(December 25, 2013)

Fourier series, Weyl equidistribution

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is http://www.math.umn.edu/~garrett/m/mfms/notes_2013-14/04_Fourier-Weyl.pdf]

- Dirichlet's pigeon-hole principle, approximation theorem
- \bullet Kronecker's approximation theorem
- Weyl equidistribution

1. Dirichlet's pigeon-hole principle, approximation theorem

The *pigeon-hole* principle^[1] formulated by Dirichlet by 1834, observes that when N+1 things are partitioned into N disjoint subsets, there is at least one subset containing at least 2 things. The archetypical application is the following:

[1.0.1] Theorem: (Dirichlet) For every real α and every integer $N \ge 1$, there are integers p, q with $1 \le q \le N$ such that $|q\alpha - p| \le \frac{1}{N}$.

Proof: For each m in the range $1 \le m \le N + 1$, choose $n = n_m$ so that $m\alpha - n_m \in [0, 1)$ is the fractional $part^{[2]}$ of $m\alpha$. The N+1 choices of m produce N+1 numbers $m\alpha - n$ in [0, 1). Dividing the interval into N subintervals of length $\frac{1}{N}$, by the pigeon-hole principle some subinterval contains both $m\alpha - n$ and $m'\alpha - n'$ for some $1 \le m' < m \le N+1$. That is,

$$\frac{1}{N} \geq |(m\alpha - n) - (m'\alpha - n')| = |(m - m')\alpha - (n - n')|$$

///

so $1 \le q = m - m' \le N$ and p = n - n' meet the requirement of the theorem.

[1.0.2] Remark: This result admits many elaborations and strengthenings, with similar proofs.

2. Kronecker's approximation theorem

The following is a special case of Kronecker's 1884 generalization of Dirichlet's approximation results, in which Kronecker illustrates a different causal mechanism:

[2.0.1] Theorem: The collection of integer multiples $n\alpha$ of *irrational* real α is *dense* in $\mathbb{T} = \mathbb{R}/\mathbb{Z}$.

Proof: The assertion is equivalent to $\mathbb{Z}\alpha + \mathbb{Z}$ being dense in \mathbb{R} . The topological closure Γ of $\mathbb{Z}\alpha + \mathbb{Z}$ in \mathbb{R} is still a subgroup of \mathbb{R} . The topologically-closed subgroups of \mathbb{R} are *classifiable*: they are exactly $\{0\}$, free \mathbb{Z} -modules $\mathbb{Z}\beta$ on a single generator $\beta \neq 0$, and the whole \mathbb{R} . Granting this classification for a moment, if Γ is *not* the whole, then $\Gamma = \mathbb{Z} \cdot \beta$ for some β , and certainly $\mathbb{Z}\alpha + \mathbb{Z} \subset \mathbb{Z}\beta$. Thus, $\mathbb{Z} \subset \mathbb{Z}\beta$, so $1 = n\beta$ for some integer n, and $\beta = \frac{1}{n}$. Similarly, $1 \cdot \alpha = m\beta = \frac{m}{n}$ for some n, so α is rational.

Now we classify topologically-closed subgroups $\Gamma \neq \{0\}$ of \mathbb{R} . Since $\Gamma \neq \{0\}$ and is closed under additive inverses, Γ contains *positive* elements.

^[1] Dirichlet used Schubfachprinzip, which is drawer principle.

^[2] The fractional part of a real number α , sometimes denoted $\{\alpha\}$ or $\langle\alpha\rangle$ or $\alpha \mod 1$, in an elementary context is $\langle\alpha\rangle = \alpha - \lfloor\alpha\rfloor$, where $\lfloor\alpha\rfloor$ is the greatest integer less than or equal α . More to the point, the fractional part is really the *image* of α in the quotient \mathbb{R}/\mathbb{Z} .

In the case that there is a *least* positive element γ_o , we claim that $\Gamma = \mathbb{Z} \cdot \gamma_o$. Indeed, given another $0 < \gamma \in \Gamma$, by the archimedean property of the real numbers there is an integer n such that $n\gamma_o \leq \gamma < (n+1)\gamma_o$. In fact, $n\gamma_o = \gamma$, or else $0 < \gamma - n\gamma_o < \gamma_o$, contradicting the minimality of γ_o .

In the case that there is *no* least positive $\gamma_o \in \Gamma$, let $\gamma_1 > \gamma_2 > \ldots > 0$ be an infinite sequence of positive elements of Γ . The infimum γ_o of this sequence is in Γ , since Γ is closed. Replacing γ_j by $\gamma_j - \gamma_o$, we can assume that $\gamma_j \to 0$. Given real β , there is integer *n* such that $n\gamma_j \leq \beta < (n+1)\gamma_j$ by archimedean-ness, so $\mathbb{Z}\gamma_j$ contains elements within $|\gamma_j|$ of any real number. Since $\gamma_j \to 0$, given $\varepsilon > 0$ there is $|\gamma_j| < \varepsilon$, so every real number is within $\varepsilon > 0$ of $\mathbb{Z}\gamma_j$. Thus, the topologically closed subgroup Γ must be \mathbb{R} .

A similar argument would prove Kronecker's multi-dimensional version:

[2.0.2] Theorem: (Kronecker) An n-tuple $\alpha = (\alpha_1, \ldots, \alpha_n)$ of real numbers is linearly independent over \mathbb{Q} if and only if the topological closure of the collection $\{N \cdot \alpha : N = 1, 2, 3, \ldots\}$ of multiples of α is dense in the n-torus $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$.

3. Weyl equidistribution

The idea of a sequence of real numbers $\alpha_1, \alpha_2, \ldots$ being *equidistributed* modulo \mathbb{Z} , that is, in \mathbb{R}/\mathbb{Z} , is a *quantitative* strengthening of a merely *qualitative* density assertion.

A sample equidistribution requirement is that the number of $\langle \alpha_n \rangle$ with $1 \leq n \leq N$ in any subinterval [a, b] of [0, 1] is asymptotically $N \cdot |b - a|$ as $N \to \infty$.

[3.1] One-dimensional equidistribution With various formulations of *integral*, the stronger notion of equidistribution is equivalent to

$$\lim_{N \to +\infty} \frac{1}{N} \sum_{\ell=1}^{N} f(\alpha_{\ell}) = \int_{0}^{1} f(x) \, dx \qquad \text{(for every \mathbb{Z}-periodic } f \in C^{\infty}(\mathbb{R}))$$

[3.1.1] Theorem: (Weyl) A sequence $\{\alpha_{\ell}\}$ is equidistributed modulo \mathbb{Z} if and only if

$$\lim_{N} \frac{1}{N} \sum_{\ell=1}^{N} e^{2\pi i n \alpha_{\ell}} = 0 \quad \text{(for every } n \neq 0)$$

For example, for irrational real α , the sequence $\alpha, 2\alpha, 3\alpha, \ldots$ is equidistributed modulo \mathbb{Z} .

Proof: The function $f(x) = e^{2\pi i nx}$ is smooth and \mathbb{Z} -periodic, so the assumption of equidistribution of $\{\alpha_{\ell}\}$ implies

$$\lim_{N} \frac{1}{N} \sum_{\ell=1}^{N} e^{2\pi i n \alpha_{\ell}} = 0 \qquad \text{(for every } n \neq 0\text{)}$$

On the other hand, smooth \mathbb{Z} -periodic f has Fourier expansion $\sum_{n} \widehat{f}(n) e^{2\pi i n x}$ converging absolutely to f(x) for all x. From the uniform estimate

$$\left|\frac{1}{N}\sum_{\ell=1}^{N}e^{2\pi i n\alpha_{\ell}}\right| \leq 1 \qquad (\text{uniformly in } n \in \mathbb{Z})$$

and noting $\widehat{f}(0) = \int_0^1 f(x) \, dx$,

$$\frac{1}{N}\sum_{\ell=1}^{N}f(\alpha_{\ell}) = \frac{1}{N}\sum_{\ell=1}^{N}\sum_{n}\widehat{f(n)}e^{2\pi i n\alpha_{\ell}} = \frac{1}{N}\sum_{n}\widehat{f(n)}\sum_{\ell=1}^{N}e^{2\pi i n\alpha_{\ell}} = \widehat{f(0)} + \sum_{n\neq 0}\widehat{f(n)} \cdot \frac{1}{N} \cdot \sum_{\ell=1}^{N}e^{2\pi i n\alpha_{\ell}}$$

For any cut-off b, estimate $\frac{1}{N} \sum_{\ell=1}^{N} f(\alpha_{\ell}) - \int_{0}^{1} f(x) dx$ by

$$\sum_{n \neq 0} |\widehat{f}(n)| \cdot \frac{1}{N} \cdot \left| \sum_{\ell=1}^{N} f(\alpha_{\ell}) \right| \leq \sum_{0 < |n| \le b} |\widehat{f}(n)| \cdot \frac{1}{N} \cdot \left| \sum_{\ell=1}^{N} f(\alpha_{\ell}) \right| + \sum_{b < |n|} |\widehat{f}(n)| \cdot 1$$

Since the Fourier series of f converges absolutely, given $\varepsilon > 0$ there is large-enough b so that $\sum_{|n|>b} |\hat{f}(n)| < \varepsilon$. With that b, since $\frac{1}{N} \sum_{1 \le \ell \le N} e^{2\pi i n \alpha_{\ell}} \to 0$ for each fixed $n \ne 0$, and since there are only finitely-many n with $0 < |n| \le b$, for large-enough N

$$\sum_{0 < |n| \le b} |\widehat{f}(n)| \cdot \frac{1}{N} \cdot \left| \sum_{\ell=1}^{N} f(\alpha_{\ell}) \right| < \varepsilon$$

Thus,

$$\left|\frac{1}{N}\sum_{\ell=1}^{N}f(\alpha_{\ell}) - \widehat{f}(0)\right| < 2\varepsilon$$

That is, $\frac{1}{N} \sum_{\ell=1}^{N} f(\alpha_{\ell}) \longrightarrow \int_{0}^{1} f(x) dx$, and Weyl's criterion suffices for equidistribution.

In the example of integer multiples of an irrational number, by summing a geometric series, with $n \neq 0$,

$$= \frac{1}{N} \sum_{\ell=1}^{N} e^{2\pi i n \cdot \ell \alpha} = \frac{1 - e^{2\pi i n (N+1)\alpha}}{1 - e^{2\pi i n \alpha}}$$

The irrationality of α and $n \neq 0$ assure that the denominator does not vanish. Thus,

$$\frac{1}{N}\sum_{\ell=1}^{N}e^{2\pi i n \cdot \ell \alpha} \leq \frac{1}{N} \cdot \frac{2}{|1 - e^{2\pi i n \alpha}|} \to 0 \qquad \text{(for each fixed } n \neq 0\text{)}$$

proving equidistribution of $\{\ell\alpha\}$.

[3.1.2] Remark: The proof only used absolute convergence pointwise of the Fourier series of f to f. Infinitedifferentiability of f assures this, but much less is needed. On the other hand, more than just continuity of f is needed, since the Fourier series of typical continuous functions do not converge to them pointwise.

[3.2] Higher-dimension analogues Fourier series of functions f on $\mathbb{R}^n/\mathbb{Z}^n$ can be written

$$\sum_{\xi \in \mathbb{Z}^n} \widehat{f}(\xi) \, e^{2\pi i \xi \cdot x}$$

where $\xi \cdot x = \xi_1 x_1 + \xi_2 x_2 + ... + \xi_n x_n$, and

$$\widehat{f}(\xi) = \int_0^1 \dots \int_0^1 e^{-2\pi i \xi \cdot x} f(x) \, dx$$

The notion of equidistribution modulo \mathbb{Z}^n of a sequence $\{\alpha_\ell\}$ in \mathbb{R}^n is the same:

$$\lim_{N} \frac{1}{N} \sum_{1 \le \ell \le N} f(\alpha_{\ell}) = \int_{0}^{1} \dots \int_{0}^{1} f(x) \, dx \qquad \text{(for all } \mathbb{Z}^{n}\text{-periodic smooth } f \text{ on } \mathbb{R}^{n}\text{)}$$

Assuming we know that Fourier series of a nice \mathbb{Z}^n -periodic function f on \mathbb{R}^n converges absolutely to f pointwise, the same argument proves

///

[3.2.1] Theorem: (Weyl) A sequence $\{\alpha_{\ell}\}$ in \mathbb{R}^n is equidistributed modulo \mathbb{Z}^n if and only if

$$\lim_{N} \frac{1}{N} \sum_{1 \le \ell \le N} e^{2\pi i \xi \cdot \alpha_{\ell}} = 0 \quad \text{(for all } 0 \ne \xi \in \mathbb{Z}^n)$$

For example, for real numbers β_1, \ldots, β_n , the sequence $\alpha_\ell = \ell \cdot (\beta_1, \ldots, \beta_n)$ is equidistributed modulo \mathbb{Z}^n if and only if $1, \beta_1, \ldots, \beta_n$ are linearly independent over \mathbb{Q} .

[3.2.2] Remark: Weyl's criterion for equidistribution can be applied to *compact topological groups* K of various sorts, in place of $\mathbb{R}^n/\mathbb{Z}^n$, especially compact *Lie groups*, because of the spectral decomposition of $L^2(K)$ analogous to Fourier series on $\mathbb{R}^n/\mathbb{Z}^n$.

[3.2.3] Remark: Weyl treated a more serious problem, that of equidistribution modulo \mathbb{Z} of sequences $\alpha_{\ell} = P(\ell)$ with polynomial P.

Bibliography

[Dirichlet 1829] P. G. L. Dirichlet, Sur la convergence des series trigonomeétriques que servent à représenter une function arbitraire entre des limites données, J. für die reine und angew. Math. 4 (1829), 157-169.

[Dirichlet 1863] P. G. L. Dirichlet, Vorlesungen über Zahlentheorie, Vieweg, 1863.

[Erdös-Turán 1948] P. Erdös, P. Turán, On a problem in the theory of uniform distribution, I, II, Nederl. Akad. Wetensch. **51**, 1146-1154, 1262-1269.

[Fourier 1807] J. Fourier, *Mémoire sur la propagation de la chaleur dans les corps solides*, Nouveau Bulletin des Sciences par la Soc. Phil. de Paris I no. 6, (1808), 112-116; Oeuvres complètes, tome 2, G. Darboux, 215-221.

[Kronecker 1884] L. Kronecker, Näherungsweise ganzzahlige Auflösung linearer Gleichungen, Werke **3**, Chelsea, 1968, 47-109 (original 1884).

[Miller 2013] J. Miller, Earliest known uses of some of the words of mathematics, http://jeff560.tripod.com/mathword.html, uploaded Sept. 14, 2013.

[Weyl 1916] H. Weyl, Über die Gleichverteilung von Zahlen modulo Eins, Math. Ann. 77 no. 3 (1916), 313-352.

[Weyl 1921] H. Weyl, Zur Abschätzung von $\zeta(1+it)$, Math. Zeit. 10 (1921), 88-101.