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1. Dirichlet’s pigeon-hole principle, approximation theorem

The pigeon-hole principle[1] formulated by Dirichlet by 1834, observes that when N+1 things are partitioned
into N disjoint subsets, there is at least one subset containing at least 2 things. The archetypical application
is the following:

[1.0.1] Theorem: (Dirichlet) For every real α and every integer N ≥ 1, there are integers p, q with
1 ≤ q ≤ N such that |qα− p| ≤ 1

N .

Proof: For each m in the range 1 ≤ m ≤ N + 1, choose n = nm so that mα − nm ∈ [0, 1) is the fractional

part [2] of mα. The N +1 choices of m produce N +1 numbers mα−n in [0, 1). Dividing the interval into N
subintervals of length 1

N , by the pigeon-hole principle some subinterval contains both mα− n and m′α− n′
for some 1 ≤ m′ < m ≤ N + 1. That is,

1

N
≥ |(mα− n)− (m′α− n′)| = |(m−m′)α− (n− n′)|

so 1 ≤ q = m−m′ ≤ N and p = n− n′ meet the requirement of the theorem. ///

[1.0.2] Remark: This result admits many elaborations and strengthenings, with similar proofs.

2. Kronecker’s approximation theorem

The following is a special case of Kronecker’s 1884 generalization of Dirichlet’s approximation results, in
which Kronecker illustrates a different causal mechanism:

[2.0.1] Theorem: The collection of integer multiples nα of irrational real α is dense in T = R/Z.

Proof: The assertion is equivalent to Zα + Z being dense in R. The topological closure Γ of Zα + Z in R
is still a subgroup of R. The topologically-closed subgroups of R are classifiable: they are exactly {0}, free
Z-modules Zβ on a single generator β 6= 0, and the whole R. Granting this classification for a moment, if Γ
is not the whole, then Γ = Z · β for some β, and certainly Zα+ Z ⊂ Zβ. Thus, Z ⊂ Zβ, so 1 = nβ for some
integer n, and β = 1

n . Similarly, 1 · α = mβ = m
n for some n, so α is rational.

Now we classify topologically-closed subgroups Γ 6= {0} of R. Since Γ 6= {0} and is closed under additive
inverses, Γ contains positive elements.

[1] Dirichlet used Schubfachprinzip, which is drawer principle.

[2] The fractional part of a real number α, sometimes denoted {α} or 〈α〉 or α mod 1, in an elementary context is

〈α〉 = α− bαc, where bαc is the greatest integer less than or equal α. More to the point, the fractional part is really

the image of α in the quotient R/Z.
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In the case that there is a least positive element γo, we claim that Γ = Z·γo. Indeed, given another 0 < γ ∈ Γ,
by the archimedean property of the real numbers there is an integer n such that nγo ≤ γ < (n + 1)γo. In
fact, nγo = γ, or else 0 < γ − nγo < γo, contradicting the minimality of γo.

In the case that there is no least positive γo ∈ Γ, let γ1 > γ2 > . . . > 0 be an infinite sequence of positive
elements of Γ. The infimum γo of this sequence is in Γ, since Γ is closed. Replacing γj by γj − γo, we can
assume that γj → 0. Given real β, there is integer n such that nγj ≤ β < (n+ 1)γj by archimedean-ness, so
Zγj contains elements within |γj | of any real number. Since γj → 0, given ε > 0 there is |γj | < ε, so every
real number is within ε > 0 of Zγj . Thus, the topologically closed subgroup Γ must be R. ///

A similar argument would prove Kronecker’s multi-dimensional version:

[2.0.2] Theorem: (Kronecker) An n-tuple α = (α1, . . . , αn) of real numbers is linearly independent over Q
if and only if the topological closure of the collection {N · α : N = 1, 2, 3, . . .} of multiples of α is dense in
the n-torus Tn = Rn/Zn. ///

3. Weyl equidistribution

The idea of a sequence of real numbers α1, α2, . . . being equidistributed modulo Z, that is, in R/Z, is a
quantitative strengthening of a merely qualitative density assertion.

A sample equidistribution requirement is that the number of 〈αn〉 with 1 ≤ n ≤ N in any subinterval [a, b]
of [0, 1] is asymptotically N · |b− a| as N →∞.

[3.1] One-dimensional equidistribution With various formulations of integral, the stronger notion of
equidistribution is equivalent to

lim
N→+∞

1

N

N∑
`=1

f(α`) =

∫ 1

0

f(x) dx (for every Z-periodic f ∈ C∞(R))

[3.1.1] Theorem: (Weyl) A sequence {α`} is equidistributed modulo Z if and only if

lim
N

1

N

N∑
`=1

e2πinα` = 0 (for every n 6= 0)

For example, for irrational real α, the sequence α, 2α, 3α, . . . is equidistributed modulo Z.

Proof: The function f(x) = e2πinx is smooth and Z-periodic, so the assumption of equidistribution of {α`}
implies

lim
N

1

N

N∑
`=1

e2πinα` = 0 (for every n 6= 0)

On the other hand, smooth Z-periodic f has Fourier expansion
∑
n f̂(n) e2πinx converging absolutely to f(x)

for all x. From the uniform estimate∣∣∣ 1

N

N∑
`=1

e2πinα`

∣∣∣ ≤ 1 (uniformly in n ∈ Z)

and noting f̂(0) =
∫ 1

0
f(x) dx,

1

N

N∑
`=1

f(α`) =
1

N

N∑
`=1

∑
n

f̂(n)e2πinα` =
1

N

∑
n

f̂(n)

N∑
`=1

e2πinα` = f̂(0) +
∑
n 6=0

f̂(n) · 1

N
·
N∑
`=1

e2πinα`
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For any cut-off b, estimate 1
N

∑N
`=1 f(α`)−

∫ 1

0
f(x) dx by

∑
n 6=0

|f̂(n)| · 1

N
·
∣∣ N∑
`=1

f(α`)
∣∣ ≤ ∑

0<|n|≤b

|f̂(n)| · 1

N
·
∣∣ N∑
`=1

f(α`)
∣∣+

∑
b<|n|

|f̂(n)| · 1

Since the Fourier series of f converges absolutely, given ε > 0 there is large-enough b so that
∑
|n|>b |f̂(n)| < ε.

With that b, since 1
N

∑
1≤`≤N e

2πinα` → 0 for each fixed n 6= 0, and since there are only finitely-many n
with 0 < |n| ≤ b, for large-enough N

∑
0<|n|≤b

|f̂(n)| · 1

N
·
∣∣ N∑
`=1

f(α`)
∣∣ < ε

Thus, ∣∣∣ 1

N

N∑
`=1

f(α`) − f̂(0)
∣∣∣ < 2ε

That is, 1
N

∑N
`=1 f(α`) −→

∫ 1

0
f(x) dx, and Weyl’s criterion suffices for equidistribution.

In the example of integer multiples of an irrational number, by summing a geometric series, with n 6= 0,

=
1

N

N∑
`=1

e2πin·`α =
1− e2πin(N+1)α

1− e2πinα

The irrationality of α and n 6= 0 assure that the denominator does not vanish. Thus,

1

N

N∑
`=1

e2πin·`α ≤ 1

N
· 2

|1− e2πinα|
→ 0 (for each fixed n 6= 0)

proving equidistribution of {`α}. ///

[3.1.2] Remark: The proof only used absolute convergence pointwise of the Fourier series of f to f . Infinite-
differentiability of f assures this, but much less is needed. On the other hand, more than just continuity of
f is needed, since the Fourier series of typical continuous functions do not converge to them pointwise.

[3.2] Higher-dimension analogues Fourier series of functions f on Rn/Zn can be written∑
ξ∈Zn

f̂(ξ) e2πiξ·x

where ξ · x = ξ1x1 + ξ2x2 + . . .+ ξnxn, and

f̂(ξ) =

∫ 1

0

. . .

∫ 1

0

e−2πiξ·x f(x) dx

The notion of equidistribution modulo Zn of a sequence {α`} in Rn is the same:

lim
N

1

N

∑
1≤`≤N

f(α`) =

∫ 1

0

. . .

∫ 1

0

f(x) dx (for all Zn-periodic smooth f on Rn)

Assuming we know that Fourier series of a nice Zn-periodic function f on Rn converges absolutely to f
pointwise, the same argument proves
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[3.2.1] Theorem: (Weyl) A sequence {α`} in Rn is equidistributed modulo Zn if and only if

lim
N

1

N

∑
1≤`≤N

e2πiξ·α` = 0 (for all 0 6= ξ ∈ Zn)

For example, for real numbers β1, . . . , βn, the sequence α` = ` · (β1, . . . , βn) is equidistributed modulo Zn if
and only if 1, β1, . . . , βn are linearly independent over Q. ///

[3.2.2] Remark: Weyl’s criterion for equidistribution can be applied to compact topological groups K of
various sorts, in place of Rn/Zn, especially compact Lie groups, because of the spectral decomposition of
L2(K) analogous to Fourier series on Rn/Zn.

[3.2.3] Remark: Weyl treated a more serious problem, that of equidistribution modulo Z of sequences
α` = P (`) with polynomial P .
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une function arbitraire entre des limites données, J. für die reine und angew. Math. 4 (1829), 157-169.

[Dirichlet 1863] P. G. L. Dirichlet, Vorlesungen über Zahlentheorie, Vieweg, 1863.

[Erdös-Turán 1948] P. Erdös, P. Turán, On a problem in the theory of uniform distribution, I, II, Nederl.
Akad. Wetensch. 51, 1146-1154, 1262-1269.
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