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A fundamental idea emphasized by category theory is characterization of objects by their interactions with
other objects, rather than constructions and internal details. [1]

More generally:

Sufficiently many good examples should make formal definitions nearly unnecessary, and should make most
basic results obvious.

A good methodological and technical viewpoint should enable not merely verification of interesting results,
but should assist discovery.

Phenomena are more interesting than symbols.

1. Some recurring themes

There are many threads here, touched at various levels of sophistication, interacting in many ways. The
following are some of the recurring ideas:

Naive category theory has the immediate feature of characterizing or describing objects by their mappings
to other objects, rather than by their internal structure or construction. The modifier naive indicates that
we do not aggressively axiomatize, and do not necessarily worry about reconciling categorical ideas with set
theory.

Naive set theory is the typical background or foundation for constructing more complicated structures, in
a century-old tradition. The modifier naive denotes an informal and non-axiomatic treatment, in contrast
to versions of set theory specifically aimed at preventing paradoxes by limiting constructions. Part of the
set theory tradition demands that any mathematical discussion be compatible with the explicit or implicit
prohibitions of set theory.

Linear algebra in the broadest sense takes vector spaces over fields as prototypes for modules over general
rings. Decomposition into eigenvectors or more complicated atomic pieces appears everywhere. Collections
of modules over rings are the prototypes for abelian categories, including important examples that are not
literal categories of modules, such as categories of sheaves or complexes of sheaves.

Functors arise immediately in category theory, being maps from one category to another, converting one type
of object to another, and converting corresponding maps-of-objects from one type to the other. Homology

[1] The occasional definition of new objects as symbols behaving a certain way is a pale shadow of the idea of

characterization by interactions, but made clumsy and opaque by entangling half-hearted constructions with under-

specification.
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and homotopy groups of topological spaces are dramatic first examples. Once we realize that most systematic
procedures describe functors, we see that functors are everywhere.

Adjoint functors and adjunction relations: many important functors occur in adjoint pairs, satisfying
an adjunction relation, in a sense a sort of inversion, but significantly different. Many forgetful or lossy
functors, while boring themselves, have interesting adjoints. Yoneda’s small lemma yields left exactness of
right adjoints, and right exactness of left adjoints, once and for all.

Natural transformations are maps of functors, and allow formulation of the notion of equivalence of
functors, the best version of isomorphism of functors.

Homology and cohomology arose as counting holes in geometric objects. Geometric interpretations are
still important, but the underlying algebra is universally useful.

Extensions of rings appear in algebraic number theory and in algebraic geometry, with arithmetic or
geometric motivations. Many important features are best described in categorical and homological terms.

Complexes eventually appear as more appropriate fundamental objects than individual modules. The
structure theorem for finitely-generated modules over principal ideal domains is a prototype. Projective and
injective resolutions are the fundamental acyclic resolutions.

These and other themes are profitably illustrated with examples, as follow.

2. Example: what is an indeterminate?

What is an indeterminatex? We are not asking about a merely unknown literal number, as in the earliest
use of algebra, but about the x that appears in polynomials and other functions in calculus.

The x is sometimes alleged to be a variable number, or an arbitrary number. It’s not clear what variable
means, but the vague idea of motion is generally compatible with the motivating issues of calculus. These
are not bad pseudo-definitions to give calculus students.

However, the idea that x is merely a variable number does not match our use of it. For example, in the
Cayley-Hamilton theorem [2] the indeterminate x is replaced by a linear transformation.

This suggests that x is something that can be substituted for. Elementary mathematics has no way to say
this with any precision, but a categorical viewpoint succeeds, as follows.

Let R be a commutative ring, probably [3] with 1. An R-algebra A is a ring A that is also an R-module,
and so that the R-module structure is compatible with the multiplication in A:

(r · a)b = r · (ab) (for r ∈ R, a, b ∈ A)

For example, R actually sitting inside the center of A gives A an R-algebra structure. But we do also want
to allow some collapsing of R in the way that it acts on A. For example, Z/n is a Z-algebra in the obvious
fashion.

[2] Recall the assertion of the Cayley-Hamilton theorem: let T be an endomorphism of a finite-dimensional vector

space V , let χT (x) be the characteristic polynomial det(x · I − T ), with I the identity map on V . Then χT (T ) = 0.

The non-proof of this by (falsely) claiming that χT (T ) = det(T − T ) = det 0 = 0 is of interest, if only to provoke us

to see why it’s not a proof.

[3] Rings with 1 are more intuitive, and we hope that rings have 1, but occasionally there are good reasons to consider

rings without units. But at the moment there’s insufficient motivation to get embroiled with issues about lack of

units.
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An R-algebra homomorphism or map f : A → B is a ring homomorphism f : A → B that respects the
R-algebra structure, in the reasonable sense that

f(r · a) = r · f(a) (for r ∈ R and a ∈ A)

Given the idea of R-algebra, we can say what x is, albeit indirectly. A free R-algebra on x is an R-algebra
F (thinking that F = R[x], but don’t want to prejudice ourselves by notation!) with distinguished element
x ∈ F , having the universal property that, for any R-algebra A and choice of element ao ∈ A, there exists
a unique R-algebra map f : F → A such that fx = ao.

This universal property characterizes the free algebra R[x] not by telling what x is, but by telling how it
interacts with other R-algebras.

The main idea is that we have substituted ao for x, and that the rest of F accompanies x suitably. We do
not exclude the possibility that something happens to the ring R, as in quotient maps Z → Z/n.

Grant for a moment that the more elementary notion of polynomial ring R[x] really is a free R-algebra on
the generator x. Then for a field k we can certainly map x to an endomorphism T of a finite-dimensional
k-vectorspace V , mapping the free k-algebra k[x] to the k-algebra k[T ] of k-linear endomorphisms of V

generated [4] by T . The more mundane case of replacing x by an element ro of the ring R gives an R-algebra
homomorphism R[x] → R mapping x → ro, called an evaluation homomorphism. A slightly subtler
example is Q[x] → Q(

√
2) by mapping x →

√
2.

We might worry that the mapping characterization of the free algebra F = R[x] accidently under-specified
it. After all, we’ve not directly said anything about the internal structure of it. However, mildly amazingly,
this seemingly vague and indirect characterization completely determines F = R[x]. Further, the style of
the proof uses almost nothing about the specifics of the situation.

That is, suppose we had two free R-algebras on single generators: suppose A a free R-algebra on ao, and
B a free R-algebra on bo. Then we claim that there is a unique isomorphism j : A → B of R-algebras such
that jao = bo.

Indeed, using the characterization of A, ao as free R-algebra, there is a unique α : A → B with αao = bo.
On the other hand, using the characterization of B, bo as free R-algebra, there is a unique β : B → A with
βbo = ao. Then α◦β is an R-algebra map of B to itself sending bo to itself, and β ◦α is an R-algebra map of
A to itself sending ao to itself. Obviously we imagine that both these composites are the respective identity
maps, which would prove the claim. But one small point is missing, as follows.

Universal objects have no proper automorphisms: we claim that the only R-algebra map of A to itself sending
ao to itself is the identity map on A. This and the corresponding fact for B and bo would prove that α ◦ β
and β ◦ α are the respective identities, and, thus, that A, ao and B, bo are isomorphic. Using the mapping
characterization of A and ao in a seemingly silly way, there is a unique R-algebra map A → A sending ao

to ao. On the other hand, the identity map on A certainly has this property. The uniqueness part of the
characterization then says that there is no other such map than the identity. This proves the isomorphism
of the two free R-algebras, and, in fact, proves that there is only one isomorphism of the two.

Notice that we did not use any properties of rings, of polynomials, or of anything else in proving uniqueness.

Neither characterization by mapping properties nor the uniqueness argument proves existence of a free R-
algebra on x. Often existence of an object is proven by providing a construction. One benefit of knowing
uniqueness is that it assures us that any construction will inevitably yield the same thing, up to unique
isomorphism. That is, we would not have to compare two different constructions, because we know in
advance that the outcomes will be isomorphic.

[4] As common in defining the phrase generated by inside a larger object, the k-algebra k[T ] of k-linear endomorphisms

of V generated by T is the intersection of all k-subalgebras of Endk(V ) containing T .
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We’ll not worry about a construction at this moment.
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3. Foundational dangers: set theory and universes

Mapping-property definitions quantify over all things of a given sort. The collection of all things of a given
sort is huge!

Even if we try to dodge that size issue by stipulating that we somehow only use one representative from each
isomorphism class, the class of isomorphism classes is still huge. Maybe so large that certain people would
say we’re not allowed to call it a class, because its elements are classes already.

In fact, it is easy to misunderstand how large things can be, without a bit of attention to set theory.
Paradoxical phenomena easily but perversely arise, such as the notorious

S = {setsx : x 6∈ x}

which can neither contain itself nor fail to contain itself. The problem can be viewed as proof that S does
not exist, even though we appeared to define or describe it.

This is ominous, since a popular traditional attitude in mathematics is that if we can describe something,
it must necessarily exist. Of course this is not correct, as in the case of an integer n such that n < 4
and n > 4. But thinking about characterizing rather than constructing does raise the ugly possibility that
characterizations accidentally don’t refer to anything.

This sort of worry is what motivates the part of set theory concerned with cautious construction under weak
hypotheses, imagining that a successful construction thereby proves existence with the least extravagant
assumptions possible.

Our discussion will take place in naive set theory, meaning without a formal list of axioms. The standard
Zermelo-Fraenkel and vonNeumann-Bernays-Gödel axiom systems are given in an appendix.

An austere world of sets would begin with only the empty set φ = {} and allow or acknowledge only sets
whose existence was guaranteed by reasonable constructions, or by axioms. Imagining that a finite list of
things (sets) can be bundled up into a set, we can produce an endless list of sets, which von Neumann
notated by the usual symbols for non-negative integers:

0 = φ = {}
1 = {0} = {{}}
2 = {0, 1} = {{}, {{}}}
3 = {0, 1, 2} = {{}, {{}}, {{}, {{}}}}

. . .

To collect all these into a single set apparently requires a different operation and justification, but we want
to do so, and we have the first infinite ordinal

ωo = {0, 1, 2, . . .} = 0 ∪ 1 ∪ 2 ∪ . . . (an ascending union)

The sense in which these processes can be continued indefinitely depends on (metaphysical/axiomatic)
assumptions.

Thinking more positively, we have (at least) two processes: given an ordinal ω, form its successor, denoted
ω + 1,

(successor of ω) = ω ∪ {ω}
For example, we have ω + 2, . . ., ω + n, . . .. As in the case of ωo, we also take limits, ascending unions of
ordinals

lim
j∈J

αj =
⋃

j∈J

αj (with ordered set J , and i < j implies αi < αj)
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An ordinal that is not a successor is a limit ordinal.

Not necessarily thinking only of ordinals, two sets x, y have the same cardinality if there is an injection
x → y and there is an injection y → x. In that situation, the Cantor-Schroeder-Bernstein theorem produces
a bijection between the two, without the Axiom of Choice. Write |x| = |y| for this. If x admits an injection
to y, but y has no injection to x, write |x| < |y|.

There is also the power set PS of a given set S, that is, the set of all subsets. The Cantor diagonalization
argument proves that |PS| > |S|.

The cardinals are representatives for sizes, and one style of choice of representatives, granting ourselves the
Axiom of Choice, is from among ordinals, taking the first ordinal of a given size. From this viewpoint, the
first infinite cardinal is the first infinite ordinal: ℵ0 = ωo. Generally, whatever the representatives or model
for them, cardinals can be indexed by ordinals. Thus, ℵ1 is the first uncountable cardinal. We take the first
uncountable ordinal ω1 as a model for ℵ1. Certainly |Pℵ0| ≥ ℵ1, but the question of equality here is the
continuum hypothesis, proven independent of ZFC by Paul Cohen, after Kurt Gödel showed consistency.
Similarly, in general, for any ordinal ω,

|Pℵω| ≥ ℵω+1

and equality would be part of a generalized continuum hypothesis.

A limit ordinal α is regular if it is not a limit over an index set of smaller cardinality.

An ordinal α is inaccessible if it is regular and |β| < |α| implies |Pβ| < |α| for ordinals β.

Existence of inaccessible ordinals does not follow from usual axioms of set theory.

In a world of sets where, for some reason, cardinalities of operations are constrained to be strictly less than
the cardinality of an inaccessible ordinal α, operations with elements of α produce only other elements of
α. That is, α is a small model for set theory, in the sense that it is a set (so is small), and the minimal
operations of set theory can be performed in α, without taking us outside α.

Let α be an inaccessible ordinal. A world-of-sets in which every set has cardinality strictly less than that of
α, but collections of objects (that is, categories) can have the cardinality of α, is roughly a universe.

The fact that α is a set in some larger world-of-sets is meant to be reassuring about the self-consistency and
reasonableness of operations involving cardinalities as large as α, while pretending that such large operations
are dangerous in the model exactly because they involve cardinalities as large as α, which is larger than any
cardinal in the model.

Grothendieck would want to assume that every set is contained in a universe. This would make much of
modern mathematics work more smoothly, but seems unapproachable with what we know now about large
sets.

Unsurprisingly, worry about hierarchies of larger-and-larger inaccessible ordinals for category theory leads
to artificialities and clumsinesses similar to those in Russell-Whitehead’s Principia.

Some do claim that these considerations are necessary.

Some deny the necessity of comparing everything to set theory.
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4. Resolutions, complexes, snake lemma

Linear algebra in the broad sense is modeled on vector spaces over fields, which behave very well.

For a ring R, a sequence of R-module maps

A −→ B −→ C

is exact when ker(B → C) = Im(A → B). For example, for modules A, B, C over R, a chain of R-module
maps

0 −→ A −→ B −→ C −→ 0

is a short exact sequence when each of the three joints

0 −→ A −→ B A −→ B −→ C B −→ C −→ 0

is exact, that is, when
ker(A → B) = Im(0 → A) = {0}
ker(B → C) = Im(A → B)
{0} = ker(C → 0) = Im(B → C)

In particular, in such a short exact sequence A → B is injective and B → C is surjective.

For a field k, every k-module is free on some set of generators. Indeed, more can be said. Every short exact
sequence of k-vectorpaces

0 −→ A −→ B −→ C −→ 0

splits, in the sense that there is a map s : C → B giving a left inverse to B → C, and such that

B = A ⊕ sC

Symmetrically, there is a right inverse p : B → A such that

B = Im(A) ⊕ kerp

All these things follow from discussion of bases for vector spaces: any basis for a subspace can be extended
to a basis of the whole. Further, if one understands ordinals well enough to do transfinite induction, infinite-
dimensional vector spaces can be dispatched in the same fashion. The argument is the Lagrange replacement
principle.

As an example of a somewhat less trivial ring than a field we take Z. Most Z-modules are not free, but
finitely-generated Z-modules have an accessible structure theorem. One form of the structure theorem for
finitely-generated Z-modules M is that there is a unique list of non-negative integers d1, . . . , dn with the
divisibility property di|di+1 such that

M ≈ Z/d1Z ⊕ . . . ⊕ Z/dnZ

The di are the elementary divisors of M . Part of this is captured in the following restatement: there exist
finitely-generated free Z-modules F0 and F1 such that the following sequence is exact:

0 −→ F1 −→ F0 −→ M −→ 0 (exact)

Specifically, given an isomorphism as above, let mi be the image in M of 1 mod diZ. Let F0 be the free
Z-module on a set {f1, . . . , fn}, and map F0 → M surjectively by fi → mi. The kernel of this map is

Zd1f1 ⊕ . . . ⊕ Zdnfn

7
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Let F1 be the free Z-module on g1, . . . , gn, and map F1 → F0 by gi → difi. Thus, F0 injects to F1, and the
image of F1 in F0 is exactly the kernel of F0 → M .

The exact sequence 0 → F1 → F0 → M → 0 is called a free resolution of M .

Typically, as in the free resolution of Z/2 given by

0 // Z
×2 // Z

mod 2 // Z/2 // 0

there is no splitting or direct sum decomposition: the multiplication-by-2 map of Z to itself does not have
a right inverse, and the image is not a direct summand. Similarly, there is no non-trivial map Z/ −→ Z.
Thus, such a free resolution is non-trivial by comparison to what happens for vector spaces.

Polynomial rings k[x1, . . . , xn] over fields k are eminently reasonable rings, but for n > 1 are more complicated
than Z. A polynomial ring in a single variable is still a principal ideal domain, but larger polynomial rings
are not, despite being unique factorization domains, by Gauss’ lemma. For example, the maximal ideal
generated by all the indeterminates x1, . . . , xn needs at least n generators.

Hilbert’s syzygy theorem asserts that any finitely-generated k[x1, . . . , xn]-module M has a free resolution

0 −→ Fn −→ Fn−1 −→ . . . −→ F2 −→ F1 −→ F0 −→ M −→ 0

of length at most n. That is, this sequence of maps is exact, each Fi is free over k[x1, . . . , xn], and the length
of the resolution is n.

Thus, the homological dimension of Z is 1, while the homological dimension of k[x1, . . . , xn] is n.

By contrast, for the ring R = Z/4, the R-module Z/2 has no finite free resolution. The best we can do is
the infinite free resolution

. . . ×2 // Z/4
×2 // Z/4

mod 2 // Z/2 // 0

Thus, the literal size of Z/2 gives no hint that it has infinite homological dimension over Z/4.

[4.0.1] Remark: The contemporary idea is that we should think of an object along with a resolution, rather
than an object in isolation.

The effect of simple operations on finitely-generated Z-modules can be examined through their free
resolutions. We consider finitely-generated Z-modules because we know a good structure theorem for them.
For a finitely-generated Z-module M , and for a positive integer n, consider two related Z-modules,

M [n] = (largest submodule on which n acts by 0) = {m ∈ M : n · m = 0}

and

M[n] = (largest quotient on which n acts by 0) = M/nM

A related object is

M tors = torsion submodule of M = {m ∈ M : n · m = 0 for some n 6= 0}

Note that M → M[n] is a homomorphism, while M → M [n] is not, in general. But the associations of M[n]

and M [n] to M are examples of functors from Z-modules to Z-modules, because in addition to producing
new objects (modules), they produce new homomorphisms: given a Z-module homomorphism f : M −→ N ,
there are natural homomorphisms

f [n] : M [n] −→ N [n] by f [n](m) = m

8
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and
f[n] : M[n] −→ N[n] by f[n](m + nM) = f(m) + nN

But, interestingly, exactness is not generally preserved by these functors. For example, from a free resolution
of Z/d,

0 // Z
×d // Z

mod d // Z/d // 0 (exact)

Applying the M −→ M[n] functor, a not-necessarily-exact sequence arises:

0 // Z

nZ

(×d)[n] // Z

nZ

( mod d)[n] // Z/d
n·Z/d

// 0 (possibly not exact)

For example, with n = d, the multiplication-by-d from Z/nZ to Z/nZ becomes the 0-map, which is certainly
not injective. On the other hand, for n relatively prime to d, the injectivity is preserved. Bit all the other
parts of the diagram do remain exact. That is, only injectivity at the left end is possibly lost. That is, we
have a slightly smaller exact sequence

Z

nZ

(×d)[n] // Z

nZ

( mod d)[n] // Z/d
n·Z/d

// 0 (exact)

Losing exactness in at most the left end of a short exact sequence is right exactness of the functor
M −→ M[n]. Similarly, the functor M → M [n] loses exactness in at most the right end of an exact sequence,
and is said to be left exact.

A natural question is what object X (depending on d and n) and what map f : X → Z/n would recover
exactness, by accommodating the non-injectiveness, giving exact

0 // X
f // Z

nZ

(×d)[n] // Z

nZ

( mod d)[n] // Z/d
n·Z/d

// 0 (exact?)

In this simple case, there is a reasonable sort of symmetry, namely

0 // (Z/d)[n] // Z

nZ

(×d)[n] // Z

nZ

( mod d)[n] // Z/d
n·Z/d

// 0 (exact)

Indeed, the indicated quotients and kernels are readily computed and the exactness can be verified directly.

In fact, for arbitrary Z-modules A, B, C in a short exact sequence

0 // A // B // C // 0

it turns out that there is an exact sequence

0 // A[n] // B[n] // C [n] // A[n] // B[n] // C[n] 0 (exact)

Starting from that general result, for A and B free we have A[n] = 0 and B[n] = 0, degenerating into the
simpler case.

This pattern is an instance of the Snake Lemma: suppose we are given a diagram

0 // A
i //

f

��

B
q //

g

��

C //

h

��

0

0 // A′
i′ // B′

q′

// C′ // 0

(with exact rows)
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which commutes in the sense that outcomes do not depend upon the route one traverses. That is, for
example, starting with a ∈ A, applying i, then applying g produces the same element of B′ as going the
other way around that square, namely, first applying f , then i′. The general assertion is that

0 // ker f // ker g // kerh
δ // A′

Imf
// B′

Img
// C′

Imh
// 0

All the maps are what one woulds expect, except possibly for the connecting homomorphism δ, which
is constructed as follows.

Take c ∈ C such that hc = 0. Since B → C is surjective, there is b ∈ B mapping to c. Then gb ∈ B′ maps
to 0 in C′, by the commutativity of that square. Thus, since the kernel of B′ → C′ is the image of A′ → B′,
there is a′ ∈ A′ mapping to gb. Since A′ injects to B′, there is no ambiguity in choice of a′ given gb. We
declare

δc = a′

A little more pictorially,

b

��

c
~~

��
a′ gbbb

//___ 0

The ambiguity of choice of b is exactly by the image iA of A, so qb is ambiguous exactly by aiA = i′fA.
Thus, a′ is ambiguous exactly by the image fA of A. This defines δ.

The following two little arguments exemplify diagram chasing: the conclusion is important, and the
arguments are so broadly applicable that they might seem superficial. Further, when couched in most
austere terms, suppressing as many details as possible, there are so few ways to go wrong that the correct
line of argument is inescapable.

For exactness of ker g // kerh
δ // A′/fA , first take b ∈ ker g. Then δ(qb) = 0. That is, the composite

of the two maps is 0. On the other hand, suppose δc = 0 ∈ A′/fA for c ∈ kerh. That is, with b ∈ B mapping
to c, gb = i′a′ with a′ = fa. It is not necessarily true that ia = b, but g(ia) = gb because the left square
commutes. That is, g(b − ia) = 0. Also, still q(b − ia) = c, because the top row is exact. Thus, c is in the
image of ker g, proving exactness at that joint.

For exactness of kerh
δ // A′/fA // B′/gB , first take c ∈ C. As in the construction of δ, there is

b ∈ B such that qb = c, and then a′ ∈ A′ such that i′a′ = gb, and δc = a′ + fA. Since i′a′ ∈ gB, the map
to B′/gB sends δc to 0. This proves that the composition of the two maps is 0. On the other hand, given
a′ ∈ A′ mapping to 0 in B′/gB, there is b ∈ B such that gb = i′a′. Since the right-hand square commutes,
h(qb) = q′(gb) = 0, since the bottom row is exact. That is, the element c = qb is in kerh, and, by this
discussion, δc = a′. This gives the desired exactness.

It would be tiresome to check directly the exactness at all other joints of this diagram. In fact, left exactness
of M [n] and right exactness of M[n] are guaranteed by the adjointness relation

HomZ(M[n], N) ≈ HomZ(M, N [n]) (for M, N Z-modules)

via Yoneda’s lemma, discussed a little later.

In fact, all the above works for very general reasons, so applies to modules over any commutative ring R,
and finite-generation is not necessary.

5. Pictorial interlude, tensors, etc.
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Pictorial/diagrammatical presentations of universal mapping properties are decisive mnemonics, and
illustrate that the shapes of the diagrams coming from very different situations nevertheless strongly resemble
each other.

[5.1] Indeterminates, free algebras The polynomial ring R[x] on x over a commutative ring R is a free
R algebra on x, so includes an obvious set map {x} → R[x], and any set map {x} −→ A to a commutative
R-algebra A produces a unique compatible R-algebra map R[x] −→ A. The diagram that conveys this is

R[x]

∃!(R−algebra)

  
{x}

(set)

OO

∀(set)
//___ A

[5.2] Free abelian groups A free abelian group GS on a set S includes a set map S → GS such that any
set map S −→ A to an abelian group A produces a unique compatible abelian-group map GS −→ A. The
diagram that conveys this is

GS

∃!(abelian group)

  
S

(set)

OO

∀(set)
//___ A

[5.3] Free not-necessarily-abelian groups A free (not-necessarily abelian) group GS on a set S includes
a set map S → GS such that any set map S −→ H to a group H produces a unique compatible group map
GS −→ H . The diagram that conveys this is

GS

∃!(group)

  
S

(set)

OO

∀(set)
//___ H

[5.4] Completions of metric spaces Given a metric space X , a completion of A is a metric space X̃

and an isometric map X −→ X̃ such that, for every isometric map X −→ Y to a complete metric space Y ,
there is a unique isometric map X̃ −→ Y through which X −→ Y factors. That is, we have commutative
diagrams

X̃
∃!isometry

��
X

OO

∀isometry//___ Y

[5.5] Products The product of a collection {Xi : i ∈ I} of objects Xi indexed by a set I is an object P
and projections pi : P → Xi such that, given another object Q and a family of maps qi : Q → Xi, there is
a unique q : Q → P such that all the maps qi factor through q, in the sense that qi = pi ◦ q. That is, the
following diagram commutes:

Q
∃!q //

∀qi   A
A

A
A

∀qj

((P
P

P
P

P
P

P
P P

pi

vvnnnnnnnnnnnnnnnn

pj~~}}
}}

}}
}}

. . . Xi Xj . . .
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where it is understood that the single map q : Q −→ P must meet all the conditions qi = pi◦q simultaneously.

Note that this definition of product makes sense for any specific type of object, with all the mappings
being the corresponding type: sets and set maps, groups and group homomorphisms, topological spaces and
continuous maps, etc.

[5.6] Coproducts The coproduct of a collection {Xi : i ∈ I} of objects Xi indexed by a set I is an object
C and maps σi : Xi → C such that, given another object D and a family of maps τi : Xi → D, there is a
unique τ : C → D such that all the maps τi factor through τ , in the sense that τi = τ ◦ σiq. That is, the
following diagram commutes:

Q P
∃!q

oo

. . . Xi

σi

66nnnnnnnnnnnnnnnn
∀τi

``A
A

A
A

Xj

σj

>>}}}}}}}}∀τj

hhP
P

P
P

P
P

P
P

. . .

where it is understood that the single map q : Q −→ P must meet all the conditions qi = pi◦q simultaneously.

Again, this definition of product makes sense for any specific type of object, with all the mappings being the
corresponding type.

[5.6.1] Remark: The definition of coproduct is that of product with arrow directions reversed.

[5.7] Pushouts For two objects X, Y and given maps Z → X and Z → Y , a pushout of X, Y along Z is
an object P and maps X → P and Y → P such that the following diagram commutes

Z //

��

Y

��
X // P

and such that, for every pair of maps X → Q and Y → Q with a commuting diagram

Z //

��

Y

���
�

�

X //___ Q

there is a unique P −→ Q such that we have a commuting diagram

Z //

��

Y

��

��/
/

/

/

/

/

/

X //

''O
O

O
O

O
O

O P

��
Q

Pushouts can be defined for larger collections of objects Xi each with a map Z → Xi.

[5.7.1] Example: Pushouts of topological spaces are also called glue-ings.

[5.7.2] Example: Pushouts of groups are also called amalgamated products.

12
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[5.8] Pullbacks Reversing all the arrows in the definiton of pushouts, we have pullbacks: For two objects
X, Y and given maps X → Z and Y → Z, a pullback of X, Y along Z is an object P and maps P → X
and P → Y such that the following diagram commutes

Z Yoo

X

OO

P

OO

oo

and such that, for every pair of maps Q → X and Q → Y with a commuting diagram

Z Yoo

X

OO

Q

OO�
�

�

oo_ _ _

there is a unique Q −→ P such that we have a commuting diagram

Z Yoo

X

OO

P

OO

oo

Q

__ggO
O

O
O

O
O

O

WW/
/

/

/

/

/

/

Pullbacks can be defined for larger collections of objects Xi each with a map Xi → Z.

[5.9] Tensor products of modules over commutative rings Let R be a commutative ring with 1. An
R-bilinear map B : M × N −→ V with R-modules M, N, V is a map that is R-linear in each of its two
arguments separately. That is,

B(am + bm′, n) = aB(m, n) + bB(m′, n) (with a, b ∈ R, m, m′ ∈ M , n ∈ N)

and

B(m, an + bn′) = aB(m, n) + bB(m, n′) (with a, b ∈ R, m ∈ M , n, n′ ∈ N)

Inner products on vector spaces provide a common example of bilinear maps.

The tensor product M ⊗R N converts bilinear maps on M × N to linear maps: there is an R- bilinear
τ : M × N −→ M ⊗R N such that the following diagram commutes:

M ⊗R N
∃!(R−linear)

((
M × R

τ

OO

∀(R−bilinear) //______ V

The image of m × n in M ⊗R N is usually denoted m ⊗ n.

[5.10] Universal/tensor algebras Let V be a vector space over a field k. The universal algebra
(sometimes called tensor algebra) of V is an associative k-algebra UV and a k-linear map j : V −→ UV such

13
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that, for any k-linear V −→ A for a k-algebra A, there is a unique k-algebra map UV −→ V making the
following diagram commute:

UV
∃!(k−algebra)

''
V

j

OO

∀(k−linear) //______ A

The reason UV is often called the tensor algebra over V , and denoted
⊗•

V , is that UV can be constructed
from tensor powers of V , as follows.

First, grant existence of tensor products. Tensor products were characterized above.

Let T =
⊕

n≥0

⊗n
V , where

⊗0
= k and

n⊗
V = V ⊗ . . . ⊗ V︸ ︷︷ ︸

n

(for n ≥ 1)

The addition is just the addition in the direct sum, and the multiplication is the bafflingly innocuous

(v1 ⊗ . . . ⊗ vm) ⊗ (w1 ⊗ . . . ⊗ vn) = v1 ⊗ . . . ⊗ vm ⊗ w1 ⊗ . . . ⊗ vn

Proof must be given that this construction succeeds.

6. Adjoint pairs of functors

Everything is an adjoint.

What does this mean? Is it a good thing, or a bad thing?

[6.1] Indeterminates and free algebras The characterization of a polynomial ring R[S] on a set S (of
so-called indeterminates) as a free commutative R-algebra on S can be written as an isomorphism of sets
of homomorphisms, an example of an adjunction:

HomR−algs(R[S], A) ≈sets Homsets(S, A) (for sets S, R-algebras A)

where the subscripts on Hom tell what kind of homomorphisms. Note that in Homsets(S, A) the ring structure
of A is forgotten. Only the underlying set is remembered when considering maps of {x} to A. Since
this forgetting has some significance, it should not always be suppressed from the notation: let F be the
forgetful functor

F : {R − algebras} −→ {sets} (taking underlying sets)

Then
HomR−algs(R[S], A) ≈sets Homsets(S, FA) (for sets S and R-algebras A)

[6.2] Free modules Similarly, the free R-module MX on generators X satisfies an adjunction

HomR−mods(MX , M) ≈sets Homsets(X, FM) (for R-modules M)

where now F is the forgetful functor taking an R-module to its underlying set.

[6.3] Adjunctions, adjoints The above examples of free objects are straightforward, but do illustrate
the adjunction pattern

Homobjects(free obj(X), object) ≈sets Homsets(X, F (object)) (forgetful functor F to sets)

14
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That is, the formation of the free R-algebra R[S] is adjoint to the forgetful functor from R-algebras to sets.

Other useful functors are adjoints to less-forgetful functors.

The following example clarifies notions such as complexification of real vector spaces.

[6.4] Extension of scalars, complexification Let K be a big field and k a subfield. Given a vector space
V over K, certainly we can consider V as a vector space over k by simply forgetting that scalar multiplication
by elements of K (other than elements of k) is possible. Thus, we have a forgetful functor

F : {K − vectorspaces} −→ {k − vectorspaces}

A left adjoint L to F would be a functor

L : {k − vectorspaces} −→ {K − vectorspaces}

such that

HomK−v.s.s(LU, V ) ≈ Homk−v.s.s(U, FV ) (for k-vectorspaces U , K-vectorspaces V )

A right adjoint R to F would be a functor

R : {k − vectorspaces} −→ {K − vectorspaces}

such that

Homk−v.s.s(FV, U) ≈ HomK−v.s.s(V, RU) (for k-vectorspaces U , K-vectorspaces V )

To say that these R, L are functors does entail the requirement that they act not only on objects but on
homomorphisms, converting

f : U −→ U ′ (homomorphism of k-vectorspaces)

into
Rf : RU −→ RU ′ (homomorphism of K-vectorspaces)

and
Lf : LU −→ LU ′ (homomorphism of K-vectorspaces)

and respecting composition.

When k = R and K = C, these adjoints are complexifications. [5]

These clear characterizations of the adjoints do not prove existence. In fact, adjoint functors can be
constructed from already-familiar [6] objects:

RU = Homk(K, U) LU = K ⊗k U (for k-vectorspaces U)

[5] An opaque traditional definition of complexification declares that we are somehow allowed to take linear

combinations with complex coefficients, rather than merely real. It’s not clear what this means, and it’s not clear

how to correctly manipulate the resulting objects. In fact, the present mildly categorical characterization captures

the intent, which had been difficult to convey with a smaller vocabulary.

[6] In principle, tensor products are familiar, but often an introductory version is inadequate for real use. The

universal mapping property above is a correct indication, but one must consider some of the ramifications.
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That is, we have adjunctions

HomK(K ⊗k U, V ) ≈ Homk(U, FV ) Homk(FV, U) ≈ HomK(V, Homk(K, U))

In fact, this works the same way for a commutative ring k and commutative k-algebra K, both with units.

Further, when we allow non-commutative rings or groups to act on modules, adjoints to certain forgetful
functors are induced modules, and the adjunction relation is Frobenius reciprocity. We’ll come back to
these examples later.

[6.5] Annihilated and co-annihilated modules Let R be a commutative ring with unit. For an ideal I
of R and a module M over R, let

M I = (largest submodule on which I acts by 0) = {m ∈ M : i · m = 0 for all i ∈ I}
MI = (largest quotient module on which I acts by 0) = M/I · M

Then there is the adjunction relation

HomR(MI , N) ≈ HomR(M, N I)

[6.6] Smallest Yoneda lemma For functors such as M → M I and M → MI that are additive in the
sense of preserving direct sums, an adjunction relation has an important corollary: a left adjoint L is right
exact, meaning that from

0 −→ A −→ B −→ C −→ 0 (exact)

we have a slightly smaller exact sequence

LA −→ LB −→ LC −→ 0 (exact)

Symmetrically, a right adjoint is left exact, meaning that from that short exact sequence we have a slightly
smaller exact sequence

0 −→ RA −→ RB −→ RC (exact)

This universal partial-exactness not only eliminates the need for repetitive arguments, but, in fact, often
provides proof where a direct computation is possible but ugly.

The main idea in the proof is a very small instantiation of Yoneda’s Lemma, in the form: given
A → B → C, if Hom(X, A) → Hom(X, B) → Hom(X, C) is exact for every X , then A → B → C is
exact.

[6.6.1] Remark: Exactness of A → B → C does not imply exactness of Hom(X, A) → Hom(X, B) →
Hom(X, C).

7. Counting holes: algebraic topology

The linear algebra involved in counting holes of various dimensions in geometric objects was first recognized
as such by Emmy Noether: she observed that homology groups of topological spaces were really groups.
Prior to that, the usual practice was to attach a list of numerical invariants, effectively the elementary
divisors of (abelian) homology groups. The numerical-invariant viewpoint obscured the functorial nature of
homology.

The algebra arising from homology of topological spaces has taken its name from the homology theory of
those spaces.
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Basic homology theory of topological spaces has given us conceptually vivid proofs of many fundamental
geometric results: the Jordan curve theorem, generalized to the analogous result for (n−1)-spheres injecting
to Euclidean n-space, invariance of domain (that is, the non-homeomorphic-ness of Euclidean spaces of
disparate dimensions), and others.

[iou...]

[7.1] Homology of a hollow tetrahedron

[iou...]

8. Appendix: set theory axioms

In 1908 Ernst Zermelo attempted an axiomatic description of set theory. His ideas were revised a bit by
Abraham Fraenkel and Thoralf Skolem in 1922, and then Zermelo returned to the issue in 1930. The
Zermelo-Frankel axioms are as follows. These axioms attempt to be minimalist, asserting just enough
existence hypotheses to make usual mathematics work.

First, everything is a set. There is a single primitive relation x ∈ y, being an element of, that two sets x, y
may or may not satisfy.

Two sets are disjoint if they have no elements in common. That is, x and y are disjoint if z ∈ x implies
z 6∈ y.

Extensionality: two sets are equal if they have the same elements. From this, two sets are elements of the
same sets if they have the same elements.

Regularity/Foundation: Every non-empty set S contains an element x such that x and S are disjoint.
This disallows x ∈ x.

Restricted comprehension: Given a set S and a property [7] P , there exists a set

{x ∈ S : x has property P}

Unsurprisingly, to avoid self-reference, the property P must not refer to S.

Pairing: Given two sets, there is a set {x, y}, that is, whose elements are only x, y. That is, z ∈ {x, y}
implies z = x or z = y (and the possibility that x = y is not excluded).

Union: Given a set S of sets, the union of the sets in S is a set: there exists a set

⋃

x∈S

x (also sometimes denoted
⋃

S)

That is, y ∈ ⋃
S if and only if there exists x ∈ S such that y ∈ x.

Define an ordered pair (x, y) to be {{x}, {x, y}}. One readily proves that (x, y) = (x′, y′) if and only if
x = x′ and y = y′. The cartesian product A × B is

A function f : A → B from one set to another is a set f such that x ∈ f implies x = (a, b) for some a ∈ A
and b ∈ B, and such that for every a ∈ A there exists a unique x ∈ f with x = (a, b). Of course, write
f(a) = b.

Collection/replacement schema: For a function f : A → B, the range {f(a) : a ∈ A} is a subset of B.

[7] The notion of property can be formalized to refer to grammatically correct predicates in first-order predicate logic.
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Infinity: There exists a set S containing the empty set and such that for x ∈ S also {x} ∈ S.

The latter axiom incidentally has stipulated the existence of the empty set.

A set A is a subset of a set B if x ∈ A implies x ∈ B, and write this A ⊂ B.

Power set: For a given set S, there exists a set PS with the property that T ⊂ S if and only if T ∈ PS.

These are the Zermelo-Fraenkel axioms, and the set theory using this as a basis is ZF set theory.

For many purposes, a further axiom is added, giving us ZFC set theory:

Axiom of Choice: Given a set S of sets, with any two distinct x, y in S disjoint, there is a set C containing
exactly one element from each x ∈ S.

The Axiom of Choice has several useful logical equivalents: Well-ordering Axiom, Zorn’s Lemma, Hausdorff
Maximality Principle.

In the 1920s John von Neumann developed a sort of set theory with functions, not sets, as primitives. From
the 1930s through the 1950s, Paul Bernays rewrote it as a set theory, and Kurt Gd̈el contributed to it
around 1940. The operational point is that this set theory allows classes, meaning collections that are too
large to be sets. For example, by design, the collection of all sets cannot be a set, because it violates the
regularity/foundation axiom.

Proper classes: The collection of all sets is a class. A class C is a set if and only if there is no
bijection between C and the class of all sets. In addition to essentially the same axioms for sets, there
is Class Extensionality: two classes are equal if and only if they have the same elements. There is Class
Regularity/Foundation: a non-empty class is disjoint from one of its elements. This is NBG set theory.

In the 1960s, modern algebraic geometry reformulated by Alexandre Grothendieck and his school appeared
to demand hierarchies of larger and larger class-like objects. At roughly the same time, large cardinals had
been studied enough to know that existence of inaccessibles could not be proven from ZFC. Grothendieck
suggested a formalization sufficient for the needs of algebraic geometry, as follows. A universe is a set U
closed under natural set-theoretic operations:

φ ∈ U
If u ∈ U , then u ⊂ U
If u ∈ U , then {u} ∈ U
If u ∈ U , then the power set of u is in U
If I ∈ U and ui ∈ U for all i ∈ I, then

⋃
i∈I ui ∈ U

{0, 1, 2, . . .} ∈ U

Grothendieck’s axiom is every set is contained in a universe.
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