∈ V . Since λ ◦ f is holomorphic for each
λ ∈ V ∗ and vanishes at 0, each function (λ ◦ f)(z)/z initially defined on a punctured disk at 0 extends to
a holomorphic function on a full disk at 0. By Cauchy theory for the scalar-valued holomorphic function

z → λ(f(z))
z ,

(λ ◦ f)(z)

z
=

1

2πi

∫
γ

1

w − z
· (λ ◦ f)(w)

w
dw

where γ is a circle of radius 2r centered at 0, and |z| < r. With Mλ the sup of |λ ◦ f | on γ,∣∣∣∣ (λ ◦ f)(z)

z

∣∣∣∣ ≤ length γ

2π
· 1

2r − r
· Mλ

2r
=

1

2π
· (2π · 2r) · 1

r
· Mλ

2r
=

Mλ

r

Thus, the set of values

S =
{f(z)

z
: |z| ≤ r

}
is weakly bounded. Weak boundedness implies (strong) boundedness, so S is bounded. That is, given a
balanced convex neighborhood N of 0 in V , there is to > 0 such that for complex w with |w| ≥ to, the set S
lies inside wN . Then f(z) ∈ zwN and f(z) ∈ N for |z| < |w|. As f(0) = 0, we have proven that, given N ,
for z sufficiently near 0 f(z)− f(0) ∈ N . This is (strong) continuity. ///
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9. Appendix: vector-valued power series

We should confirm that power series with values in a quasi-complete, locally compact vectorspace V behave
essentially as well as scalar-valued ones. First,

[9.1] Lemma: Let cn be a bounded sequence of vectors in the locally convex, quasi-complete topological
vector space V . Let zn be a sequence of complex numbers, let 0 ≤ rn be real numbers such that |zn| ≤ rn, and
suppose that

∑
n rn < +∞. Then

∑
n cn zn converges in V . Further, given a convex balanced neighborhood

U of 0 in V let t be a positive real such that for all complex w with |w| ≥ t we have {cn} ⊂ tU . Then

∑
n

cn zn ∈

(∑
n

|zn|

)
· tU ⊂

(∑
n

rn

)
· tU

Proof: For convex balanced neighborhood N of 0 in the topological vector space, with complex numbers z
and w such that |z| ≤ |w|, then zN ⊂ wN , since |z/w| ≤ 1 implies (z/w)N ⊂ N , or zN ⊂ wN . Further, for
an absolutely convergent series

∑
n αn of complex numbers, for any no

∑
n≤no

(αn · V ) =
∑
n≤no

(|αn| · V ) ⊂

∑
n≤no

|αn|

 ·N ⊂

(∑
n<∞

|αn|

)
·N

For a balanced open U containing 0, let t be large enough such that for any complex w with |w| ≥ t the
sequence cn is contained in wU . The previous discussion shows that∑

m≤`≤n

c`z` ∈ (|zm|+ . . .+ |zn|) · tU

Given ε > 0, invoking absolute convergence, take m sufficiently large such that |zm|+ . . .+ |zn| < t · ε for all
n ≥ m. Then ∑

m≤`≤n

c`z` ∈ t · (ε/t) · U = U

Thus, the original series is convergent. Since X is quasi-complete the limit exists in V . The last containment
assertion follows from this discussion, as well. ///

[9.2] Corollary: Let cn be a bounded sequence of vectors in a locally convex quasi-complete topological
vector space V . Then on |z| < 1 the series f(z) =

∑
n cnz

n converges and gives a holomorphic V -valued
function. That is, the function is infinitely-many-times complex-differentiable.

Proof: The lemma shows that the series expressing f(z) and its apparent kth derivative
∑
n cn

(
n
k

)
zn−k all

converge for |z| < 1. The usual direct proof of Abel’s theorem on the differentiability of (scalar-valued)
power series can be adapted to prove the infinite differentiability of the X-valued function given by this
power series, as follows. Let

g(z) =
∑
n≥0

ncn z
n−1

Then
f(z)− f(w)

z − w
− g(w) =

∑
n≥1

cn

(
zn − wn

z − w
− nwn−1

)
For n = 1, the expression in the parentheses is 1. For n > 1, it is(

zn−1 + zn−2w + . . .+ zwn−2 + wn−1
)
− nwn−1

9
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= (zn−1 − wn−1) + (zn−2w − wn−1) + . . .+ (z2wn−3 − wn−1) + (zwn−2 − wn−1) + (wn−1 − wn−1)

= (z − w)
[
(zn−2 + . . .+ wn−2) + w(zn−3 + . . .+ wn−3) + . . .+ wn−3(z + w) + wn−2 + 0

]
= (z − w)

n−2∑
k=0

(k + 1) zn−2−k wk

For |z| ≤ r and |w| ≤ r the latter expression is dominated by

|z − w| · rn−2 n(n− 1)

2
< |z − w| · n2 rn−2

Let U be a balanced neighborhood of 0 in X, and t a sufficiently large real number such that for all complex
w with |w| ≥ t all cn lie in wU . For |z| ≤ r < 1 and |w| ≤ r < 1, by the lemma,

f(z)− f(w)

z − w
− g(w) = (z − w)

∑
n≥2

cn ·

(
n−2∑
k=0

(k + 1) zn−2−k wk

)
∈ (z − w) ·

(∑
n

n2 rn−2

)
· tU

Thus, as z → w, eventually f(z)−f(w)
z−w − g(w) lies in U . ///

[9.3] Corollary: Let cn be a sequence of vectors in a Banach space X such that for some r > 0 the series∑
|cn| · rn converges in X. Then for |z| < r the series f(z) =

∑
cnz

n converges and gives a holomorphic
(infinitely-many times complex-differentiable) X-valued function. ///
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