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Expressing the p-adic integers Zp as Zp = lime Z/pe does not instantly show what Zp is in comparison to

even more classical objects such as Z and Q. [1]

Kurt Hensel’s 1897 conception of the p-adic numbers was close to the projective limit definition. His
interest was in problems such as finding sequences {xn} of integers such that x2

n = −1 mod 5n, constructed
recursively. His approach is exactly parallel to the Newton-Raphson method of sliding down the tangent to
better-and-better approximate zeros of differentiable functions of a real variable.

No abstract notion such as projective limit existed in Hensel’s time time, leaving Hensel to hunt for analogies.
The recursion just mentioned led him to express p-adic integers x as fake power series

x = y0 + py1 + p2y2 + p3y3 + . . . (with yi ∈ {0, 1, 2, . . . , p− 1})

Power series were part of the mathematical idiom of the time. The falsity of the model is that multiplication
and addition mess up the choice of representatives yi, which seems to have made Hensel’s presentation
unconvincing.

The usual pedestrian description of Zp and Qp (and more general related objects) expresses them as
completions of Z and Q with respect to metrics. This description had to wait until the development of
point-set topology and the notion of metric by Hausdorff, Fréchet, and many others in the 1920’s and 1930’s,
and for Hasse’s resurrection of Hensel’s work, which had been essentially forgotten, not having caught on in
the first place. It is ironic that a redefined (metric) version of p-adic numbers became acceptable decades
before the original and operationally relevant definition as projective limit could be given in terms of standard
mathematics. The metric description is easily presented, but then the mapping-property characterizations
become assertions requiring proofs. Further, the metric description obscures the operational motivations.

In addition to discussion of the elementary analysis of the metric definition of p-adic numbers, we will show
that the (unique) topology on lime Z/pe can be given by a metric which makes the homeomorphism to the
metric definition of Zp clear.

While the topology on lime Z/pe is uniquely determined, many different metrics can give the same topology.
Thus, the notion of topology is intrinsic, while that of metric is not, despite the physical intuition that
metrical notions conjure up. Many notions imagined to be metrical are topological.

• Hensel’s lemma
• The p-adic numbers
• Introductory p-adic analysis
• Comparison with projective limit definition of Zp
• Comparison of definitions of A
• Appendix: completions of metric spaces

1. Hensel’s lemma

Kurt Hensel’s 1897 interest in the p-adic numbers was for systematic solution of problems such as
x2 = −1 mod 5n for all powers 5n of 5.

Starting with x1 = 2 (whose square is 4, which is −1 mod 5), one hopes to adjust this solution mod 5 to
be a solution mod 52. Namely, one hopes that for some y the modified value x2 = x1 + 5y will satisfy

[1] At the same time, one should not necessarily insist on reduction of new ideas to old.
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x2 = −1 mod 25. This condition simplifies

(x1 + 5y)2 = −1 mod 52

x2
1 + 10x1y + 25y2 = −1 mod 52

(x2
1 + 1) + 10x1y = 0 mod 52

x2
1 + 1

5
+ 2x1y = 0 mod 5

since x2
1 + 1 is divisible by 5. A critical point is that the y2 term disappears mod 52, leaving in any case a

linear problem in y. Then, since −2x1 = 1 mod 5 is invertible mod 5, we can solve for

y = (−2x1)−1 · x
2
1 + 1

5
= (−2 · 2)−1 · 22 + 1

5
= 1 mod 5

and then
x2 = x1 + 5y = 2 + 1 · 5 = 7

satisfies
x2

2 = (x1 + 5y)2 = −1 mod 52

In fact, we can continue this process of improvement indefinitely, imitating the example just done, as follows.
Suppose that

x2
n = −1 mod 5n

We try to find y mod 5 such that
(xn + 5ny)2 = −1 mod 5n+1

An essentially identical rearrangement gives

(xn + 5ny)2 = −1 mod 5n+1

x2
n + 2 · 5nxny + 52ny2 = −1 mod 5n+1

(x2
n + 1) + 2 · 5nxny = 0 mod 5n+1

x2
n+1
5n + 2xny = 0 mod 5

using the fact that x2
n + 1 is already divisible by 5n, and the fact that the y2 term goes away. The last

equation has a unique solution

y = (−2xn)−1 · x
2
n + 1

5n
mod 5

where the inverse need be taken only mod 5, not modulo any higher power of 5. The new solution is

xn+1 = xn + 5ny

and satisfies
xn+1 = xn mod 5n

Thus, x−1
n = x−1

1 mod 5, so only a single multiplicative inverse need be computed, and we could as well write
the induction step as

y = (−2xn)−1 · x
2
n + 1

5n
mod 5
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We obtain the sequence of integers

2, 7, 57, 182, 1482, 13057, 25182, . . . ∼
√
−1

[1.0.1] Remark: The technical point that inverse needed to be taken only modulo 5, not modulo any higher
power of 5, is relevant in applications. Similarly, in the following more general claim, the inverse is taken
only modulo p, not modulo any higher power of p.

This procedure to find the sequence of integers xn is an example of Hensel’s lemma. A little more generally:

[1.0.2] Claim: Let f(x) ∈ Z[x], p a prime, and x1 such that

f(x1) = 0 mod p and f ′(x1) 6= 0 mod p

Then the recursion [2]

xn+1 = xn − f(xn) · f ′(x1)−1 mod pn+1

(where f ′(x1)−1 is an inverse modulo p) determines a sequence of integers xn such that

f(xn) = 0 mod pn

and
xn+1 = xn mod pn

[1.0.3] Remark: Note that the assertion is that only a single multiplicative inverse is needed, namely
f ′(x1)−1 modulo p.

Proof: Amusingly, we need a Taylor series expansion

f(x+ h) = f(x) + h · f ′(x) + (error term)

legitimate for purely algebraic reasons, for polynomials, specifically of the form

f(x+ h) = f(x) + f ′(x) · h+ E · h2

where E is a polynomial in x and h with coefficients in Z. [3] Assuming we have such an expression, let [4]

δ = −f ′(xn)−1 · f(xn), with inverse modulo pn, and evaluate

f(xn+1) = f(xn + δ) = f(xn) + f ′(xn) · δ + E · δ2

= f(xn)− f ′(xn) · f ′(xn)−1 · f(xn) + E · δ2 = f(xn)− f(xn) + E(xn) · δ2 = E · δ2

Since f(xn) = 0 mod pn, certainly xn+1 = xn mod pn, and f ′(xn) 6= 0 mod p, so has an inverse mod pn,
since f and f ′ have coefficients in Z. And then δ = 0 mod pn, so δ2 = 0 mod p2n. Since E is a polynomial
with coefficients in Z, E · δ2 = 0 mod p2n. That is,

f(xn+1) = 0 mod p2n

[2] This recursive formula is exactly the Newton-Raphson formula, easily derived geometrically in the real-number

case, by finding the intersection of the horizontal axis with the tangent line to the curve y = f(x) at the point

(xn, f(xn).

[3] The derivative of a polynomial can be defined without taking any limits, via the usual formula d
dx (xn) = nxn−1,

and requiring that this map be linear over whatever commutative ring the polynomials’ coefficient lie in.

[4] Yes, for the moment we use f ′(xn)−1 mod pn rather than f ′(x1)−1, since the former occurs more naturally. We

will check in a moment that the two expressions have identical values mod p.
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For n ≥ 1, we have 2n ≥ n+ 1, so this meets our requirement on the recursion.

Note that in the expression
xn+1 = xn − f(xn) · f ′(xn)−1 mod pn+1

since f(xn) = 0 mod pn, we do only need to know f ′(xn)−1 modulo p in order to know xn+1 mod pn+1.
Thus, it suffices to check that

f ′(x1)−1 = f ′(xn)−1 mod p

Indeed, since xn+1 = xn mod pn, for all n we have xn = x1 mod p. Since f ′ has coefficients in Z, we have
f ′(xn) = f ′(x1) for all n. Since f ′(x1) 6= 0 mod p, the inverses mod p are all the same.

To obtain a Taylor expansion, since we can’t divide by p, the factorials occurring in the usual form of
the Taylor expansion would appear to be a problem. But, in fact, any polynomial P (x) =

∑
i bix

i with
coefficients in Z can be written in the form

P (x+ h) = c0 + c1 · h+ c2 · h2 + . . . (a finite expansion)

with ci polynomials in x by substituting x+ h in P and expanding in powers of h. Thus, the issue is to see
that, in this expansion

c1(x) = f ′(x)

Since the requisite expansion is linear [5] in the polynomial P , it suffices to consider P (x) = xn. Then by
the Binomial Theorem

(x+ h)n = xn + nxn−1 · h+ E · h2

where, indeed, E is a polynomial in x and h, with coefficients in Z. Since nxn−1 is the derivative of xn, we
have the desired sort of Taylor expansion, and Hensel’s procedure will succeed. ///

[1.0.4] Remark: No special properties of the ring Z were used above, so the same argument succeeds, and
this simple case of Hensel’s lemma applies, to prime ideals in arbitrary commutative rings with identity.

[1.0.5] Remark: This case of Hensel’s lemma is merely the simplest, meant to illustrate the point.

[1.0.6] Example: Let k be an integer relatively prime to a prime p. Let x1 be an inverse of k mod p. Then
the recursion

xn+1 = xn − x−1
1 kxn

produces a sequence of integers xn such that

kxn = 1 mod pn

Indeed, letting f(x) = kx− 1, we can apply the previous claim. That is, we have the recursion

xn+1 = xn − f(xn) · f ′(x1)−1 = xn − (kxn − 1) · k−1 = xn − (kxn − 1) · x1

making use of the fact that we only need the inverse mod p, not any higher power of p. Thus, for k 6= 0 mod p
we have a sequence of integers xn such that

xn+1 = xn mod pn and k · xn = 1 mod pn

[5] This linearity is that the expansion for the sum of two polynomials is the sum of the corresponding expansions.
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2. The p-adic numbers

The p-adic norm or absolute value |n|p of an integer n = pem (with m prime to p) is

p-adic norm of n = |n|p = p−ordpn = p−e

where
ordpn = largest positive integer e such that pe|n

We must additionally declare that |0|p = 0, or else declare that ordp0 = +∞. [6] The p-adic metric [7] on
Z is

p-adic distance m to n = |m− n|p
The p-adic norm on Q extends that on Z, namely

|pn · c
d
|p = p−n

where c, d are integers prime to p, and n can be a positive or negative integer. Again, counter-intuitively, p
is small and 1/p is large:

|p|p =
1

p
|1
p
|p = p

In summary, high divisibility by p means p-adically small.

[2.0.1] Remark: In a context where the p-adic norm is the only norm used, we may suppress the subscript.

[2.0.2] Example: The sequences {xn} produced via Hensel’s lemma to achieve f(xn) = 0 mod pn (for given

f(x) ∈ Z[x]) are Cauchy sequences [8] in the p-adic metric, since xm+1 = xm mod pm implies that for all
pairs of indices m ≤ n

|xm − xn|p ≤ |pm|p = p−m

And, the fact that f(xn) = 0 mod pn gives

lim
n
f(xn) = 0 (in the p-adic metric)

We will define p-adic things as completions [9] p-adic integers Zp = p-adic metric completion of Z

p-adic numbers Qp = p-adic metric completion of Q

[6] Saying that ordp0 = +∞ is common, but invites trouble in arithmetic manipulations of +∞. Similar issues arise

in trying to define degree for the zero polynomial.

[7] A metric d(, ) on a set X is a real-valued function d on X×X meeting reasonable conditions: positivity: d(x, y) ≥ 0,

and d(x, y) = 0 only for x = y; symmetry: d(x, y) = d(y, x); and, least trivial, the triangle inequality condition

d(x, y) ≤ d(x, z) + d(z, y).

[8] This sense of Cauchy sequence is completely analogous to that in the real numbers or Rn, namely, that a sequence

{xn} is Cauchy if for every ε > 0 there is N such that for all m,n ≥ N we have |xm − xn|p < ε.

[9] A metric space is complete if every Cauchy sequence converges. A completion of a metric space X is often

defined by a construction (given in the appendix below), but, as discussed shortly, the idea is that the completion is

the smallest complete metric space containing the given one.
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but we should check that the p-adic metric really is a metric. The positivity and symmetry of the associated
p-adic metric are immediate, but the triangle inequality is not so immediate.

[2.0.3] Example: Partly for the visual effect, we note that

1 + 2 + 4 + 8 + 16 + . . . = −1 (in Z2)

This is genuinely valid in Z2. Superficially, thinking of the real numbers, this might be perceived as a
corruption of the familiar identity

1 + r + r2 + r3 + . . . =
1

1− r
(for |r| < 1)

for real or complex r, and with the usual real or complex absolute value |r|. But it is not a flawed version at
all, since it is literally correct 2-adically.

Regarding the triangle inequality, in fact, we have a strange stronger property: [10]

[2.0.4] Proposition: (ultrametric inequality) For x, y in Q,

|x+ y| ≤ max{|x|, |y|}

In fact, equality occurs in this last inequality, except possibly when |x| = |y|. Thus, in terms of the p-adic
metric d(x, y),

d(x, y) ≤ max{d(x, z), d(z, y)}

with equality except possibly when d(x, z) = d(z, y).

Proof: Let x = pm · a/b and y = pn · c/d with a, b, c, d prime to p, and positive or negative integers m,n.
Without loss of generality, we can suppose that m ≤ n. Certainly

x+ y = pm · a
b

+ pn · c
d

=
pmad+ pncb

bd
= pm · ad+ pn−mcb

bd

Note that, by unique factorization, bd is still prime to p. For m < n, the numerator in the fraction in

x+ y = pm · ad+ pn−mcb

bd

is prime to p. Thus, for m < n, that is, for |x| > |y|,

|x+ y| = p−m = |x| = max{|x|, |y|}

When m = n, that is, when |x| = |y|, the numerator may be further divisible by p in some cases. Thus, for
|x| = |y|,

|x+ y| ≤ p−m = max{|x|, |y|}

Then
d(x, y) = |x− y| = |(x− z) + (z − y)| ≤ max{|x− z|, |z − y|} = max{d(x, z), d(z, y)}

with equality unless possibly when d(x, z) = d(z, y). ///

An isometry f : X → Y of metric spaces X,Y is a set map from X to Y such that distances are preserved,
namely,

dY (f(x), f(x′)) = dX(x, x′)

[10] It is traditional at this point to say the the ultrametric property proven in the proposition can be construed as

asserting that all p-adic triangles are isosceles.
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for all x, x′ in X. [11] A metric space is complete if every Cauchy sequence converges. [12]

[2.0.5] Definition: A completion of a metric space X is a complete metric space Y and an isometry
i : X → Y such that, for every isometry j : X → Z to a complete metric space Z, there is a unique isometry
J : Y → Z giving a commutative diagram

X
i //

j   @@@@@@@ Y

J

���
�
�

Z

Thus, as usual with mapping-property characterizations, there is at most one completion, up to unique
isometric isomorphism. In the appendix below we give the usual construction, which proves existence.

Thus, we can define, as expected, p-adic integers Zp = p-adic metric completion of Z

p-adic numbers Qp = p-adic metric completion of Q

As usual, all operations on the completions are defined as limits, and well-definedness must be proven. That
is, for Cauchy sequences of rational numbers xn and yn with xn → a and yn → b p-adically, define

a+ b = lim
n

(xn + yn) a · b = lim
n

(xn · yn) |a| = lim
n
|xn|

[2.0.6] Proposition: The p-adic norm is a continuous function on the completion. The p-adic norm is
multiplicative on the completions, that is,

|ab| = |a| · |b|

Addition, multiplication, and multiplicative inverse (away from 0) are continuous maps in the p-adic metric.
Also,

Zp = {x ∈ Qp : |x| ≤ 1} = {x ∈ Qp : |x| < p}

In particular, Zp is both closed and open in Qp. The p-adic integers Zp form an integral domain, [13] And

Qp is its field of fractions [14] of Zp. On Qp it is still true that the ultrametric inequality holds:

|x+ y| ≤ max{|x|, |y|} (with equality except possibly when |x| = |y|)

[2.0.7] Corollary: Polynomials with p-adic coefficients give continuous functions on Qp. ///

[11] Beware that in some contexts an isometry is presumed to be a bijection to the target, in addition to preserving

distance. In our context we specifically do not assume that isometries are surjections to the target spaces.

[12] Again, as usual, a sequence {xn} is Cauchy if for every ε > 0 there is N such that for all m,n ≥ N we have

d(xm, xn) < ε.

[13] Recall that an integral domain is a commutative ring with no proper zero divisors, that is, no non-zero elements

a, b such that ab = 0.

[14] The field of fractions of an integral domain R is a field F with an inclusion i : R → F such that any injection

ring homomorphism of R to a field factors through i : R → F . A common element-oriented definition of F is as the

set of fractions a/b with a, b ∈ R, with b 6= 0, modulo the expected equivalence relation that a/b ∼ a′/b′ if ab′ = a′b.
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[2.0.8] Remark: It is the ultrametric property that makes the set of x with |x| ≤ 1 a subring, since otherwise
this set would not be closed under addition. Thus, for example, there is no analogous subring of R.

Proof: From the general theory of metric spaces (as in the appendix) the metric d(, ) on the completion is
defined by taking limits

d(a, b) = lim
n
d(xn, yn)

where xn, yn are rational and xn → a and yn → b. Part of the general assertion is that this is well-defined,
that is, is independent of the Cauchy sequences approaching a and b. Then, in the present situation, we
obtain the extension of the p-adic norms to the completion as a special case, taking b = 0, so

|a| = d(a, 0) = lim
n
|xn − 0| = lim

n
|xn|

Then we have the expected

|a+ b| = |a− (−b)| = d(a, b) ≤ d(a, 0) + d(0, b) = |a|+ |b|

The p-adic continuity of the p-adic norm on Q is immediate from the continuity of the metric on the
completion, which is a general fact about completions.

The multiplicativity |xy| = |x| · |y| follows for x, y ∈ Q from the fact that the ideal pZ is prime in Z. That
is, writing x = pm · a/b and y = pn · c/d with a, b, c, d relatively prime to p,

xy = pm+n · (ac)/(bd)

and by the primality of p the products ac and bd are still prime to p. Then for xn → a and yn → b with
xn, yn in Q,

|ab| = lim
n
|xnyn| = lim

n
(|xn| · |yn|) = lim

n
|xn| · lim

n
|yn| = |a| · |b|

by continuity of multiplication of real numbers, since |xn| → |a| and thus {|xn|} is Cauchy in R (as is {|yn|}).

Continuity of addition is easy, from

|(x+ y)− (x′ + y′)| ≤ |x− x′|+ |y − y′|

For multiplication,

|(xy)− (x′y′)| ≤ |x(y − y′)|+ |(x− x′)y′| ≤ |x(y − y′)|+ |(x− x′)(y′ − y)|+ |(x− x′)y|

= |x||y − y′|+ |x− x′||y′ − y|+ |x− x′||y|

Thus, given x, y in Qp and x′, y′ sufficiently close to them, the products are close.

For multiplicative inverses, let x 6= 0. From

1 = |1| = |x · x−1| = |x| · |x−1|

we have

|x−1| = 1

|x|

and then the continuity of inversion in R× gives our result.

Unsurprisingly, since Z is a subset of Q, there is the same containment relation between their completions.
Since the p-adic absolute value of x ∈ Z is at most 1, we immediately have containment in one direction,
namely

Zp ⊂ {x ∈ Qp : |x| ≤ 1}
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On the other hand, suppose that y ∈ Qp with |y| ≤ 1. Since Qp is the completion of Q, there is r ∈ Q
arbitrarily close to y. For |y − r| ≤ 1,

|r| ≤ max{|r − y|, |y|} ≤ 1

so |r| ≤ 1 itself. Thus, it suffices to show that r itself can be approximated arbitrarily well by elements of Z.

Since |r| ≤ 1, r = pn · ab with a, b ∈ Z relatively prime to p and n ≥ 0. As an example of Hensel’s lemma, we
saw above that, for b 6= 0 mod p, there is a sequence of integers xi such that

b · xi = 1 mod pi

That is, xi is a Cauchy sequence of integers approaching a multiplicative inverse b−1 of b in Qp. By continuity
of the norm,

|b−1| = lim
i
|xi| = lim

n
1 = 1

since p does not divide any of the integers xi. Thus,

lim
i
pn · a · xi = pn · a/b = r

That is, as i varies the integers pn · a · xi get close to r. This proves that Z is dense in {y ∈ Qp : |y| ≤ 1}, so
Zp is exactly the latter set, as claimed.

Since the possible values of the p-adic norm are only powers of p, the condition |x| < p implies |x| ≤ 1.

If ab = 0, then |ab| = 0, and by multiplicativity |a| · |b| = 0. But then a or b is 0. Thus, Zp is an integral
domain.

Since Q is a field, it follows fairly easily that its completion Qp is a field. To see that Qp has no proper
subfield that contains Zp, observe first that we already showed that any element x ∈ Qp with |x| ≤ 1 lies in
Zp. And for |x| > 1, x cannot be 0, so has an inverse (since Qp is a field), and |x−1| < 1, so lies in Zp. This
proves that Qp is the fraction field of Zp.

Finally, it is not surprising that the ultrametric inequality persists, as follows. Given a, b ∈ Qp, let xn, yn be
rational numbers with xn → a and yn → b. Given ε > 0, let n be large enough such that |xn − a| < ε and
|yn − b| < ε. Since by now we know that the triangle inequality holds:

|xn + yn − (a+ b)| < |xn − a|+ |yn − b| < 2ε

Then

|a+b| ≤ |(a−xn)+(b−yn)|+|xn+yn| ≤ 2ε+max{|xn|, |yn|} ≤ 3ε+max{|xn|−ε, |yn|−ε} < 3ε+max{|a|, |b|}

As usual, this is true for every ε > 0, so we obtain the ultrametric inequality. ///

[2.0.9] Proposition: The units in Zp are

Z×p = {x ∈ Qp : |x| = 1}

The non-zero ideals in the ring Zp are pn ·Zp for 0 ≤ n ∈ Z. We have Z∩pnZp = pnZ, and the natural maps

Z/pnZ→ Zp/pnZp

are isomorphisms.

Proof: First, for x, y ∈ Zp such that xy = 1, of course

1 = |1| = |xy| = |x| · |y|
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Since |x| ≤ 1 and |y| ≤ 1, necessarily they are both 1. Thus,

Z×p ⊂ {x ∈ Zp : |x| = 1}

On the other hand, suppose |x| = 1. Let y ∈ Z be such that |x− y| < 1. Then

|y| = |y − x+ x| = max{|y − x|, |x|} = |x| = 1

since the two norms are unequal. Thus, y is an integer not divisible by p. Again, as an example exercise in
Hensel’s lemma, we found that such y has an inverse in Zp. And then

x = x− y + y = y · (1 +
x− y
y

)

gives a way to make a convergent series expression for an inverse to x, namely

x−1 = y−1 ·

(
(1− x− y

y
+

(
x− y
y

)2

−
(
x− y
y

)3

+ . . .

)

which converges since |(x− y)/y| < 1. Thus, x−1 exists in Zp.

The natural maps Z→ Zp and pnZ→ pnZp give a map

Z/pnZ −→ Zp/pnZp

For x ∈ Z ∩ pnZp, we have |x| ≤ p−n, so pn divides x. That is, x ∈ pnZ, as claimed. Thus, these natural
maps are injections. For y ∈ Zp, consider the coset y + pnZp. Using the density of Z in Zp, let x ∈ Z with
|y − x| < p−n. Then y − x ∈ pnZp, so

y + pnZp = (y − x) + x+ pnZp = pnZp + x+ pnZp = x+ pnZp

which proves the surjectivity of the natural map.

Given a non-zero ideal I in Zp, let M be the sup of the p-adic norms of elements of I. We claim that the
sup is attained at some element of I, and that such a largest element generates I. Indeed, there are only
finitely-many values of the p-adic norm on Zp lying in any interval [δ, 1] for δ > 0, so the sup is attained.
For x in I of maximum norm, for any y ∈ I, |y/x| ≤ 1, so y/x ∈ Zp. That is, y ∈ Zp · x. This shows that
I = Z·x. ///

[2.0.10] Remark: It is not completely trivial to prove that Qp and Zp are locally compact from this metric
viewpoint.

3. Introductory p-adic analysis

The behavior of the exponential function for p-adic numbers is quite different from its behavior for real or
complex arguments. The details are both amusing and useful. We introduce formal power series methods
to show that the p-adic exponential and logarithm are mutual inverses.

From the basic metric definition of Zp and Qp, from the ultrametric version of the triangle inequality, we
obtain:

[3.0.1] Corollary: For p-adic a1, . . . , an,

|a1 + . . .+ an| ≤ max{|a1|, . . . , |an|}

10
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with equality unless at least two |ai| are identical. (Induction from the ultrametric property.) ///

[3.0.2] Corollary: In the p-adic numbers, Cauchy’s necessary criterion for the convergence of a sequence∑
i ai, namely that |ai| → 0, is also sufficient for convergence. [15]

Proof: We prove the sufficiency. [16] The difference of the nth and mth partial sums (with m < n) is

|am+1 + am+2 + . . .+ an−1 + an| ≤ max{|am+1|, |am+2|, . . . , |an−1|, |an|}

Since the individual |an| are assumed to go to 0, this maximum goes to 0 as m→∞, so the series converges.
///

[3.0.3] Remark: Since an infinite sum converges if the terms go to zero, the distinction between absolute and
conditional convergence disappears here. That is, in effect, any convergent series is absolutely convergent.
In particular, rearrangements are always permitted. [17]

The exponential function does not behave so well p-adically, since the factorials in the denominator which
made the power series

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ . . .

no longer grow (helping convergence) but shrink, thus impeding convergence.

Recall that ordpx is the largest integer e such that pe|x. This still makes sense in Zp.

[3.0.4] Claim: The power series for ex converges p-adically for

ordpx >
1

p− 1

[3.0.5] Remark: Since ordpx is an integer, this gives convergence for ordpx > 0 for p odd, but for p = 2

requires ordpx > 1. [18]

Proof: For a real number r let

floor(r) = greatest integer n with n ≤ r

[15] In the real or complex numbers, Cauchy’s criterion for convergence of a sum is only necessary, and certainly not

sufficient. It is the fact that p-adic numbers satisfy an ultrametric inequality in place of the triangle inequality that

makes the criterion sufficient in that case.

[16] Necessity is the same as in ordinary calculus, for example, that differences of partial sums, for example∑
i≤n+1 ai −

∑
i≤n ai, must go to 0 as n→∞. This particular difference is exactly an+1.

[17] That rearrangements of convergent series are always possible is not hard to see. Suppose that |ai|p → 0, where i

runs through the positive integers. We express a rearrangement of the sum Σiai as Σiaπ(i) where π be a permutation

of the positive integers. To prove that the two sums are equal, first observe that the aπ(i)’s also go to 0, since going

to 0 means that for each ε > 0 there are only finitely-many |aπ(i)| ≥ ε. Then pick ε > 0, and take N large enough

so that both |ai| < ε for i > N and |aπ(i)| < ε for i > N . In the difference between partial sums
∑
i≤N ai and∑

i≤N aπ(i), all the summands with norm at least ε are present in both partial sums, so cancel. Thus, the only

remaining summands that may not cancel have norm less than ε, and the ultrametric inequality implies that the

difference of those partial sums is at most ε. Since these partial sums approach the full sums, and since this holds

for every ε > 0, the two infinite sums are equal.

[18] Similarly, for some extension fields k of Qp, the values of the extension of ordp to k will not be integers, so the

inequality’s meaning becomes subtler.
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Then [19]

ordpn! = floor(
n

p
) + floor(

n

p2
) + floor(

n

p3
) + . . . (finitely-many non-zero summands)

This is usefully estimated by

ordpn! ≤ n

p
+
n

p2
+
n

p3
+ . . . =

n

p
· 1

1− 1
p

= n · 1

p− 1

To meet Cauchy’s now-sufficient criterion for convergence of the series for ex, we want

lim
n
|xn/n!|p = 0

which is to say that
ordp

(
xn/n!

)
−→ +∞

The estimate we’ve just derived gives

ordp
(
xn/n!

)
= n ordpx− ordpn! ≥ n ordpx− n ·

1

p− 1
= n · (ordpx−

1

p− 1
)

Thus, for

ordpx >
1

p− 1

the series for ex converges. ///

Just to be sure that we understand why the p-adic exponential works as expected, without pretending to
invoke differential equations or real-variable calculus accidentally, we prove

[3.0.6] Proposition: For z, w ∈ Zp both with ordp more than 1/(p− 1)

ez+w = ez ew

Proof: The most essential point is an application of the binomial theorem, as follows. The condition on
ordp’s is to assure convergence, [20] from just above. And, further, |z + w| ≤ max{|z|, |w|}, so z + w still
meets this condition. We compute directly

ez+w =
∑
n≥0

(z + w)n

n!
=
∑
n

∑
0≤i≤n

(
n

i

)
zn−iwi/n!

with binomial coefficients (
n

i

)
=

n!

i! (n− i)!

[19] The first summand on the right is (obviously) the number of integers m ≤ n divisible by p, each contributing

at least one factor of p to n!. The second summand is the number of integers m ≤ n divisible by p2, each such

contributing at least one additional factor of p to n!, and so on.

[20] In fact, the equality is true for formal power series, meaning in the projective limit ring Q[[z, w]] = limnQ[z, w]/In

where I is the ideal in Q[z, w] generated by z and w, and In is the ideal generated by n-fold products of elements of I,

namely polynomials with all terms of total degree at least n. The same proof works in this context, since only a very

limited rearrangement of terms is needed. We use this formal power series viewpoint to prove that the exponential

and logarithm are mutual inverses. It bears emphasizing that this formal power series ring is very much akin to the

limit construction of Zp from Z/pn.
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as usual. The n!’s cancel, leaving

ez+w =
∑
n

∑
i

1

i! (n− i)!
zn−iwi = ez ew

as desired. ///

The logarithm function’s expansion

log(1 + x) = x− x2

2
+
x3

3
− x4

4
+ . . .

behaves less badly p-adically than that of ex, but, still, the denominators become p-adically smaller rather
than large, so this is still worse than the real or complex case. However, for logarithm, the radius of
convergence is the same as for the real and complex cases:

[3.0.7] Claim: The usual power series for log(1 + x) converges p-adically for |x|p < 1.

Proof: The sloppy-but-adequate estimate is

ordpn ≤ logp n

where the latter logarithm is the usual real-valued one. Then using the sufficiency of the p-adic Cauchy’s
criterion, the series converges if the terms go to 0. Since

ordp(x
n/n) = n · ordpx− ordpn ≥ n · ordpx− logp n

this requires that ordpx > 0, which is |x| < 1. ///

Optimistically, apart from the convergence contraints, the following result is exactly as expected.

[3.0.8] Proposition: The p-adic exponential and logarithm are mutual inverses on certain regions: log(ex) = x (for ordpx > 1/(p− 1))

elog(1+x) = 1 + x (for |x| < 1)

[3.0.9] Remark: We will wrap up the combinatorics of a more pedestrian proof of these standard identities,

into more intuitive calculus-style arguments by introducing rings of formal power series [21]

k[[x]] = lim
n
k[x]/(xn) = x-adic completion of k[x]

over a field k. [22] [23] For our application, k = Qp. The idea is that we look at power series with coefficients
in k without concern for the usual notion of convergence. This does not allow us to evaluate such series at

[21] We can also define rings of formal power series rings as metric completions of k[x], just as Zp is often defined

as a metric completion of Z. An x-adic norm can be defined as |f(x)| = 2−ordxf where ordxf = e is the maximum

integer such that xe divides the polynomial f(x). Here the constant 2 is irrelevant, and could be replaced by any real

number greater than 1.

[22] Sometimes such rings of formal power series are allegedly described as formal expressions, but this does not do

them justice, and promulgates the notion that mathematics is an activity whose essence is manipulation of strings of

marks.

[23] Note that we cannot construct the formal power series ring as a colimit of (vector spaces of) polynomials of higher

and higher degrees, since that colimit would merely be an ascending union, and give us all polynomials, rather than

any new objects.
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elements of k, but it does allow us to prove many identities that do not actually involve infinite sums of
elements of k. The point is to be able to look at differential equations satisfied by (formal) power series,
even in situations where there are no literal derivatives to be taken. The combinatorial burden is reduced
and organized into the proof (below) of a suitable chain rule in a purely algebraic context.

Proof: We have a k-linear map [24]

D : k[x] −→ k[x]

given by [25]

D(xn) = nxn−1

After verifying the basic properties of D we will prove that D extends to an operator on k[[x]] with the same

properties. The linearity implies that D is additive. Leibniz’ rule [26]

D(fg) = Df · g + f ·Dg

follows from linearity and the easy

D(xm · xn) = D(xm+n) = (m+ n)xm+n−1 = mxm−1xn + nxmxn−1

We also need the chain rule
D(f(g(x))) = Dg(x) · (Df)(g(x))

It suffices to take f(x) = xn, by linearity of D. Let g(x) =
∑d
i=0 cix

i. Then

D(g(x)n) = D
(∑

`0+...+`d=n

n!

`0! . . . `d!
c`00 . . . c`dd x`1+2`2+...d`d

)
=

∑
`0+...+`d=n

n!

`0! . . . `d!
c`00 . . . c`dd (`1 + 2`2 + . . . d`d) x

`1+2`2+...d`d−1

= n
∑d
j=0

∑
`0+...+`d=n

(n− 1)!

`0! . . . (`j − 1)! . . . `d!
c`00 . . . c`dd j`j x

j−1 x`1+...+j(`j−1)+...d`d

A little more fooling around does indeed rearrange this to

Dg(x) · n · g(n)n−1

This verifies the chain rule for polynomials.

Now look at the compatibility of D with the x-adic projective limit. [27] Let In be the ideal in k[x] generated
by xn. From Leibniz’ rule,

D(In) ⊂ In−1

Thus, D gives a map k[x]/In → k[x]/In−1, and we have a diagram

k[[x]]
++ ++

. . . // k[x]/In // k[x]/In−1
// . . .

k[[x]] 33 33
. . . // k[x]/In //

D

99rrrrrrrrrr
k[x]/In−1

//
D

::vvvvvvvvvv
. . .

[24] Of course we are thinking of differentiation, but we are not taking limits of differences.

[25] Viewing x0 as being 1, this formula implies that D annihilates the copy of k inside k[x] or k[[x]].

[26] There is a story that in the first edition of Leibniz’ calculus text it was claimed that the derivative of the product

is the product of the derivatives. This was quickly corrected in a new printing.

[27] Charmingly, D does not quite stabilize the ideal generated by xn, since, after all, it decreases the exponent by 1.
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This induces a unique (k-linear) map D : k[[x]]→ k[[x]]. That is, D commutes with taking x-adic limits.

Polynomial multiplication and addition map

k[x]/In × k[x]/In → k[x]/In

compatibly with the transition maps k[x]/In → k[x]/In−1, so, as usual, induce addition and multiplication

on k[[x]]. The associativity, commutativity, and distributivity follow as usual, also. [28]

The chain rule is more interesting. First, we must be sure not to try to evaluate f(g(x)) unless g ∈ xk[x].
Otherwise, we might appear to be taking infinite sums of elements of k, which we eschew. Keeping this in
mind, we have the usual composition

k[x]× x · k[x]→ k[x] by f(x)× g(x)→ f(g(x))

The essential point is that requiring that the argument polynomial be divisible by x gives a (well-defined)

map [29]

k[x]/In × x · k[x] −→ k[x]/In

As usual, [30] this induces a well-defined compatible map

k[[x]]× x · k[[x]] −→ k[[x]]

The compatibility assures that Leibniz’ rule and the chain rule still hold.

Now we return to the exponential and logarithm. Now we must assume that the field is of characteristic
0, or else the exponential and logarithm have extra problems due to the denominators in their power series
expansions. As in viewing a p-adic integer as the p-adic metric limit of ordinary integers, or, equivalently,
as a compatible sequence of elements in the limitands of a projective limit, we think of a formal power series
as being the sequence of its finite partial sums.

Being careful, observe that

log(1 + x) = x− x2

2
+
x3

3
− x4

4
− . . . ∈ x · k[[x]]

and that in fact we want inputs to log to be in 1 +x · k[[x]] because of this situation. Also, ex− 1 ∈ x · k[[x]].
As in ordinary analysis, but taking an x-adic limit instead,

D(ex) = lim
n
D(
∑
i≤n

xi

i!
) = lim

n

∑
i≤n

xi−1

(i− 1)!
= ex

Similarly,

D(log(1 + x)) = 1− x+ x2 − x3 + . . . =
1

1 + x

but as an x-adic limit, where x-adically

1

1 + x
= lim

n
(1− x+ x2 − . . .± xn)

[28] These details were written out in greater detail in the discussion of projective limits of topological groups acting

on topological spaces.

[29] If we do not require the input polynomial to be divisible by x, then the composite will not behave propertly

x-adically. For example, for f(x) = xm and g(x) = 1 + x, f(g(x)) = (1 + x)m, and the latter is not divisible by x.

[30] Yes, limits of products are products of limits, and the multiplication by x likewise commutes with limit-taking.
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And, unsurprisingly, for f(x) ∈ k[[x]], if Df(x) = 0 then f(x) is in the copy of k inside k[[x]].

Imitating the elementary theory of differential equations, to prove that

elog(1+x) = 1 + x

it suffices to show that the constant term of elog(1+x) is 1, and that (since D(1 + x) = 1)

D
(
elog(1+x)

)
= 1

Use the chain rule to compute

D
(
elog(1+x)

)
= D(log(1 + x)) · elog(1+x) =

1

1 + x
· elog(1+x)

Now we will see that this differential equation

(1 + x) ·Df = f

characterizes f up to scalar multiples, and, in fact, we will see that it must be just 1 + x. We do this by
looking at the power series coefficients. [31] Let f(x) =

∑
n≥0 cn x

n. Then the equation is

(1 + x) ·
∑
n≥0

cn nx
n−1 =

∑
n≥0

cn x
n

or
c1 + (c1 + 2c2)x+ (2c2 + 3c3)x2 + (3c3 + 4c4)x3 . . . = c0 + c1x+ c2x2 + . . .

which gives (by equating coefficients) [32]

c1 = c0
2c2 = 0
3c3 = −c2
4c4 = −2c3

. . .

Since the characteristic of k is 0, this implies that any f(x) satisfying this differential equation is a constant
multiple of 1 + x. By looking at the 0th coefficient of elog(1+x), we see that it is exactly 1 + x. We leave the
proof that log(ex) = x to the reader. ///

4. Comparison with projective limit definition of Zp

Now we connect the classical metric-completion definition of Zp with the (projective) limit definition

Zp = lim
n

Z/pn

[4.0.1] Theorem: The projective limit limn Z/pn is isomorphic to the p-adic metric completion Zp of Z.
The projections are

pn : Zp
quotient // Zp/pnZp

isom // Z/pn

where the isomorphism Zp/pnZp ≈ Z/pn is the natural one proven earlier.

[31] The case of formal power series is much easier than the case of convergent power series, since in the latter a

recursive determination of power series coefficients may not lend itself to verification of convergence.

[32] Yes, unsurprisingly, two formal power series are equal if and only if all their coefficients are equal, for if the

coefficients of xn were different, then the series would be different modulo xn+1.
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[4.0.2] Remark: We give two proofs, one emphasizing the limit viewpoint, the other emphasizing the metric
viewpoint.

Proof: First, the maps qn : Zp → Zp/pnZp ≈ Z/pn give a compatible family of (continuous!) maps to the
limitands in limn Z/pn, so induce a map of Zp to the limit. For each non-zero element x ∈ Zp, there is some
exponent n such that the image of x in Zp/pnZp is non-zero, so Zp injects to the limit. Thus, we might

guess that Zp is the limit, and try to verify this. [33] Let fn : Z → Z/pn be a compatible family of maps

from another object [34] For fixed z ∈ Z, for each n choose xn ∈ Z such that [35]

xn + pnZp = fn(z)

We claim that the sequence xn is a Cauchy sequence in Zp, so by completeness we could take a limit

f(z) = lim
n
xn ∈ Zp

The Cauchy-ness follows from the compatibility of the fn’s, and, then, the necessary compatibility of the
integer representatives xn. This defines a map f : Z → Zp compatible with the fn’s and the projections.
We still need to show that there is a unique such f to have proven that Zp is the limit. Indeed, if f and g
were two maps compatible with the projections and fn’s, then

0 = pn (f(z)− g(z)) ∈ Z/pn ≈ Zp/pnZp

Taking the intersection over n gives the uniqueness f(z) = g(z). This proves that Zp is the limit. ///

Proof: (Second) For a second sort of proof, we will prove that the limit is also a completion of Z with respect
to a metric which agrees on Z with the p-adic metric, and is complete, so (by the uniqueness of completions)
naturally isomorphic to the completion Zp of Z. We need a bit of general discussion of products and limits
of metric spaces:

[4.0.3] Claim: A countable product
∏
iXi of metric spaces Xi is metrizable. If every Xi is complete, then

the product is complete.

[4.0.4] Remark: Further, we will use explicit expressions for the metric on the product. For example,
letting di(, ) be the metric on Xi, the expression

d({xi}, {yi}) =
∑
n≥1

2−n
dn(xn, yn)

1 + dn(xn, yn)

will give a metric on the product. The oddness of this expression is put into context better by realizing
several things. First, the powers of 2 appearing can be replaced by any sequence of positive real numbers
whose sum converges. Second, the expressions

di(xi, yi)

1 + di(xi, yi)

have the effect of giving new metrics (giving the same topology) on the Xi which are bounded by 1. Further,
the 1 in the denominator of the latter expression can be replaced by any positive real number if we want,

[33] Note that the argument so far applies as well to Z itself, which does indeed inject to the limit, but is a proper

subobject.

[34] We can give this argument for topological groups, or for topological rings, etc.

[35] That there exists such xn is the content of the assertion that the natural map Z/pn → Zp/pnZp is an isomorphism.
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still giving the same topology. Indeed, for notational ease, let us replace each di(, ) by di(, )/(1 + di(, )), so
that we effectively assume that the metric on each of the factors is already bounded by 1. Thus, we won’t
need to carry along the more complicated expressions.

[4.0.5] Remark: The extreme ambiguity of the constants reminds us that many different metrics can give
the same topology. Thus, a topology cannot possibly specify a canonical metric, in general. The uniqueness
of the topology on a product has no canonical metric analogue.

Proof: (of claim) It is easy and not so interesting to verify that d(, ) gives a metric on the product. It is

more interesting to see that it gives the product topology. [36] The trick is that a condition of the form

d({xi}, {yi}) < ε

gives no condition whatsoever on xi and yi for i large enough such that 2−i < ε/2, since

1

2i
+

1

2i+1
+

1

2i+2
+

1

2i+3
+ . . . =

2i

1− 1
2

= 2 · 2−i < ε

and since di(xi, yi)/(1 + di(xi, yi)) < 1 for all inputs. [37] Thus, for fixed x = {xi} in the product, the
collection of y = {yi}’s within distance ε > 0 of x includes the whole Xi ×Xi+1 × . . . for some large-enough
index i.

More precisely, given d(x, y) < ε, necessarily di(xi, yi) < 2i · ε for all i. Thus, given a collection of open

balls in the individual Xi’s, almost all [38] of them being the whole Xi, we can choose ε > 0 such that the
resulting ball in the d(, ) metric is contained in the product of those balls.

Conversely, given x in the product and ε > 0, taking n large enough such that 2−n < ε/2, the product

(ε-ball at x1)× (ε-ball at x2)× . . . (ε-ball at xn)×Xn+1 ×Xn+2 × . . .

is contained in the ε-ball at x. Thus, the two topologies are the same.

The more serious part of the claim is the completeness. [39] Given a Cauchy sequence {x(k)} in the product
with the funny metric, since the metric on the product dominates the (bounded-by-1) metrics on the factors,

for each index i the ith components {x(k)
i } are Cauchy in Xi, so have a limit xi in Xi. It is irresistible to

suspect that the point x = {xi} in the product is the limit of the original Cauchy sequence. Indeed, given
ε > 0, take n large enough such that 2−n < ε/2. Let N be large enough such that for k ≥ N for each of the
finitely-many i ≤ n

d(x
(k)
i , xi) < ε

Then it easily follows that for k ≥ N

d({x(k)
i }, {xi}) <

ε

2
+
ε

4
+ . . .+

ε

2n
+

2−(n+1)

1− 1
2

<
ε

2
+
ε

4
+ . . .+

ε

2n
+
ε

2
= ε

[36] It is especially interesting to see that this metric gives the product topology if one still thinks of the product

topology as being disappointingly coarse. That is, it might seem unlikely that it could arise from a metric, but it

does.

[37] A nearly identical phenomenon occurs no matter what constants we use to define the metric on the product. This

cut-off phenomenon is the crucial mechanism.

[38] This standard usage of almost all means all but finitely-many.

[39] But completeness, too, comes down to the odd cut-off phenomenon that already made this metric topology as

coarse as it must be to be the product topology.
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That is, the original Cauchy sequence does indeed have the anticipated limit. Thus, with this funny metric,
the product is complete. ///

Keep in mind that projective limits are subsets of the corresponding products, and can be given the metric
from the product by restriction. Since closed subsets of complete metric spaces are complete, [40] this proves
the completeness of the projective limit in this case.

Now we can complete the metric-space proof that the projective limit definition of Zp is the same as the
metric one. The discussion just completed shows that limn Z/pn does have a structure of complete metric
space. What remains is to show that this is the same as that on Zp. To do so, we show that we can choose a
particular form of the metric on the limit such that the restrictions of the two metrics to Z are identical. We
also must show that Z is dense in limn Z/pn, and then we’re done, by the uniqueness of metric completions.

Returning to the funny expressions for metrics on a countable product, give Z/pn the natural metric that
any discretely topologized set can be given, namely

dn(x, y) =

{
1 (for x 6= y)
0 (for x = y)

Being a little clever in choice of constants, we try

d({xn}, {yn}) =
∑
n≥1

p−n · d(xn, yn)

Unlike points in the whole product ΠnZ/pn, points in the limit have a compatibility condition. Thus, given
{xn} 6= {yn} in the limit, there is a unique index N such that xn = yn for n ≤ N and xn 6= yn for n > N .
With this N ,

d({xn}, {yn}) =
∑

1≤n≤N

p−n · 0 +
∑
n>N

p−n · 1 =
p−(N+1)

1− 1
p

= p−N · 1

p− 1

When {xn} and {yn} come from integers x, y, the integer N is the maximal one such that pN divides x− y,
so

d(x, y) = |x− y|p ·
1

p− 1

That is, up to the easily reparable constant 1/(p− 1), this contrived metric agrees on Z with the p-adic one.

Finally, we should show that Z is dense in the limit. Note that denseness is an intrinsic topological property,
not necessarily metric, but since we’ve already made up the metric we may as well use it on this occasion.
Given a compatible sequence {xn} in the limit, and given ε > 0, let n be large enough such that p−(n+1) < ε/2.
Let x be an integer such that x = xn mod pn. Then the same sort of calculation gives

d(x, {xn}) ≤
∑

1≤i≤n

p−i · 0 +
∑

i > np−i · 1 =
p−(n+1)

1− 1
p

= p−n · 1

p− 1
< ε

Thus, Z is dense in the limit, so the limit is its metric completion. This proves (a second time) that the
limit is the same as the metric completion definition of Zp. ///

[40] That topologically closed subsets of complete metric spaces are again complete is straightforward: a Cauchy

sequence in the subset does have a limit in the whole space by the completeness of the larger space, and the limit

point lies in the subset, by closedness.
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5. Comparison of definitions of A
To understand the comparison of definitions of the adeles A, we should first review the simpler case of Qp.

The most pedestrian definition of Qp is as p-adic completion of Q, from which it follows readily (as earlier,
above) that it is the field of fractions of Zp.

The expression

Qp =
⋃
n

p−n · Zp

of Zp as a colimit of topological (additive) groups does not directly express Qp as a ring, certainly not as a
colimit of rings. Nevertheless, the limitands in the colimit behave reasonably, in the sense that

p−m Zp · p−n Zp ⊂ p−(m+n) Zp

so that the ring structure on Zp (as limit) and the obvious multiplicative properties of powers of p give the
colimit a ring structure.

Recall that we have defined the adeles A as
R× Afin

where the finite adeles Afin are defined to be

Afin = colimn
1

n
· Ẑ

with the indexing poset being positive integers ordered by divisibility, not magnitude, and where, as earlier,

Ẑ = lim
n

Z/n ≈ Πp primeZp

with positive integers again ordered by divisibility, not magnitude. This gives a strict colimit expression for
A as topological group, but not as ring.

By contrast, one usual definition of A is a sort of colimit, but usually without mentioning the notion explicitly,
[41] as follows. For a finite set S of primes, [42] including the infinite prime ∞, let

AS = Πp∈SQp ×Πp 6∈SZp

For S ⊂ S′ there is an obvious inclusion
AS ⊂ AS′

and the adeles A are the strict colimit
A = colimSAS

over S in the poset of finite sets of primes including the nominal prime at infinity, ordered by inclusion. This
is a countable strict colimit of topological rings, and each limitand is open in its successors, so we are in a
good situation. But why consider this particular colimit at all?

[41] The usual terminology is something about restricted direct products, but, in fact, these are (strict) colimits.

[42] Further, to talk about R at the same time as all the other completions Qp, often one talks as though there were

a prime ∞ whose corresponding completion is R. This has no content apart from allowing a uniform language. It is

more proper to speak of places rather than primes as a generalized notion that includes both genuine primes and the

standard metric that yields R, but insisting on using place is pointless. Thus, the infinite prime is just the index ∞
that allows us to talk about R in the same manner we talk about Qp.
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We can write a slightly different and more natural (ring) colimit to express A. To warm up to this, we
first do an easier case. Without using in advance the fact that Qp is the field of fractions of Zp, and that

Zp[1/p] = Qp, we can prove that there exists a natural colimit topology on Zp[1/p]. [43]

[5.0.1] Claim: The colimit

colim( Zp
×p // Zp

×p // Zp
×p // . . . )

of topological groups has a natural ring structure in which the multiplication is continuous, and the ring
structure is

Zp[
1

p
] ≈ colim( Zp

×p // . . . )

Proof: The idea of the argument is to observe that the colimit is isomorphic, as topological group, to

colim( Zp inc // 1
p · Zp

inc // 1
p2 · Zp

inc // . . . )

Apart from the first one, the limitands are not rings, but the product of an element p−mx ∈ p−mZp and
p−ny ∈ p−n · Zp is definable as

(p−mx) · p−ny = p−(m+n) x · y (where x, y ∈ Zp)

and the multiplication in Zp is used to multiply x, y. The slight problem is that this presumes already that

we can divide by p somewhere. [44] But we can multiply by p. Thus, transporting the definition of the
multiplication back to the original set-up, let jn : Zp → Zp be the jth limitand, calling the left-most one the
0th. Define a multiplication on the topological-group colimit by

jm(x) · jn(y) = jm+n(x · y) (for x, y ∈ Zp)

Since the colimit is strict and each limitand is open in the next, to prove continuity it suffices to prove
continuity on each limitand, which is exactly the continuity of the multiplication on the topological ring Zp.
[45] Let X be the colimit, with inclusions in from the ith limitand Zp to X. Let i : Zp → X by mapping
Zp isomorphically to the first limitand. Let Y be a topological ring in which p is invertible, f : Zp → Y a
continuous ring homomomorphism. To create a map to Y from the colimit X, we must define compatible
maps to Y from all the limitands. Thinking in terms of the different presentation of the colimit, we try

fn : jn(Zp)→ Y by fn(x) = p−nf(x)

Testing compatibility with the transition maps,

fn+1(p · x) = p · fn+1(x) = p · p−(n+1)f(x) = p−nf(x) = fn(x)

[43] We have several choices of characterization of Zp[1/p]. The intent is that this be an enlargement of Zp in which p

is invertible. One natural choice is that Zp[1/p] should be a topological ring with a continuous ring homomorphism

i : Zp → Zp[1/p] such that any continuous ring homomorphism Zp → Y where p is invertible in Y factors uniquely

through i. This mapping property characterization immediately shows, by the usual argument, that there is at most

one such thing.

[44] And, yes, we can divide by p inside Qp, but part of the point of this discussion is to see how to achieve the desired

ends without already knowing that it is possible.

[45] The continuity of the multiplication in Zp follows from arguments similar to those used earlier to define a group

operation and prove its continuity on limits. That discussion of limits was quite general. By contrast, analogous

structures on colimits are fragile, and easy to arrange only for strict colimits with limitands open in their successors.
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as desired. Since multiplication in Y is continuous, multiplication by p−1 in Y is continuous, so all the maps
involved are continuous, as desired. ///

[5.0.2] Remark: The same proof shows that, for a topological commutative ring R with an element r ∈ R
such that x→ r · x is an open injective map of R to itself, the colimit

colim( R
×r // R

×r // R
×r // . . . )

of topological groups has a natural ring structure in which the multiplication is continuous, and

R[
1

r
] ≈ colim( R

×r // R
×r // R

×r // . . . )

That is, the algebraic construct R[ 1
r ] has a natural topology coming from the topological ring R.

Returning to the larger issue, recall that we have defined

Ẑ = lim
n

Z/n

as a topological group, but Ẑ is likewise a topological ring. Thus, by the same argument as in the previous
claim,

[5.0.3] Corollary: For a positive integer n, the ring (R× Ẑ)[1/n] has a uniquely determined topology from
the expression

(R× Ẑ)[
1

n
] = colim( (R× Ẑ)

×r // (R× Ẑ)
×n // (R× Ẑ)

×n // . . . )

where the topological ring structure is given as above. ///

[5.0.4] Remark: The point is not this presentation of (R × Ẑ)[1/n], but, rather, the fact that it has a
uniquely determined topology. The isomorphic diagram that, however, assumes the existence of a larger
group in which we can divide by n, is

(R× Ẑ)[
1

n
] = colim( (R× Ẑ)

inc // 1
n · (R× Ẑ)

inc // 1
n2 · (R× Ẑ)

inc // 1
n3 · (R× Ẑ)

inc // . . .

[5.0.5] Claim: As topological rings,

A = colimn(R× Ẑ)[
1

n
] (ordering by divisibility)

This colimit is strict, and each limitand is open in all its successors.

Proof: We compare to the definition of A as colimit of subrings AS for finite sets of primes S. Given such
a set of primes, let n be the product of all the (finite) primes in S. Then

AS = (R× Ẑ)[
1

n
]

Conversely, given a positive integer n, let S be the set of primes dividing n. Then

AS = (R× Ẑ)[
1

n
]

Thus, the two limits are cofinal, so are isomorphic. ///
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6. Appendix: completions of metric spaces

The goal of this appendix is to prove existence of the completion of a metric space. Again, a metric space is
complete if every Cauchy sequence converges. [46]

An isometry f : X → Y of metric spaces X,Y is a set map from X to Y such that distances are preserved,
namely,

dY (f(x), f(x′)) = dX(x, x′)

for all x, x′ in X. [47]

[6.0.1] Definition: A completion of a metric space X is a complete metric space Y and an isometry
i : X → Y such that, for every isometry j : X → Z to a complete metric space Z, there is a unique isometry
J : Y → Z giving a commutative diagram

X
i //

j   @@@@@@@ Y

J

���
�
�

Z

As usual with mapping-property characterizations, there is at most one completion, up to unique isometric
isomorphism. Now we prove existence by the usual construction.

Roughly, the usual construction of a completion is as the collection of all Cauchy sequences in the original
space, modulo an equivalence relation that tells when two Cauchy sequences should have the same limit. To
carry this out gracefully requires a little preparation.

The idea is to make the completion be the collection of all limits of Cauchy sequences in X with respect to
its metric d(, ), but many different Cauchy sequences can have the same apparent limit. Thus, let Ỹ be the
collection of Cauchy sequences in a given metric space X. Inject X to Ỹ by sending x ∈ X to the constant
Cauchy sequence

x, x, x, x, . . .

Define
p({xn}, {yn}) = lim

n
d(xn, yn)

for two Cauchy sequences in X. To prove that the limit exists, given ε > 0, and take N large enough such
that for m,n ≥ N both d(xm, xn) < ε and d(ym, yn) < ε. Then

d(xm, ym)− d(xn, yn) ≤ d(xm, xn) + d(xn, ym)− d(xn, yn)

≤ d(xm, xn) + d(xn, yn) + d(yn, ym)− d(xn, yn) = d(xm, xn) + d(yn, ym) < 2ε

Reversing the roles of the x’s and y’s proves that this difference is also > −2ε, so the absolute value of the
difference is small, proving that the limit exists.

This p(, ) is not at all a metric, in general, but it is what we want.

A pseudo-metric is a distance function d(, ) which possibly fails to be an actual metric only by possibly
failing to be positive. That is, we still have symmetry d(x, y) = d(y, x) and triangle inequality d(x, y) ≤
d(x, z) + d(z, y), but possibly d(x, y) = 0 for some x 6= 0.

[46] Again, as usual, a sequence {xn} is Cauchy if for every ε > 0 there is N such that for all m,n ≥ N we have

d(xm, xn) < ε.

[47] Again, in some contexts an isometry is presumed to be a bijection to the target, in addition to preserving distance,

but here we specifically do not assume that isometries are surjections to the target spaces.
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Given a pseudo-metric, we can take a quotient of the space to force the pseudo-metric to become a genuine
metric.

[6.0.2] Proposition: Given a pseudo-metric p(, ) on a space Ỹ , the relation

a ∼ b if and only if p(a, b) = 0

is an equivalence relation, and Ỹ / ∼ is a metric space with metric

d(a, b) = p(a, b)

where a is the equivalence class of a ∈ Ỹ . A map f : Ỹ → Z to a metric space, with the property

dZ(f(a), f(b)) = p(a, b)

factors uniquely through Ỹ / ∼, inducing an isometry of metric space F : Ỹ → Z by

F (a) = f(a)

[6.0.3] Remark: Keep in mind that for present purposes an isometry is merely distance-preserving, but
need not be a surjection.

Proof: The symmetry property of p(x, y) follows from the definition. Suppose that p(x, z) = 0 and
p(z, y) = 0. The triangle inequality

p(x, y) ≤ p(x, z) + p(z, y) = 0 + 0

completes the argument that ∼ is an equivalence relation.

Then d(, ) is automatically symmetric and satisfies the triangle inequality. The positivity is by design:
d(a, b) = 0 implies that a = b.

Let f : Ỹ → Z have the property dZ(f(a), f(b)) = p(a, b). For c ∈ Ỹ in the same equivalence class as b ∈ Ỹ ,

0 = p(b, c) = dZ(f(b), f(c))

which implies that f(b) = f(c), since dZ(, ) is a genuine metric. ///

[6.0.4] Proposition: Given a metric space X, a completion can be constructed as the quotient Ỹ / ∼ of the

space Ỹ with pseudo-metric p(, ) of all Cauchy sequences in X by the equivalence relation

a ∼ b if and only if p(a, b) = 0

Proof: As earlier, map X to Ỹ by sending an element x ∈ X to the corresponding constant Cauchy sequence.
This map is an isometry of X to Ỹ , even though Ỹ is only pseudometric. Then the map Ỹ → Ỹ / ∼ preserves
(pseudo-) distances, so the composite map of X to it is an isometry. The image of X in Ỹ / ∼ is dense, since
Ỹ consists of nothing more than Cauchy sequences from X.

Last, we show that Ỹ / ∼ is complete. Given a Cauchy sequence of Cauchy sequences {x(n)
i : i = 1, 2, 3, . . .},

the basic idea is to take the diagonal, that is, to suspect that the limit should be something like the Cauchy

sequence {yn = x
(n)
n : n = 1, 2, . . .}. However, there may be complications since the various Cauchy

sequences may converge at wildly different rates. Thus, it is wise to not take the most naive version of a
diagonal. Instead, first observe that for any subsequence yn of a Cauchy sequence xn, p({yn}, {xn}) = 0.
Thus, given a Cauchy sequence of Cauchy sequences, without changing equivalence classes we can replace
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each Cauchy sequence {x(n)
i : i} by a subsequence with prescribed convergence. For example, without loss of

generality we can suppose that, for a given positive integer M , for all m and for all i, j ≥M ,

d(x
(m)
i , x

(m)
j ) < 2−M

Now take the diagonal yn = x
(n)
n .

We claim that the Cauchy sequence of Cauchy sequences converges to {yn}, and that the latter is a Cauchy
sequence. Indeed, given ε > 0, take N large enough so that for all m,n ≥ N

p({x(m)
i : i}, {x(n)

i : i}) < ε

That is,

lim
i
d(x

(m)
i , x

(n)
i ) < ε

For given m,n, let I be large enough such that

d(x
(m)
I , x

(n)
I ) < ε

Since the convergence is prescribed as above, for any i ≥ m and j ≥ n

d(x
(m)
i , x

(n)
j ) ≤ d(x

(m)
i , x

(m)
I ) + d(x

(m)
I , x

(n)
I ) + d(x

(n)
I , x

(n)
j ) < 2−m + ε+ 2−n

We prove that {yn} is Cauchy. Indeed, with the same ε and N , for all m,n ≥ N ,

d(ym, yn) = d(x(m)
m , x(n)

n ) < 2−m + ε+ 2−n ≤ ε+ 21−N

This shows that {yn} is Cauchy.

Next, for i ≥ n ≥ N
d(yi, x

(n)
i ) = d(x

(i)
i , x

(n)
i ) < 2−i + ε+ 2−n

Thus, for all n ≥ N ,

p({yi : i}, {x(n)
i : i}) = lim

i
d(yi, x

(n)
i ) ≤ ε+ 2−n ≤ ε+ 2−N

(The limit exists, from our earlier discussion, since yi is Cauchy.) This shows that {yi : i} is the limit.
///
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