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Hilbert-Schmidt operators on Hilbert spaces are especially simple compact operators.

Countable projective limits of Hilbert spaces with transition maps Hilbert-Schmidt constitute the simplest
class of nuclear spaces: well-behaved with respect to tensor products and other natural constructs.

The main application in mind is proof of Schwartz’ Kernel Theorem in the important example of L2 Sobolev
spaces.

1. Hilbert-Schmidt operators

[1.1] Prototype: integral operators

For a continuous function Q(a, b) on [a, b]× [a, b], define T : L2[a, b]→ L2[a, b] by

Tf(y) =

∫ b

a

Q(x, y) f(x) dx

The function Q is the (integral) kernel of T . [1] Approximating Q by finite linear combinations of 0-or-1-
valued functions shows that T is a uniform operator norm limit of finite-rank operators, so is compact.
In fact, T falls into an even-nicer sub-class of compact operators, the Hilbert-Schmidt operators, as in the
following.

[1.2] Hilbert-Schmidt norm on V ⊗alg W

In the category of Hilbert spaces and continuous linear maps, demonstrably there is no tensor product in the
categorical sense. [2] Not claiming anything about genuine tensor products in any category of topological
vector spaces, the algebraic tensor product X ⊗alg Y of two Hilbert spaces has a hermitian inner product
〈, 〉

HS
determined by

〈x⊗ y, x′ ⊗ y′〉
HS

= 〈x, x′〉 〈y, y′〉

Let X ⊗
HS
Y be the completion with respect to the corresponding norm |v|

HS
= 〈v, v〉1/2

HS

X ⊗
HS
Y = | · |

HS
-completion of X ⊗alg Y

This completion is a Hilbert space.

[1] Yes, the use of kernel in reference to a two-argument function integrated-against is incompatible with use of kernel

for homomorphisms of groups or modules.

[2] See [Garrett 2010] for proof of non-existence of a Hilbert-space tensor product. The point is that not every

Hilbert-Schmidt operator is of trace class. Nuclear spaces are a family of topological vector spaces that overcome

problems with tensor products. The simplest nuclear spaces are constructed from families of Hilbert spaces connected

by Hilbert-Schmidt operators, as in the first part of the discussion below.
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[1.3] Hilbert-Schmidt operators

For Hilbert spaces V,W the finite-rank [3] continuous linear maps T : V → W can be identified with the
algebraic tensor product V ∗ ⊗alg W , by [4]

(λ⊗ w)(v) = λ(v) · w

The space of Hilbert-Schmidt operators V → W is the completion of the space V ∗ ⊗
HS
W of finite-rank

operators, with respect to the Hilbert-Schmidt norm | · |HS on V ∗ ⊗alg W . For example,

|λ⊗ w + λ′ ⊗ w′|2
HS

= 〈λ⊗ w + λ′ ⊗ w′, λ⊗ w + λ′ ⊗ w′〉

= 〈λ⊗ w, λ⊗ w〉+ 〈λ⊗ w, λ′ ⊗ w′〉+ 〈λ′ ⊗ w′, λ⊗ w〉+ 〈λ′ ⊗ w′, λ′ ⊗ w′〉

= |λ|2|w|2 + 〈λ, λ′〉〈w,w′〉+ 〈λ′, λ〉〈w′, w〉+ |λ′|2|w′|2

When λ ⊥ λ′ or w ⊥ w′, the monomials λ⊗ w and λ′ ⊗ w′ are orthogonal, and

|λ⊗ w + λ′ ⊗ w′|2
HS

= |λ|2|w|2 + |λ′|2|w′|2

That is, the space Hom
HS

(V,W ) of Hilbert-Schmidt operators V → W is the closure of the space of finite-
rank maps V → W , in the space of all continuous linear maps V → W , under the Hilbert-Schmidt norm.
By construction, Hom

HS
(V,W ) is a Hilbert space.

[1.4] Expressions for Hilbert-Schmidt norm, adjoints

The Hilbert-Schmidt norm of finite-rank T : V →W can be computed from any choice of orthonormal basis
vi for V , by

|T |2
HS

=
∑
i

|Tvi|2 (at least for finite-rank T )

Thus, taking a limit, the same formula computes the Hilbert-Schmidt norm of T known to be Hilbert-
Schmidt. Similarly, for two Hilbert-Schmidt operators S, T : V →W ,

〈S, T 〉HS =
∑
i

〈Svi, T vi〉 (for any orthonormal basis vi)

The Hilbert-Schmidt norm | · |
HS

dominates the uniform operator norm | · |op: given ε > 0, take |v1| ≤ 1 with
|Tv1|2 + ε > |T |2op. Choose v2, v3, . . . so that v1, v2, . . . is an orthonormal basis. Then

|T |2op ≤ |Tv1|2 + ε ≤ ε+
∑
n

|Tvn|2 = ε+ |T |2
HS

This holds for every ε > 0, so |T |2op ≤ |T |2HS
. Thus, Hilbert-Schmidt limits are operator-norm limits, and

Hilbert-Schmidt limits of finite-rank operators are compact.

Adjoints T ∗ : W → V of Hilbert-Schmidt operators T : V →W are Hilbert-Schmidt, since for an orthonormal
basis wj of W ∑

i

|Tvi|2 =
∑
ij

|〈Tvi, wj〉|2 =
∑
ij

|〈vi, T ∗wj〉|2 =
∑
j

|T ∗wj |2

[3] As usual a finite-rank linear map T : V →W is one with finite-dimensional image.

[4] Proof of this identification: on one hand, a map coming from V ∗ ⊗alg W is a finite sum
∑
i λi ⊗ wi, so certainly

has finite-dimensional image. On the other hand, given T : V → W with finite-dimensional image, take v1, . . . , vn
be an orthonormal basis for the orthogonal complement (kerT )⊥ of kerT . Define λi ∈ V ∗ by λi(v) = 〈v, vi〉. Then

T ∼
∑
i λi ⊗ Tvi is in V ∗ ⊗W . The second part of the argument uses the completeness of V .
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[1.5] Criterion for Hilbert-Schmidt operators

We claim that a continuous linear map T : V → W with Hilbert space V is Hilbert-Schmidt if for some
orthonormal basis vi of V ∑

i

|Tvi|2 < ∞

and then (as above) that sum computes |T |2
HS

. Indeed, given that inequality, letting λi(v) = 〈v, vi〉, T is
Hilbert-Schmidt because it is the Hilbert-Schmidt limit of the finite-rank operators

Tn =

n∑
i=1

λi ⊗ Tvi

[1.6] Composition of Hilbert-Schmidt operators with continuous operators

Post-composing: for Hilbert-Schmidt T : V →W and continuous S : W → X, the composite S ◦T : V → X
is Hilbert-Schmidt, because for an orthonormal basis vi of V ,∑

i

|S ◦ Tvi|2 ≤
∑
i

|S|2op · |Tvi|2 = |S|op · |T |2HS
(with operator norm |S|op = sup|v|≤1 |Sv|)

Pre-composing: for continuous S : X → V with Hilbert X and orthonormal basis xj of X, since adjoints of
Hilbert-Schmidt are Hilbert-Schmidt,

T ◦ S = (S∗ ◦ T ∗)∗ = (Hilbert-Schmidt)∗ = Hilbert-Schmidt

2. Simplest nuclear Fréchet spaces

Later, we will characterize a large class of nuclear spaces, a class of topological vector spaces behaving well
with respect to tensor products in a categorical sense, aimed at a general Schwartz Kernel Theorem.

For the moment, we consider a special, more accessible, class of examples of nuclear spaces, sufficient for the
Kernel Theorem for Sobolev spaces below.

[2.1] V ⊗
HS

W is not a categorical tensor product

Again, the Hilbert space V ⊗
HS
W is not a categorical tensor product of (infinite-dimensional) Hilbert spaces

V,W . In particular, although the bilinear map V × W → V ⊗
HS
W is continuous, there are (jointly)

continuous β : V ×W → X to Hilbert spaces H which do not factor through any continuous linear map
B : V ⊗HS W → X.

The case W = V ∗ and X = C, with β(v, λ) = λ(v) already illustrates this point, since not every Hilbert-
Schmidt operator has a trace. That is, letting vi be an orthonormal basis for V and λi(v) = 〈v, vi〉 an
orthonormal basis for V ∗, necessarily

B(
∑
ij

cij vi ⊗ λj) =
∑
ij

cijβ(vi, λj) =
∑
i

cii (???)

However,
∑
i
1
i vi ⊗ λi is in V ⊗HS V

∗, but the alleged value of B is impossible. In other words, there are
Hilbert-Schmidt maps which are not of trace class.
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[2.2] Approaching tensor products and nuclear spaces

Let V,W, V1,W1 be Hilbert spaces with Hilbert-Schmidt maps S : V1 → V and T : W1 →W . We claim that
for any (jointly) continuous β : V ×W → X, there is a unique continuous B : V1 ⊗HS

W1 → X giving a
commutative diagram

V1 ⊗HS
W1

B

��

s
p

l i e ` \ W R L
F

@
:

5
2

// V ⊗
HS
W

V1 ×W1
S×T //

OO

V ×W
β //

OO

X

In fact, B : V1 ⊗HS W1 → X is Hilbert-Schmidt. As the diagram suggests, V ⊗HS W is bypassed, playing no
role.

Proof: Once the assertion is formulated, the argument is the only thing it can be: The continuity of β gives
a constant C such that |β(v, w)| ≤ C · |v| · |w|, for all v ∈ V , w ∈W . The Hilbert-Schmidt condition is that,
for chosen orthonormal bases vi of V1 and wj of W1,

|S|2
HS

=
∑
i

|Svi|2 < ∞ |T |2
HS

=
∑
j

|Twi|2 < ∞

Thus,
|β(Sv, Tw)| ≤ C · |Sv| · |Tv|

Squaring and summing over vi and wj ,∑
ij

|β(Svi, Twj)|2 ≤ C ·
∑
ij

|Svi|2 · |Twj |2 = C · |S|2
HS
· |T |2

HS
< ∞

That is, the obvious definition-attempt

B(
∑
ij

cij vi ⊗ wj) =
∑
ij

cij β(Svi, Twj)

does produce a Hilbert-Schmidt operator V1 ⊗W1 → X. ///

[2.3] A class of nuclear Fréchet spaces

We take the basic nuclear Fréchet space to be a countable limit [5] of Hilbert spaces where the transition
maps are Hilbert-Schmidt.

That is, for a countable collection of Hilbert spaces V0, V1, V2, . . . with Hilbert-Schmidt maps ϕi : Vi → Vi−1,
the limit V = limi Vi in the category of locally convex topological vector spaces is a nuclear Fréchet space.
[6]

Let C be the category of Hilbert spaces enlarged to include limits.

[5] Properly, the class of categorical limits includes products and other objects whose indexing sets are not necessarily

directed. In that context, requiring that the index set be directed, a projective limit is a directed or filtered limit.

Similarly, what we will call simply colimits are properly filtered or directed colimits.

[6] The new aspect is the nuclearity, not the Fréchet-ness: an arbitrary countable limit of Hilbert spaces is (provably)

Fréchet, since an arbitrary countable limit of Fréchet spaces is Fréchet.
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We claim that nuclear Fréchet spaces admit tensor products in C. That is, for nuclear spaces V = limi Vi
and W = limWi there is a nuclear space V ⊗ W and continuous bilinear V ⊗ W → V ⊗ W such that,
given a jointly continuous bilinear map β : V ×W → X of nuclear spaces V,W to X ∈ C, there is a unique
continuous linear map B : V ⊗W → X giving a commutative diagram

V ⊗W
B

''P
PPPPPP

V ×W
β

//

OO

X

In particular, V ⊗W ≈ limi Vi ⊗HS
Wi.

Proof: By the defining property of (projective) limits, it suffices to treat the case that X is itself a Hilbert
space. Let ϕi : Vi → Vi−1 and ψi : Wi →Wi−1 be the transition maps. First, we claim that, for large-enough
index i, the bilinear map β : V ×W → X factors through Vi ×Wi. Indeed, the topologies on V and W are
such that, given εo > 0, there are indices i, j and open neighborhoods of zero E ⊂ Vi, F ⊂ Wj such that
β(E × F ) ⊂ εo-ball at 0 in X. Since β is C-bilinear, for any ε > 0,

β(
ε

εo
E × F ) ⊂ ε-ball at 0 in X

That is, β is already continuous in the Vi ×Wj topology. Replace i, j by their maximum, so i = j.

The argument of the previous section exhibits continuous linear B fitting into the diagram

Vi+1 ⊗HS Wi+1 B

&&

\ [ Z X W V U S R Q O N
Vi+1 ×Wi+1

ϕi+1×ψi+1//

OO

Vi ×Wi
β // X

In fact, B is Hilbert-Schmidt. Applying the same argument with X replaced by Vi+1 ⊗HS
Wi+1 shows that

the dotted map in

Vi+2 ⊗HS
Wi+2

//______ Vi+1 ⊗HS
Wi+1

B

&&LLLLLLLLLLL

Vi+2 ×Wi+2

OO

ϕi+2×ψi+2 // Vi+1 ×Wi+1

OO

β // X

is Hilbert-Schmidt. Thus, the categorical tensor product is the limit of the Hilbert-Schmidt completions of
the algebraic tensor products of the limitands:

(lim
i
Vi)⊗ (lim

j
Wj) = lim

i

(
Vi ⊗HS Wi)

The transition maps in this limit have been proven Hilbert-Schmidt, so the limit is again nuclear. ///

[2.4] Example: tensor products of Sobolev spaces

Let T be the circle R/2πZ. In terms of Fourier series, for s ≥ 0 the sth L2 Sobolev space on Tm is

Sob(s,Tm) = {
∑
ξ

cξ e
iξ·x ∈ L2(Tm) :

∑
ξ

|cξ|2 · (1 + |ξ|2)s <∞}

The Sobolev imbedding theorem asserts that

Sob(k + m
2 + ε,Tm) ⊂ Ck(Tm) (for all ε > 0)
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Thus,

C∞(Tm) = Sob(+∞,Tm) = lim
s

Sob(s,Tm) ≈ lim
(
. . .→ Sob(2,Tm)→ Sob(1,Tm)→ Sob(0,Tm)

)
We claim that

Sob(+∞,Tm)⊗C Sob(+∞,Tn) ≈ Sob(+∞,Tm+n)

induced from the natural

(ϕ⊗ ψ)(x, y) = ϕ(x)ψ(y) (ϕ ∈ Sob(+∞,Tm), ψ ∈ Sob(+∞,Tn), x ∈ Tm, y ∈ Tn)

Indeed, our construction of this tensor product is

Sob(+∞,Tm)⊗C Sob(+∞,Tn) = lim
s

(
Sob(s,Tm)⊗

HS
Sob(s,Tn)

)
The inequalities

(1 + |ξ|2 + |η|2)2 ≥ (1 + |ξ|2)(1 + |η|2) ≥ 1 + |ξ|2 + |η|2 (for ξ ∈ Zm, η ∈ Zn)

give
Sob(2s,Tm+n) ⊂ Sob(s,Tm)⊗

HS
Sob(s,Tn) ⊂ Sob(s,Tm+n) (for s ≥ 0)

The limit only depends on cofinal subsystems, so, indeed,

Sob(+∞,Tm)⊗C Sob(+∞,Tn) ≈ Sob(+∞,Tm+n)

3. Strong dual topologies and colimits

The example of the Schwartz Kernel Theorem below refers to duals of Sobolev spaces, so the nature of the
topology must be made clear.

[3.1] Duals of limits of Banach spaces

The topology on a limit

V
'' $$ ""

. . . // V2
ϕ2 // V1

ϕ1 // V0

of Banach spaces Vi is given by the norms | · |i on Vi, composed with the maps σi : V → Vi, giving seminorms
pi = | · |i ◦ σi.

We claim that linear maps λ : V → X from V = limi Vi of Banach spaces Vi to a normed space X necessarily
factor through some limitand:

V

λ   A
AA

AA
AA

A
''. . . // Vi

~~}
}

}
}

ϕi // . . .

X

Proof: Without loss of generality, replace each Vi by the closure of the image of Vi in it. Continuity of λ is
that, given ε > 0, there is an index i and a δ > 0 such that

λ
(
{v ∈ V : pi(v) < δ}

)
⊂ {x ∈ X : |x|

X
< ε}
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Then, for any ε′ > 0,

λ
(
{v ∈ V : pi(v) < δ · ε

′

ε
}
)
⊂ {x ∈ X : |x|

X
< ε′}

Thus, λ extends by continuity to the closure of σiV in Vi, and gives a continuous map Vi → X. ///

Thus, the dual of a limit of Banach spaces Vi is a colimit

V ∗0
ϕ∗

1 //
$$

V ∗1
ϕ∗

1 //
&&

V ∗2 //
**

. . . colimV ∗i

The duals V ∗i and the colimit are unambiguous as vector spaces. The topology on the colimit depends on
the choice of topology on the duals V ∗i .

One reason to consider limits of Banach spaces Vi is the natural Banach-space structure on the dual. These
are examples of strong dual topologies. In general, the strong dual topology on the dual V ∗ of a locally
convex topological vector space V is given by seminorms

pE(λ) = sup
v∈E
|λv| (E a bounded, convex, balanced neighborhood of 0 in V )

Recall that a bounded set E in a general topological vector space V is characterized by the property that,
for every open neighborhood U of 0 in V , there is to such that tU ⊃ E for all t ≥ to.

Consider a countable limit V = limVi of Banach spaces, where for simplicity we suppose that all transition
maps Vi → Vi−1 are injections. We claim that the (locally convex) colimit colimi

(
V ∗i
)

of the strong duals
V ∗i gives the strong dual topology on the dual V ∗ of the limit V = limVi.

Proof: Since the transition maps Vi → Vi−1 are injections, as a set the limit V is the nested intersection of
the Vi, and we identify Vi as a subset of Vi−1. Further, the dual V ∗ is identifiable with the ascending union
of the duals V ∗i , regardless of topology.

The first point is to show that every bounded subset of V is contained in a bounded subset E expressible as
a nested intersection of bounded subsets Ei of Vi. To see this, first note that the topology on V is given by
the collection of (semi-) norms | · |i on the individual Banach spaces Vi. A set E ⊂ is bounded if and only
if, for every index i, there is a radius ri such that E is inside the ball Bi(ri) of radius ri in Vi. We may as
well replace these balls by the intersection of all the lower-(or-equal-)index balls:

Ei =
⋂
j≥i

Bj(rj)

The set Ei is bounded in Vi, Ei ⊂ Ei−1, and E is their nested intersection.

Now consider the linear functionals. On one hand, a given λ : V → C factors through some λi ∈ V ∗i , and
λE being inside the ε-ball Bε in C is implied by λiEi ⊂ Bε for some i. On the other hand, for λE ⊂ Bε,
we claim λEi ⊂ Bε for large-enough i. Indeed, λEi is a balanced, bounded, convex subset of C, so is a disk
(either open or closed) of radius ri. Since the intersection of the λEi is inside Bε, necessarily lim ri ≤ ε, with
strict inequality if the disks are closed. Thus, there is io such that ri ≤ ε for i ≥ io, with ri < ε for close
disks. Thus, there is io such that λEi ⊂ Bε for i ≥ io.

That is, the strong dual topology on V ∗ =
⋃
i V
∗
i is the colimit of the strong dual (Banach) topologies on

the V ∗i . ///

[3.1.1] Remark: The locally convex colimit of the Hilbert spaces Sob(−s,Tn) is denoted Sob(−∞,Tn),
especially after verifying that the colimit topology from the strong duals Sob(−s,Tn) is the strong dual
topology on Sob(+∞,Tn)∗.

7



Paul Garrett: Hilbert-Schmidt operators, nuclear spaces, kernel theorem I (July 19, 2011)

4. Schwartz Kernel Theorem for Sobolev spaces

Continue the example of Sobolev spaces on products Tm of circles T. The following is the simplest example
of Schwartz’ Kernel Theorem:

We claim that the map

Homo
(
Sob(∞,Tm), Sob(∞,Tn)∗

)
≈ Sob(∞,Tm+n)∗

induced by(
f −→ (F → Φ(f ⊗ F )

)
←− Φ (f ∈ Sob(∞,Tm), F ∈ Sob(∞,Tn), Φ ∈ Sob(∞, Tm+n)∗)

is an isomorphism.

[4.0.1] Remark: The Hom-space Homo is continuous linear maps, so giving sense to the assertion requires
a topology on the dual space Sob(∞,Tn)∗. Most optimistically, because this would most-constrain the
continuous maps, we give this dual the strong dual topology Sob(−∞,Tn).

[4.0.2] Remark: The distribution Φ ∈ Sob(∞,Tm+n)∗ producing a given continuous map from Sob(∞,Tm)
to Sob(∞,Tn)∗ is the Schwartz kernel of the map.

Proof: Let X = Sob(∞,Tm) and Y = Sob(∞, Tn), Given the existence of the categorical tensor product,
established above, it suffices to show that the vector space

Bilo(X × Y,C)

of jointly continuous bilinear maps is linearly isomorphic to Hom(X,Y ∗), via the expected

β −→ (x −→ (y → β(x, y))) (for β ∈ Bilo(X,Y ), x ∈ X, and y ∈ Y )

where Y ∗ is given the strong dual topology. It is immediate that the map is a bijection. The issue is only
topological.

Given x ∈ X, bounded E ⊂ Y , and ε > 0, by joint continuity of β, there are neighborhoods M,N of 0 in
X,Y such that

β(x+M,N) = β(x+M,N)− β(x, 0) ⊂ ε-ball in Y ∗

Since E is bounded, there is t > 0 such that tN ⊃ E. Then

β(x+m, e)− β(x, e) = β(m, e) ∈ β(M,E) ⊂ β(M, tN) (for m ∈M and e ∈ E)

This suggests replacing M by t−1M , so

β(x+m, e)− β(x, e) = β(t−1M,E) ⊂ β(t−1M, tN) ⊂ ε-ball in Y ∗ (for m ∈ t−1M and e ∈ E)

That is,
β(x+m,−)− β(x,−) ∈ UE,ε (for m ∈ t−1M)

This proves the continuity of the map X → Y ∗ induced by β.

Conversely, given ϕ : X → Y ∗, put β(x, y) = ϕ(x)(y). For fixed x, β(x,−) = ϕ(x) is continuous, by
hypothesis. For fixed y, E = {y} is a bounded set in Y , so by the continuity of x → ϕ(x), for given x and
ε > 0 there is a neighborhood M of 0 in X so that ϕ(x + M) − ϕ(x) ⊂ UE,ε. This proves that β(−, y) is
continuous. Thus, β is separately continuous. Since X and Y are Fréchet, separately continuous bilinear
functions are jointly continuous. ///
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5. Appendix: joint continuity of bilinear maps on Fréchet spaces

One of the family of corollaries of Baire category and related ideas is the following convenient standard fact:

Let β : X × Y → Z be a bilinear map on Fréchet spaces X,Y , continuous in each variable separately. Then
β is jointly continuous.

Proof: Fix a neighborhood N of 0 in Z Let xn → xo in X and yn → yo in Y . For each x ∈ X, by continuity
in Y , β(x, yn) → β(x, yo). Thus, for each x ∈ X, the set of values β(x, yn) is bounded in Z. The linear
functionals x → β(x, yn) are equicontinuous, by Banach-Steinhaus, so there is a neighborhood U of 0 in X
so that bn(U) ⊂ N for all n. In the identity

β(xn, yn)− β(xo, yo) = β(xn − xo, yn) + β(xo, yn − yo)

we have xn − xo ∈ U for large n, and β(xn − xo, yo) ∈ N . Also, by continuity in Y , β(xo, yn − yo) ∈ N
for large n. Thus, β(xn, yn)− β(xo, yo) ∈ N +N , proving sequential continuity. Since X × Y is metrizable,
sequential continuity implies continuity. ///

[5.0.1] Remark: The roles of X,Y in the argument are somewhat unsymmetrical, suggesting technical
sharpening of the assertion, but we do not need that.
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