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We prove that there is an orthonormal basis for square-integrable (waveform) cuspforms on SL2(Z)\H.

First, we reconsider the well-known fact that the Hilbert space L2(T) on the circle T = R/2πZ has an
orthogonal Hilbert-space basis of exponentials einx with n ∈ Z, using ideas relevant to situations lacking
analogues of Dirichlet or Fejer kernels. These exponentials are eigenfunctions for the Laplacian ∆ = d2/dx2,
so it would suffice to show that L2(T) has an orthogonal basis of eigenfunctions for ∆. Two technical
issues must be overcome: that ∆ does not map L2(T) to itself, and that there is no guarantee that infinite-

dimensional Hilbert spaces have Hilbert-space bases of eigenfunctions for a given linear operator. [1]

About 1929, Stone, von Neumann, and Krein made sense of unbounded operators on Hilbert spaces, such
as differential operators like ∆. In 1934, Friedrichs characterized especially good self-adjoint extensions of
operators like ∆.

Unfortunately, unlike finite-dimensional self-adjoint operators, self-adjoint operators on Hilbert spaces
generally do not give orthogonal Hilbert-space bases of eigenvectors. Fortunately, an important special class
does have a spectral theory closely imitating finite-dimensional spectral theory: the compact self-adjoint
operators, which always give an orthogonal Hilbert-space basis of eigenvectors. [2] Unbounded operators
such as ∆ are never continuous, much less compact, but in happy circumstances they may have compact
resolvent (1−∆)−1. Rellich’s lemma and Friedrichs’ construction give this compactness in precise terms and
recover a good spectral theory.

The compactness of the resolvent (1 − ∆̃)−1 of the Friedrichs self-adjoint extension ∆̃ of ∆ on L2(T) is a
Rellich lemma, whose proof we’ll give. This will imply that L2(T) has an orthonormal basis of eigenfunctions

for ∆̃. We also must check that ∆̃ has no further eigenfunctions than those of ∆. Here, that is demonstrably
the case, by Sobolev imbedding/regularity. Thus, solving the differential equation u′′ = λ·u on R for suitably
periodic solutions u produces a Hilbert-space basis for L2(T).

The next example is of L2(R). However, here ∆ does not have compact resolvent: the analogous
decomposition, by Fourier transform and Fourier inversion, is not a decomposition into L2(R) eigenfunctions.
There are no eigenfunctions of ∆ in L2(R). To arrange a decomposition into eigenfunctions, we perturb
the Laplace operator to a Schrödinger operator S = −∆ + x2, where the x2 acts as multiplication. A

[1] Well-behaved operators on infinite-dimensional spaces may fail to have eigenvectors. For example, on L2[a, b], the

multiplication operator Tf(x) = x ·f(x) is continuous, with the symmetry 〈Tf, g〉 = 〈f, Tg〉, but has no eigenvectors.

That is, the spectrum of operators on infinite-dimensional Hilbert spaces typically includes more than eigenvalues.

[2] As we discuss further, a continuous linear operator on a Hilbert space is compact when it is a limit of finite-rank

operators with respect to the usual operator norm |T |op = sup06=x∈V |Tx|V . Finite-rank continuous operators are

those with finite-dimensional image. Self-adjointness for a continuous operator T is the expected 〈Tx, y〉 = 〈x, Ty〉.
The spectral theorem for self-adjoint compact operators is proven below.
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Rellich lemma shows that the Friedrichs extension S̃ does have compact self-adjoint resolvent S̃−1, giving
an orthogonal basis of eigenfunctions. A similar Sobolev imbedding/regularity lemma proves that all

eigenvectors of S̃ are eigenvectors for S itself. Here, by chance, the eigenfunctions can be identified explicitly.

Finally, we consider Hilbert spaces somewhat larger than the space of cuspforms in L2
a(Γ\H) with Γ = SL2(Z),

namely, those with constant term vanishing above height y = a:

L2
a(Γ\H) =

{
f ∈ L2(Γ\H) : cP f(z) = 0 for Im(z) ≥ a

}
(constant term cP f(z) =

∫ 1

0
f(x+ iy) dx)

The Friedrichs extension ∆̃a of the restriction ∆a of the SL2(R)-invariant Laplacian ∆ = y2( ∂2

∂x2 + ∂2

∂x2 ) to
L2
a(Γ\H) will be shown to have compact resolvent. Thus, L2

a(Γ\H) has an orthonormal basis of eigenfunctions

for ∆̃a. For a > 0, the space L2
a(Γ\H) does include more than cuspforms, and there are ∆̃a-eigenfunctions

which are not ∆a-eigenfunctions. However, the cuspform eigenfunctions for ∆̃a are provably genuine
eigenfunctions for ∆ itself. The new eigenfunctions are certain truncated Eisenstein series.

1. Unbounded symmetric operators on Hilbert spaces

The natural differential operator ∆ = d2

dx2 on R has no sensible definition as mapping all of the Hilbert space
L2(R) to itself, whatever else we can say. At the most cautious, it certainly does map C∞c (R) to itself, and,
by integration by parts,

〈∆f, g〉 = 〈f,∆g〉 (for both f, g ∈ C∞c (R))

This is symmetry of ∆. The possibility of thinking of ∆ as differentiating L2 functions distributionally does
not resolve the question of L2 behavior, unfortunately. There is substantial motivation to accommodate
discontinuous (unbounded) linear maps on Hilbert spaces.

A not-necessarily continuous, that is, not-necessarily bounded, linear operator T , defined on a dense subspace
DT of a Hilbert space V is called an unbounded operator on V , even though it is likely not defined on all
of V . We consider only symmetric unbounded operators T , meaning that 〈Tv,w〉 = 〈v, Tw〉 for v, w in the
domain DT of T . The Laplacian is symmetric on C∞c (R).

For unbounded operators on V , the domain is a potentially critical part of a description: an unbounded
operator T on V is a subspace D of V and a linear map T : D −→ V . Nevertheless, explicit naming of the
domain of an unbounded operator is often suppressed, instead writing T1 ⊂ T2 when T2 is an extension of
T1, in the sense that the domain of T2 contains that of T1, and the restriction of T2 to the domain of T1

agrees with T1.

Unlike self-adjoint operators on finite-dimensional spaces, and unlike self-adjoint bounded operators on Hilbert
spaces, symmetric unbounded operators, even when densely defined, usually need to be extended in order to
behave similarly to self-adjoint operators in finite-dimensional and bounded operator situations.

An operator T ′, D′ is a sub-adjoint to an operator T,D when

〈Tv,w〉 = 〈v, T ′w〉 (for v ∈ D, w ∈ D′)

For D dense, for given D′ there is at most one T ′ meeting the adjointness condition.

The adjoint T ∗ is the unique maximal element, in terms of domain, among all sub-adjoints to T . That there
is a unique maximal sub-adjoint requires proof, given below.

Paraphrasing the notion of symmetry: an operator T is symmetric when T ⊂ T ∗, and self-adjoint when
T = T ∗. These comparisons refer to the domains of these not-everywhere-defined operators. In the following
claim and its proof, the domain of a map S on V is incorporated in a reference to its graph

graph S = {v ⊕ Sv : v ∈ domain S} ⊂ V ⊕ V
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The direct sum V ⊕ V is a Hilbert space with natural inner product

〈v ⊕ v′, w ⊕ w′〉 = 〈v, v′〉+ 〈w,w′〉

Define an isometry U of V ⊕ V by

U : V ⊕ V −→ V ⊕ V by v ⊕ w −→ −w ⊕ v

[1.0.1] Claim: Given symmetric T with dense domain D, there is a unique maximal T ∗, D∗ among all
sub-adjoints to T,D. The adjoint T ∗ is closed, in the sense that its graph is closed in V ⊕ V . In fact, the
adjoint is characterized by its graph, which is the orthogonal complement in V ⊕V to an image of the graph
of T , namely,

graph T ∗ = orthogonal complement of U(graph T )

Proof: The adjointness condition 〈Tv,w〉 = 〈v, T ∗w〉 for given w ∈ V is an orthogonality condition

〈w ⊕ T ∗w, U(v ⊕ Tv)〉 = 0 (for all v in the domain of T )

Thus, the graph of any sub-adjoint is a subset of

X = U(graph T )⊥

Since T is densely-defined, for given w ∈ V there is at most one possible value w′ such that w ⊕ w′ ∈ X, so
this orthogonality condition determines a well-defined function T ∗ on a subset of V , by

T ∗w = w′ (if there exists w′ ∈ V such that w ⊕ w′ ∈ X)

The linearity of T ∗ is immediate. It is maximal among sub-adjoints to T because the graph of any sub-adjoint
is a subset of the graph of T ∗. Orthogonal complements are closed, so T ∗ has a closed graph. ///

[1.0.2] Corollary: For T1 ⊂ T2 with dense domains, T ∗2 ⊂ T ∗1 , and T1 ⊂ T ∗∗1 . ///

[1.0.3] Corollary: A self-adjoint operator has a closed graph. ///

[1.0.4] Remark: The closed-ness of the graph of a self-adjoint operator is essential in proving existence of
resolvents, below.

[1.0.5] Remark: The use of the term symmetric in this context is potentially misleading, but standard.
The notation T = T ∗ allows an inattentive reader to forget non-trivial assumptions on the domains of the
operators. The equality of domains of T and T ∗ is understandably essential for legitimate computations.

[1.0.6] Proposition: Eigenvalues for symmetric operators T,D are real.

Proof: Suppose 0 6= v ∈ D and Tv = λv. Then

λ〈v, v〉 = 〈λv, v〉 = 〈Tv, v〉 = 〈v, T ∗v〉 (because v ∈ D ⊂ D∗)

Further, because T ∗ agrees with T on D,

〈v, T ∗v〉 = 〈v, λv〉 = λv̄, v〉

Thus, λ is real. ///
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Let Rλ = (T − λ)−1 for λ ∈ C when this inverse is a continuous linear operator defined on a dense subset of
V .

[1.0.7] Theorem: Let T be self-adjoint and densely defined. For λ ∈ C, λ 6∈ R, the operator Rλ is
everywhere defined on V . For T positive, for λ 6∈ [0,+∞), Rλ is everywhere defined on V .

Proof: For λ = x+ iy off the real line and v in the domain of T ,

|(T − λ)v|2 = |(T − x)v|2 + 〈(T − x)v, iyv〉+ 〈iyv, (T − x)v〉+ y2|v|2

= |(T − x)v|2 − iy〈(T − x)v, v〉+ iy〈v, (T − x)v〉+ y2|v|2

The symmetry of T , and the fact that the domain of T ∗ contains that of T , implies that

〈v, Tv〉 = 〈T ∗v, v〉 = 〈Tv, v〉

Thus,

|(T − λ)v|2 = |(T − x)v|2 + y2|v|2 ≥ y2|v|2

Thus, for y 6= 0, (T − λ)v 6= 0. We must show that (T − λ)D is the whole Hilbert space V . If

0 = 〈(T − λ)v, w〉 (for all v ∈ D)

then the adjoint of T − λ can be defined on w simply as (T − λ)∗w = 0, since

〈(T − λ)v, w〉 = 0 = 〈v, 0〉 (for all v ∈ D)

Thus, T ∗ = T is defined on w, and Tw = λw. For λ not real, this implies w = 0. Thus, (T − λ)D is dense
in V .

Since T is self-adjoint, it is closed, so T − λ is closed. The equality

|(T − λ)v|2 = |(T − x)v|2 + y2|v|2

gives

|(T − λ)v|2 �y |v|2

Thus, for fixed y 6= 0, the map

F : v ⊕ (T − λ)v −→ (T − λ)v

respects the metrics, in the sense that

|(T − λ)v|2 ≤ |(T − λ)v|2 + |v|2 �y |(T − λ)v|2 (for fixed y 6= 0)

The graph of T − λ is closed, so is a complete metric subspace of V ⊕ V . Since F respects the metrics, it
preserves completeness. Thus, the metric space (T −λ)D is complete, so is a closed subspace of V . Since the
closed subspace (T − λ)D is dense, it is V . Thus, for λ 6∈ R, Rλ is everywhere-defined. Its norm is bounded
by 1/|Imλ|, so it is a continuous linear operator on V .

Similarly, for T positive, for Re(λ) ≤ 0,

|(T − λ)v|2 = |Tv|2 − λ〈Tv, v〉 − λ〈v, Tv〉+ |λ|2 · |v|2 = |Tv|2 + 2|Reλ|〈Tv, v〉+ |λ|2 · |v|2 ≥ |λ|2 · |v|2

Then the same argument proves the existence of an everywhere-defined inverse Rλ = (T − λ)−1, with
||Rλ|| ≤ 1/|λ| for Reλ ≤ 0. ///
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[1.0.8] Theorem: (Hilbert) For points λ, µ off the real line, or, for T positive and λ, µ off [0,+∞),

Rλ −Rµ = (λ− µ)RλRµ

For the operator-norm topology, λ→ Rλ is holomorphic at such points.

Proof: Applying Rλ to

1V − (T − λ)Rµ =
(
(T − µ)− (T − λ)

)
Rµ = (λ− µ)Rµ

gives
Rλ(1V − (T − λ)Rµ) = Rλ

(
(T − µ)− (T − λ)

)
Rµ = Rλ(λ− µ)Rµ

Then
Rλ −Rµ
λ− µ

= RλRµ

For holomorphy, with λ→ µ,

Rλ −Rµ
λ− µ

−R2
µ = RλRµ −R2

µ = (Rλ −Rµ)Rµ = (λ− µ)RλRµRµ

Taking operator norm, using ||Rλ|| ≤ 1/|Imλ| from the previous computation,∣∣∣∣∣∣Rλ −Rµ
λ− µ

−R2
µ

∣∣∣∣∣∣ ≤ |λ− µ|
|Imλ| · |Imµ|2

Thus, for µ 6∈ R, as λ→ µ, this operator norm goes to 0, demonstrating the holomorphy.

For positive T , the estimate ||Rλ|| ≤ 1/|λ| for Reλ ≤ 0 yields holomorphy on the negative real axis by the
same argument. ///

2. Friedrichs self-adjoint extensions of semi-bounded operators

[2.1] Semi-bounded operators These are more tractable than general unbounded symmetric operators.
A densely-defined symmetric operator T,D is positive (or non-negative), denoted T ≥ 0, when

〈Tv, v〉 ≥ 0 (for all v ∈ D)

All the eigenvalues of a positive operator are non-negative real. Similarly, T is negative when 〈Tv, v〉 ≤ 0 for
all v in the (dense) domain of T . Generally, if there is a constant c ∈ R such that 〈Tv, v〉 ≥ c · 〈v, v〉 (written
T ≥ c), or 〈Tv, v〉 ≤ c · 〈v, v〉 (written T ≤ c), say T is semi-bounded.

[2.1.1] Theorem: (Friedrichs) A positive, densely-defined, symmetric operator T,D with D dense in Hilbert

space V has a positive self-adjoint extension T̃ , D̃, characterized by

〈(1 + T )v, (1 + T̃ )−1w〉 = 〈v, w〉 (for v ∈ D and w ∈ V )

and 〈T̃ v, v〉 ≥ 0 for v in the domain of T̃ .

Proof: [3] Define a new hermitian form 〈, 〉1 and corresponding norm || · ||1 by

〈v, w〉1 = 〈v, w〉+ 〈Tv,w〉 = 〈v, (1 + T )w〉 = 〈(1 + T )v, w〉 (for v, w ∈ D)

[3] We essentially follow [Riesz-Nagy 1955], pages 329-334.
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The symmetry and non-negativity of T make this positive-definite hermitian on D, and 〈v, w〉1 has sense
whenever at least one of v, w is in D.

Let V1 be the closure in V of D with respect to the metric d1 induced by the norm || · ||1 on V . We claim
that V1 naturally continuously injects to V . Indeed, for vi a d1-Cauchy sequence in D, vi is Cauchy in V in
the original topology, since

|vi − vj | ≤ |vi − vj |1

For two sequences vi, wj with the same d1-limit v, the d1-limit of vi − wi is 0. Thus,

|vi − wi| ≤ |vi − wi|1 −→ 0

For h ∈ V and v ∈ V1, the functional λh : v → 〈v, h〉 has a bound

|λhv| ≤ |v| · |h| ≤ |v|1 · |h|

so the norm of the functional λh on V1 is at most |h|. By Riesz-Fischer, there is unique Bh in the Hilbert
space V1 with |Bh|1 ≤ |h|, such that

λhv = 〈v,Bh〉1 (for v ∈ V1)

Thus,
|Bh| ≤ |Bh|1 ≤ |h|

The map B : V → V1 is verifiably linear. There is an obvious symmetry of B:

〈Bv,w〉 = λwBv = 〈Bv,Bw〉1 = 〈Bw,Bv〉1 = λvBw = 〈Bw, v〉 = 〈v,Bw〉 (for v, w ∈ V )

Positivity of B is similar:

〈v,Bv〉 = λvBv = 〈Bv,Bv〉1 ≥ 〈Bv,Bv〉 ≥ 0

Finally B is injective: if Bw = 0, then for all v ∈ V1

0 = 〈v, 0〉1 = 〈v,Bw〉1 = λwv = 〈v, w〉

Since V1 is dense in V , w = 0. Similarly, if w ∈ V1 is such that λvw = 0 for all v ∈ V , then 0 = λww = 〈w,w〉
gives w = 0. Thus, B : V → V1 ⊂ V is bounded, symmetric, positive, injective, with dense image. In
particular, B is self-adjoint.

Thus, B has a possibly unbounded positive, symmetric inverse A. Since B injects V to a dense subset V1,
necessarily A surjects from its domain (inside V1) to V . We claim that A is self-adjoint. Let S : V ⊕V → V ⊕V
by S(v ⊕ w) = w ⊕ v. Then

graph A = S(graph B)

In computing orthogonal complements X⊥, clearly

(S X)⊥ = S
(
X⊥
)

From the obvious U ◦ S = −S ◦ U , compute

graph A∗ = (U graph A)⊥ = (U ◦ S graph B)⊥ = (−S ◦ U graph B)⊥

= −S
(
(U graph B)⊥

)
= − graphA = graph A

since the domain of B∗ is the domain of B. Thus, A is self-adjoint.
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We claim that for v in the domain of A, 〈Av, v〉 ≥ 〈v, v〉. Indeed, letting v = Bw,

〈v,Av〉 = 〈Bw,w〉 = λwBw = 〈Bw,Bw〉1 ≥ 〈Bw,Bw〉 = 〈v, v〉

Similarly, with v′ = Bw′, and v ∈ V1,

〈v,Av′〉 = 〈v, w′〉 = λw′v = 〈v,Bw′〉1 = 〈v, v′〉1 (v ∈ V1, v′ in the domain of A)

Since B maps V to V1, the domain of A is contained in V1. We claim that the domain of A is dense in V1

in the d1-topology, not merely in the coarser subspace topology from V . Indeed, for v ∈ V1 〈, 〉1-orthogonal
to the domain of A, for v′ in the domain of A, using the previous identity,

0 = 〈v, v′〉1 = 〈v,Av′〉

Since B injects V to V1, A surjects from its domain to V . Thus, v = 0.

Last, prove that A is an extension of S = 1 + T . On one hand, as above,

〈v, Sw〉 = λSwv = 〈v,BSw〉1 (for v, w ∈ D)

On the other hand, by definition of 〈, 〉1,

〈v, Sw〉 = 〈v, w〉1 (for v, w ∈ D)

Thus,
〈v, w −BSw〉1 = 0 (for all v, w ∈ D)

Since D is d1-dense in V1, BSw = w for w ∈ D. Thus, w ∈ D is in the range of B, so is in the domain of A,
and

Aw = A(BSw) = Sw

Thus, the domain of A contains that of S and extends S. ///

[2.2] Compactness of resolvents Friedrichs’ self-adjoint extensions have extra features not always shared
by the other self-adjoint extensions of a given symmetric operator. For example,

[2.2.1] Claim: When the inclusion V1 → V is compact, the resolvent (1 + T̃ )−1 : V → V is compact.

Proof: The proof above actually shows that B = (1 + T̃ )−1 maps V → V1 continuously even with the finer
〈, 〉1-topology on V1: the relation

〈v,Bw〉1 = 〈v, w〉 (for v ∈ V1)

with v = Bw, gives

|Bw|21 = 〈Bw,Bw〉1 = 〈Bw,w〉 ≤ |Bw| · |w| ≤ |Bw|1 · |w|

The resultant |Bw|1 ≤ |w| gives continuity in the finer topology. Thus, we may view B : V → V1 → V as
the composition of this continuous map with the injection V1 → V where V1 has the finer topology. The
composition of a continuous linear map with a compact operator is compact, [4] so compactness of V1 → V
with the finer topology on V1 suffices to prove compactness of the resolvent. ///

[4] Use the characterization of compactness of C : Y → Z that the image of the unit ball of Y is pre-compact.

Let B : X → Y be continuous and C : Y → Z compact. Replacing B by a scalar multiple does not affect the

compactness-or-not of C ◦ B, so without loss of generality the operator norm of B can be 1. Then B maps the unit

ball of X to a subset of the unit ball in Y . Pre-compactness is inherited by subsets, so, as the image under C of the

unit ball in Y is pre-compact, the image of the unit ball in X under C ◦B is pre-compact.
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3. Examples of incommensurable self-adjoint extensions

The differential operator T = d2

dx2 on L2[a, b] or L2(R) is a prototypical natural unbounded operator. It is

undeniably not continuous in the L2 topology: on L2[0, 1] the norm of f(x) = xn is 1/
√

2n+ 1, and the
second derivative of xn is n(n− 1)xn−2, so

operator norm
d2

dx2
onL2[0, 1] ≥ sup

n≥1

n(n− 1) · 1√
2n−3

1√
2n+1

= +∞

That is, d2

dx2 is not a L2-bounded operator on polynomials on [0, 1], so has no bounded extension[5] to L2[0, 1].

As the simple example here illustrates, it is unreasonable to expect naturally-occurring positive, symmetric
operators to have unique self-adjoint extensions.

In brief, for unbounded operators arising from differential operators, imposition of varying boundary
conditions often gives rise to mutually incomparable self-adjoint extensions.

[3.1] Non-symmetric adjoints of symmetric operators Just below, many different positive, symmetric
extensions of a natural, positive, symmetric, densely-defined operator T are exhibited, with no two having a
common symmetric extension. This is not obviously possible. In that situation, the graph-closure T = T ∗∗

is not self-adjoint. Equivalently, T ∗ is not symmetric, proven as follows.

Suppose positive, symmetric, densely-defined T has positive, symmetric extensions A,B admitting no
common symmetric extension. Let A = A∗∗, B = B∗∗ be the graph-closures of A,B. Friedrichs’ construction
T → T̃ applies to T,A,B. The inclusion-reversing property of S → S∗ gives a diagram of extensions, where
ascending lines indicate extensions:

T ∗

rrr
rrr

rrr
rr

LLL
LLL

LLL
LL

A∗ B∗

Ã = Ã∗ T̃ = T̃ ∗
??

B̃ = B̃∗

A B

A

LLL
LLL

LLL
LLL

T

ssssssssssss

KKKKKKKKKKKK
B

rrr
rrr

rrr
rrr

T

Since T ∗ is a common extension of A,B, but A,B have no common symmetric extension, T ∗ cannot be
symmetric. Thus, any such situation gives an example of non-symmetric adjoints of symmetric operators.
Equivalently, T cannot be self-adjoint, because its adjoint is T ∗, which cannot be symmetric.

[5] Whether or not the Axiom of Choice is used to artificially extend d2

dx2 to L2[0, 1], that extension is not continuous,

because the restriction to polynomials is already not continuous. The unboundedness/non-continuity is inescapable.
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Further, although the graph closures A and B are (not necessarily proper) extensions of T , neither of their
Friedrichs extensions can be directly comparable to that of T without being equal to it, since comparable self-
adjoint densely-defined operators are necessarily equal. [6] By hypothesis, A,B have no common symmetric
extension, so it cannot be that both equalities hold.

[3.2] Example: symmetric extensions lacking a common symmetric extension

Let V = L2[a, b], T = −d2/dx2, with domain

DT = {f ∈ C∞c [a, b] : f vanishes to infinite order at a, b}

The sign on the second derivative makes T positive: using the boundary conditions, integrating by parts,

〈Tv, v〉 = −〈v′′, v〉 = −v′(b)v(b) + v′(a)v(a) + 〈v′, v′〉 = 〈v′, v′〉 ≥ 0 (for v ∈ DT )

Integration by parts twice proves symmetry:

〈Tv,w〉 = −〈v′′, w〉 = −v′(b)w(b) + v′(a)w(a) + 〈v′, w′〉 = 〈v′, w′〉

= v(b)w′(b)− v(a)w′(a)− 〈v, w′′〉 = 〈v, Tw〉 (for v, w ∈ DT )

For each pair α, β of complex numbers, an extension Tα,β = −d2/dx2 of T is defined by taking a larger
domain, namely, by relaxing the boundary conditions in various ways:

Dα,β = {f ∈ C∞c [a, b] : f(a) = α · f(b), f ′(a) = β · f ′(b)}

Integration by parts gives

〈Tα,βv, w〉 = −v′(b)w(b) · (1− βα)v(b)w′(b) · (1− αβ) + 〈v, Tα,βw〉 (for v, w ∈ Dα,β)

The values v′(b), v(b), w(b), and w′(b) can be arbitrary, so the extension Tα,β is symmetric if and only if
αβ = 1, and in that case T is positive, since again

〈Tα,βv, v〉 = −〈v′′, v〉 = 〈v′, v′〉 ≥ 0 (for αβ = 1 and v ∈ Dα,β)

For two values α, α′, taking β = 1/α and β′ = 1/α′, for the symmetric extensions Tα,β and Tα′,β′ to have a

common symmetric extension T̃ requires that the domain of T̃ include both Dα,β ∪Dα′,β′ . The integration
by parts computation gives

〈T̃ v, w〉 = −v′(b)w(b) · (1− βα) + v(b)w′(b) · (1− αβ) + 〈v, Tα,βw〉

= −v′(b)w(b)(1− βα′) + v(b)w′(b) · (1− αβ′) + 〈v, T̃w〉 (for v ∈ Dα,β , w ∈ Dα′,β′)

Thus, the required symmetry 〈T̃ v, w〉 = 〈v, T̃w〉 holds only for α = α′ and β = β′. That is, the original
operator T has a continuum of distinct symmetric extensions, no two of which admit a common symmetric
extension.

In particular, no two of these symmetric extensions can have a common self-adjoint extension. Yet, each does
have at least the Friedrichs positive, self-adjoint extension. Thus, T has infinitely-many distinct positive,
self-adjoint extensions.

[6] A densely-defined self-adjoint operator cannot be a proper extensions of another such: for S ⊂ T with S = S∗

and T = T ∗, the inclusion-reversing property gives T = T ∗ ⊂ S∗ = S.

9
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For example, the two similar boundary-value problems on L2[0, 2π]u′′ = λ · u and u(0) = u(2π), u′(0) = u′(2π)

u′′ = λ · u and u(0) = 0 = u(2π)

(provably) have eigenfunctions and eigenvalues 1, sin(nx), cos(nx) n = 1, 2, 3, . . . eigenvalues 0, 1, 1, 4, 4, 9, 9, . . .

sin(nx2 ) n = 1, 2, 3, . . . eigenvalues 1
4 , 1, 9

4 , 4, 25
4 , 9, 49

4 , . . .

That is, half the eigenfunctions and eigenvalues are common, while the other half of eigenvalues of the first
situation are shifted upward for the second situation. Both collections of eigenfunctions give orthogonal
bases for L2[0, 2π].

The expressions of the unshared eigenfunctions of one in terms of those of the other are not trivial.

4. Discrete spectrum of ∆ on L2(T)

On the circle T = R/2πZ or R/Z, there are no boundary terms in integration by parts, ∆ has the symmetry

〈∆f, g〉 = 〈f,∆g〉 (with the usual 〈f, g〉 =
∫
T f · g, for f, g ∈ C∞(T))

Friedrichs’ self-adjoint extension ∆̃ of ∆ is essentially described by the relation

〈(1− ∆̃)−1x, (1−∆)y〉 = 〈x, y〉 (for x ∈ L2(T) and y ∈ C∞(T))

The compactness of the resolvent (∆̃− z)−1 enables the spectral theorem for compact, self-adjoint operators

to yield an orthogonal Hilbert-space basis for L2(T) consisting of eigenfunctions for every (∆̃− zo)−1 for zo
not in the spectrum. These eigenfunctions will be eigenfunctions for ∆̃ itself, and then provably for ∆.

The compactness of the resolvent will follow from Friedrichs’ construction of ∆̃ via the continuous linear
map (1 − ∆̃)−1, itself a continuous linear map L2(T) −→ H1(T), where the Sobolev space H1(T) is the
completion of C∞(T) with respect to the Sobolev norm

|f |H1(T) =
(
|f |2L2(T) + |f ′|2L2(T)

) 1
2

= 〈(1−∆)f, f〉 12

To prove compactness of the resolvent, we will prove Rellich’s lemma: the inclusion H1(T) → L2(T) is

compact. [7] The map (1− ∆̃)−1 of L2(T) to itself is compact because it is the composition of the continuous

map (1− ∆̃)−1 : L2(T)→ H1(T) and the compact inclusion H1(T)→ L2(T).

The eigenfunctions for the extension ∆̃ certainly include the ∆-eigenfunctions einx with n ∈ Z, but we must
show that there are no more eigenfunctions for ∆̃ than for ∆. That is, while we can solve the differential
equation ∆u = λ · u on R and identify λ having 2πZ-periodic solutions, more must be done to assure that
there are no other ∆̃-eigenfunctions in the orthogonal basis promised by the spectral theorem. We hope that
the natural heuristic, of straightforward solution of the differential equation ∆u = λ · u, gives the whole
orthogonal basis, but this is exactly the issue: details about the extension ∆̃. [8] Sobolev regularity will

[7] Rellich proved an L2 version, as here, and Kondrachev proved an Lp version.

[8] We will see that there is a unique self-adjoint extension ∆̃ of ∆ on T. A symmetric, densely-defined operator

with a unique self-adjoint extension is called essentially self-adjoint. In that case, the self-adjoint extension is the

graph-closure of the original. However, in equally innocuous situations, such as ∆ on L2[0, 2π], there is a continuum

of boundary conditions giving mutually incomparable self-adjoint extensions ∆̃, each with compact resolvent.

10



Paul Garrett: Modern analysis, cuspforms (December 14, 2014)

show that all eigenfunctions u for ∆̃ are C∞ functions, so the extension ∆̃ is evaluated on u by evaluating
the original ∆, so are obtained by solving the differential equation u′′ = λ · u in classical terms.

The kth Sobolev space Hk(T) is the Hilbert space completion of C∞(T) with respect to kth Sobolev norm

|f |H1(T) =
(
|f |2L2(T) + |f ′|2L2(T) + . . .+ |f (k)|2

) 1
2 � 〈(1−∆)kf, f〉 12 (for 0 ≤ k ∈ Z)

Precise comparison of constants between the two versions of the Sobolev norms is irrelevant. The imbedding
theorem asserts that Hk+1(T) is inside Ck(T), the latter a Banach space with natural norm

|f |Ck(T) = sup
0≤i≤k

sup
x∈T
|f (i)(x)|

It is convenient that Hilbert spaces capture relevant information, since our geometric intuition is much more
accurate for Hilbert spaces than for Banach spaces. [9] The spaces Ck(T) are not Hilbert spaces, but
Sobolev’s imbedding theorem shows they are naturally interlaced with Hilbert spaces Hr(T), in the sense
that the norms satisfy the dominance relation∣∣f ∣∣

Hk(T)
�

∣∣f ∣∣
Ck(T)

�
∣∣f ∣∣

Hk+1(T)
giving Hk+1(T) ⊂ Ck(T) ⊂ Hk(T)

The inclusions Ck(T) ⊂ Hk(T) follow from the density of C∞(T) in every Ck(T). Letting H∞(T) =

∩kHk(T), the intersection C∞(T ) of Banach spaces Ck(T) is an intersection of Hilbert spaces [10]

H∞(T) =
⋂
k

Hk(T) =
⋂
k

Hk+1(T) ⊂
⋂
k

Ck(T) = C∞(T) ⊂ H∞(T)

The smoothness of ∆̃-eigenfunctions can be seen as follows. By construction, the domain of ∆̃ is inside
H1(T). Indeed, (1 − ∆̃)−kL2(T) ⊂ Hk(T). To say u is a ∆̃-eigenfunction requires that u be in the domain

of ∆̃. The eigenfunction property ∆̃u = λ · u gives (1− ∆̃)u = (1− λ)u, and

u = (1− ∆̃)−1(1− λ)u ⊂ (1− ∆̃)−1H1(T) ⊂ H2(T)

By induction, u ∈ H∞(T) = C∞(T). In particular, the extension ∆̃ of ∆ is just ∆ on the original domain
C∞(T) of ∆, so

λ · u = ∆̃u = ∆u = u′′

This differential equation is easily solved on R, and uniqueness of solutions proven: for λ 6= 0, the solutions

are linear combinations of u(x) = e±
√
λ·x; for λ = 0, the solutions are linear combinations of u(x) = 1 and

u(x) = x. The 2πZ-periodicity is equivalent to λ ∈ iZ in the former case, and eliminates u(x) = x in the
latter. As usual, uniqueness is proven via the mean-value theorem.

This proves that the exponentials {einx : n ∈ Z} are a Hilbert-space basis for L2(T).

Now we give the proofs of Sobolev inequalities/imbedding and Rellich compactness.

[9] The minimum principle in a topological vector space asserts that, given a point x and in a non-empty convex

set C there is a unique point in C closest to x. This holds in Hilbert spaces, giving orthogonal projections and other

analogues of finite-dimensional Euclidean geometry. In Banach spaces, the minimum principle can fail by having no

minimizing point, or by having infinitely many. It was not until 1906 that B. Levi pointed out that the Dirichlet

Principle is only reliable in a Hilbert space.

[10] The canonical topologies on the nested intersections C∞(T) and H∞(T) are projective limits.
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[4.1] Sobolev imbedding on T This is just an application of the fundamental theorem of calculus and
the Cauchy-Schwarz-Bunyakowsky inequality.

[4.1.1] Theorem: Hk+1(T) ⊂ Ck(T).

Proof: The case k = 0 illustrates the causality: prove that the H1 norm dominates the Co norm, namely,
sup-norm, on C∞c (T) = C∞(T). Use coordinates on the real line. For 0 ≤ x ≤ y ≤ 1, the difference between
maximum and minimum values of f ∈ C∞[0, 1] is constrained:

|f(y)− f(x)| =
∣∣∣ ∫ y

x

f ′(t) dt
∣∣∣ ≤ ∫ 1

0

|f ′(t)| dt ≤
(∫ 1

0

|f ′(t)|2 dt
)1/2

·
(∫ y

x

1 dt
)1/2

= |f ′|L2 · |x− y| 12

Let y ∈ [0, 1] be such that |f(y)| = min x|f(x)|. Using the previous inequality,

|f(x)| ≤ |f(y)|+ |f(x)− f(y)| ≤
∫ 1

0

|f(t)| dt+ |f(x)− f(y)|

≤
∫ 1

0

|f | · 1 + |f ′|L2 · 1 ≤ |f |L2 + |f ′|L2 � 2(|f |2 + |f ′|2
)1/2

= 2|f |H1

Thus, on C∞c (T) the H1 norm dominates the sup-norm. Thus, this comparison holds on the H1 completion
H1(T), and H1(T) ⊂ Co(T). ///

The space C∞(T) of smooth functions on the circle T is the nested intersection of the spaces Ck(T), which
is an instance of a (projective) limit of Banach spaces:

C∞(T) =

∞⋂
k=0

Ck(T) = lim
k
Ck(T)

so it has a uniquely-determined topology, which is in fact a Fréchet space. Similarly,

H∞(T) =

∞⋂
k=0

Hk(T) = lim
k
Hk(T)

[4.1.2] Corollary: C∞(T) = H∞(T).

Proof: From the interlacing property Ck+1(T) ⊂ Hk+1(T) ⊂ Ck+1(T), both the spaces Ck(T) and the
spaces Hk(T) are cofinal in the larger projective system that includes both, so all three projective limits are
the same. ///

[4.2] Rellich’s lemma on T This uses some finer details from the discussion just above, namely, the

Lipschitz property |f(x)−f(y)| � |x−y| 12 for |f |H1 ≤ 1, and the related fact that the map H1(T )→ Co(T)

has operator norm at most 2. [11]

[11] It would be contrary to our purpose here to use the spectral description of Sobolev spaces, but this description is

important. Namely,

Hk(T) = {
∑
n

cn e
2πinx :

∑
n

|cn|2 · (1 + n2)k <∞}

From this viewpoint, Rellich’s lemma on T is very easy, since the exponentials give an orthonormal basis ei of Hk+1

and fi of Hk such that ei → fi/(1+n2)
1
2 . Such a map ei → λi ·fi is compact exactly when λi → 0, which is manifest

here.
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[4.2.1] Theorem: The inclusion Hk+1(T)→ Hk(T) is compact.

Proof: The principle is adequately illustrated by showing that the unit ball in H1(T) is totally bounded in
L2(T). Approximate f ∈ H1(T) in L2(T) by piecewise-constant functions

F (x) =



c1 for 0 ≤ x < 1
n

c2 for 1
n ≤ x <

2
n

. . .

cn for n−1
n ≤ x ≤ 1

The sup norm of |f |H1 ≤ 1 is bounded by 2, so we only need ci in the range |ci| ≤ 2.

Given ε > 0, take N large enough such that the disk of radius 2 in C is covered by N disks of radius less
than ε, with centers C. Given f ∈ H1(T) with |f |1 ≤ 1, choose constants ck ∈ C such that |f(k/n)−ck| < ε.
Then

|f(x)− ck| ≤ |f
(k
n

)
− ck|+

∣∣∣f(x)− f
(k
n

)∣∣∣ < ε+
∣∣∣x− k

n

∣∣∣ 12 ≤ ε+
1√
n

(for k
n ≤ x ≤

k+1
n )

Then ∫ 1

0

|f − F |2 ≤
n∑
k=1

∫ (k+1)/n

k/n

(
ε+

1√
n

)2

≤ n · 1

n
·
(
ε+

1√
n

)2

=
(
ε+

1√
n

)2

For ε small and n large, this is small. Thus, the image in L2(T) of the unit ball in H1(T) is totally bounded,
so has compact closure. This proves that the inclusion H1(T) ⊂ L2(T) is compact. ///

[4.3] Sobolev imbedding and Rellich compactness on Tn Either by reducing to the case of a single

circle T, or by repeating analogous arguments directly on Tn, one proves [12]

[4.3.1] Theorem: (Sobolev inequality/imbedding) For ` > k + n
2 , there is a continuous inclusion H`(Tn) ⊂

Ck(Tn). ///

[4.3.2] Theorem: (Rellich compactness) Hk+1(Tn) ⊂ Hk(Tn) is compact. ///

5. Discrete spectrum of ∆− x2 on L2(R)

In contrast to ∆ on T, there are no square-integrable ∆-eigenfunctions on R, so there is no orthogonal basis
for L2(R) consisting of ∆-eigenfunctions. Perturb the Laplacian ∆ to a Schrödinger operator [13]

S = −∆ + x2 = − d2

dx2
+ x2

[12] In fact, the general discussion of compactness of the resolvent of the Laplace-Beltrami operator on compact

Riemannian manifolds reduces to the case of Tn, by smooth partitions of unity.

[13] This particular Schrödinger operator is also known as a Hamiltonian, and arose in 20th-century physics as the

operator expressing total energy of the quantum harmonic oscillator, whatever that is taken to mean. Despite this

later-acquired significance, Mehler had determined many spectral properties of this operator in 1866.
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by adding the confining potential x2, where x2 is construed as a multiplication operator:

Sf(x) = −f ′′(x) + x2 · f(x)

We will see that the resolvent S̃−1 of the Friedrichs extension S̃ of S is compact, so S̃ has entirely discrete
spectrum.

[5.1] Eigenfunctions of the Schrödinger operator In contrast to ∆ itself, whose eigenfunctions are well-
known and easy to obtain from solving the constant-coefficient equation u′′ = λu, the eigenfunctions for S
are less well-known, and solution of Su = λu is less immediate. The standard device to obtain eigenfunctions
is as follows.

With Dirac operator [14]

D = i
∂

∂x
so that D2 = −∆

the factorization

−∆ + x2 = (D− ix)(D + ix) + [ix,D] = (D− ix)(D + ix) + 1 (with [ix,D] = ix ◦ D− D ◦ ix)

allows determination of many S-eigenfunctions, although proof that all are produced requires some effort.

Rather than attempting a direct solution of the differential equation Su = λu, fortunate special features are
exploited. First, a smooth function u annihilated by D+ ix will be an eigenfunction for S with eigenvalue 1:

Su =
(

(D− ix)(D + ix) + 1
)
u = (D− ix) 0 + u = 1 · u (for (D + ix)u = 0)

Dividing through by i, the equation (D + ix)u = 0 is( ∂
∂x

+ x
)
u = 0

That is, u′ = −xu or u′/u = −x, so log u = −x2/2 + C for arbitrary constant C. With C = 1

u(x) = e−x
2/2

Conveniently, this is in L2(R), and in fact is in the Schwartz space on R. The alternative factorization

S = −∆ + x2 = (D + ix)(D− ix)− [ix,D] = (D + ix)(D− ix)− 1

does also lead to an eigenfunction u(x) = ex
2/2, but this grows too fast for present purposes.

It is unreasonable to expect this more generally, but here the raising and lowering operators

R = raising = D− ix L = lowering = D + ix

map S-eigenfunctions to other eigenfunctions: for Su = λu, noting that S = RL+ 1 = LR− 1,

S(Ru) = (RL+ 1)(Ru) = RLRu+Ru = R(LR)u+Ru = R(LR− 1)u+ 2Ru

= RSu+ 2Ru = Rλu+ 2Ru = (λ+ 2) ·Ru (for Su = λu)

[14] Conveniently, the Dirac operator in this situation has complex coefficients. In two dimensions, Dirac operators

have Hamiltonian quaternion coefficients. The two-dimensional case is a special case of the general situation, that

Dirac operators have coefficients in Clifford algebras.
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Similarly, S(Lu) = (λ− 2) · Lu. Many eigenfunctions are produced by application of Rn to u1(x) = e−x
2/2:

Rne−x
2/2 = (2n+ 1)− eigenfunction for −∆ + x2

Repeated application of R to e−x
2/2 produces polynomial multiplies of e−x

2/2 [15]

Rne−x
2/2 = Hn(x) · e−x

2/2 (with polynomial Hn(x) of degree n)

The commutation relation shows that application of LRnu is just a multiple of Rn−1u, so application of L
to the eigenfunctions Rnu produces nothing new.

We can almost prove that the functions Rnu are all the square-integrable eigenfunctions. The integration-
by-parts symmetry

〈(D− ix)f, g〉 = 〈f, (D + ix)g〉 (for f, g ∈ S (R))

gives
〈(−∆ + x2)f, f〉 = 〈(D + ix)f, (D + ix)f〉+ 〈f, f〉 = |(D + ix)f |2L2 + |f |2L2 ≥ |f |2L2

In particular, an L2 eigenfunction has real eigenvalue λ ≥ 1. Granting that repeated application of L to a
λ-eigenfunction u stays in L2(R), the function Lnu has eigenvalue λ− 2n, and the requirement λ− 2n ≥ 1
on L2(R) implies that Lnu = 0 for some n. Then L(Ln−1u) = 0, but we already have shown that the only

L2(R)-function in the kernel of L is u1(x) = e−x
2/2.

[5.2] Sobolev norms associated to the Schrödinger operator A genuinely-self-adjoint Friedrichs

extension S̃ requires specification of a domain for S. The space C∞c (R) of test functions is universally
reasonable, but we have already seen many not-compactly-supported eigenfunctions for the differential
operator S. Happily, those eigenfunctions are in the Schwartz space S (R). This suggests specifying S (R)
as the domain of an unbounded operator S.

There is a hierarchy of Sobolev-like norms

|f |B` =
〈

(−∆ + x2)`f, f
〉 1

2

L2(R)
(for f ∈ S (R))

with corresponding Hilbert-space completions

B` = completion of S (R) with respect to |f |B`

and B0 = L2(R). The Friedrichs extension S̃ is characterized via its resolvent S̃−1, the resolvent characterized
by

〈S̃−1f, Sg〉 = 〈f, g〉 (for f ∈ L2(R) and g ∈ S (R))

and S̃−1 maps L2(R) continuously to B1. Thus, an eigenfunction u for S̃ is in B∞ =
⋂
`B

` = lim`B
`. We

will see that
B∞ = S (R)

In particular, S̃-eigenfunctions are in the natural domain of S, so evaluation of S̃ on them is evaluation
of S. Thus, S̃-eigenfunctions are S-eigenfunctions. Further, repeated application of the lowering operator
stabilizes S (R), so the near-proof above becomes a proof that all eigenfunctions in L2(R) are of the form

Rn e−x
2/2.

To prove that these eigenfunctions are a Hilbert space basis for L2(R), we will prove a Rellich-like compactness

result: the injection B`+1 → B` is compact. The map S̃−1 of L2(R) to itself is compact because it is the

[15] The polynomials Hn are the Hermite polynomials, but everything needed about them can be proven from this

spectral viewpoint.
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composition of the continuous map S̃−1 : L2(R)→ B1 and the compact inclusion B1 → B0 = L2(R). Thus,
the eigenfunctions for the resolvent form an orthogonal Hilbert-space basis, and these are eigenfunctions for
S̃ itself, and then for S.

That is, there is an orthogonal basis for L2(R) consisting of S-eigenfunctions, all obtained as

(2n+ 1)− eigenfunction = Rne−x
2/2 =

(
i
∂

∂x
− ix

)n
e−x

2/2

[5.3] Rellich compactness On R, such a compactness result depends on both smoothness and decay
properties of the functions, in contrast to T, where smoothness was the only issue.

[5.3.1] Proposition: The Friedrichs extension S̃ of S = − d2

dx2 + x2 has compact resolvent.

Proof: The Friedrichs extension S̃ of S is defined via its resolvent S̃−1 : L2(R) → B1, the resolvent itself
characterized by

〈S̃−1v, w〉1 = 〈v, w〉 (for v ∈ L2(R) and w ∈ S (R))

The resolvent S̃−1 is continuous with respect to the | · |B1 -topology on B1. Thus, to prove that the resolvent
is compact as a map L2(R) → L2(R), factoring through the injection B1 → L2(R), it suffices to show that
the latter injection is compact.

Show compactness of B1 → L2(R) by showing total boundedness of the image of the unit ball. Let ϕ be a
smooth cut-off function, with

ϕN (x) =


1 (for |x| ≤ N)

smooth, between 0 and 1 (for N ≤ |x| ≤ N + 1)

0 (for |x| ≥ N + 1)

The derivatives of ϕN in N ≤ |x| ≤ N + 1 can easily be arranged to be independent of N . For |f |1 ≤ 1,
write f = f1 + f2 with

f1 = ϕN · f f2 = (1− ϕN ) · f

The function f1 on [−N − 1, N + 1] can be considered as a function on a circle T, by sticking ±(N + 1)
together. Then the usual Rellich-Kondrachev compactness lemma on T shows that the image of the unit
ball from B1 is totally bounded in L2(T), which we can identify with L2[−N − 1, N + 1]. The L2 norm of
the function f2 is directly estimated

|f2|2L2(R) =

∫
|x|≥N

ϕ2
N (x) · |f2(x)|2 dx ≤ 1

N2

∫
|x|≥N

|f2(x) · x|2 dx

≤ 1

N2

∫
R
x2f(x) · f (x) dx ≤ 1

N2

∫
R

(− d2

dx2
+ x2)f(x) · f (x) dx =

1

N2
|f |21 ≤

1

N2

Thus, given ε > 0, for N large the tail f2 lies within a single ε-ball in L2(R). This proves total boundedness
of the image of the unit ball, and compactness. ///

[5.3.2] Corollary: The spectrum of S = − d2

dx2 + x2 is entirely discrete. There is an orthonormal basis of
L2(R) consisting of eigenfunctions for S, all of which lie in S (R).

Proof: Self-adjoint compact operators have discrete spectrum with finite multiplicities for non-zero

eigenvalues. These eigenfunctions are also eigenfunctions for the Friedrichs extension S̃. Since these
eigenfunctions give an orthogonal Hilbert-space basis, S̃ has no further spectrum. Since the eigenfunctions
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are in S (R), it is legitimate to say that they are eigenfunctions of S itself, rather than of an extension.
///

[5.4] Sobolev imbedding We prove that Bk+1 ⊂ Ck(R) by reducing to the case of the circle T.

[... iou ...]

[5.5] B∞ = S The projective limit B∞ is the Schwartz space S = S (R). This will be proven by
comparison of seminorms. As a corollary, S is nuclear Fréchet.

The Weyl algebra A = A1 of operators, generated over C by the multiplication x and derivative ∂ = d/dx, is
also generated by R = i∂ − ix and L = i∂ + ix. The Weyl algebra is filtered by degree in R and L: let A≤n

be the C-subspace of A spanned by all non-commuting monomials in R,L of total degree at most n, with
A≤0 = C. Note that R and L commute modulo A≤0: as operators, ∂ ◦ x = 1 + x ◦ ∂, and the commutation
relation is obtained again, by

[R,L] = RL− LR = (i∂ − ix)(i∂ + ix)− (i∂ + ix)(i∂ − ix) = −(∂ − x)(∂ + x) + (∂ + x)(∂ − x)

= −(∂2 − x∂ + ∂x− x2) + (∂2 + x∂ − ∂x− x2) = 2(x∂ − ∂x) = −2

[5.5.1] Claim: For a monomial w2n in R and L of degree 2n,

|〈w2n · f, f〉L2(R)| �n |f |2Bn (for f ∈ C∞c (R))

Proof: Induction. First,

〈RLf, f〉 = 〈(RL+ 1)f, f〉 − 〈f, f〉 ≤ 〈(RL+ 1)f, f〉 = 〈Sf, f〉 = |f |2B1

A similar argument applies to LR. For the length-two word L2,

|〈L2f, f〉| = |〈Lf,Rf〉| ≤ |Lf | · |Rf | = 〈Lf, Lf〉 12 · 〈Rf,Rf〉 12

= 〈RLf, f〉 12 · 〈LRf, f〉 12 ≤ 〈Sf, f〉 = |f |2B1

A similar argument applies to R2, completing the argument for n = 1.

For the induction step, any word w2n of length 2n is equal to RaLb mod A≤2n−2 for some a+ b = 2n, so, by
induction,

|〈w2nf, f〉| = |〈RaLbf, f〉|+ |f |2Bn−1

In the case that a ≥ 1 and b ≥ 1, by induction

|〈RaLbf, f〉| = |〈Ra−1Lb−1(Lf), Lf〉| �n = |Lf |2Bn−1 = 〈Sn−1Lf, Lf〉 = 〈RSn−1Lf, f〉

Since RSn−1L is Sn mod A≤2n−2, by induction

〈RSn−1Lf, f〉 lln 〈Snf, f〉+ |f |2Bn−1 = |f |2Bn + |f |2Bn−1 � |f |2Bn

In the extreme case a = 0,

〈L2nf, f〉 = 〈Lnf,Rnf〉 ≤ |Lnf | · |Rnf | = 〈Lnf, Lnf〉 12 · 〈Rnf,Rnf〉 12 = 〈RnLnf, f〉 12 · 〈LnRnf, f〉 12

which brings us back to the previous case. The extreme case b = 0 is similar. ///
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[5.5.2] Corollary: For a monomial wn in R and L of degree n,

|〈wn · f, f〉L2(R)| �n |f |Bn · |f |L2 (for f ∈ C∞c (R))

Proof: By Cauchy-Schwarz-Bunyakowsky and the claim,

|〈wn · f, f〉L2 | ≤ |wnf |L2 · |f |L2 = 〈w∗n wn f, f〉
1
2 · |f |L2 ≤ |f |Bn · |f |L2

as claimed. ///

[5.5.3] Claim: The seminorms µw(f) = |〈wf, f〉| 12 on test functions dominate (collectively) the usual
Schwartz seminorms

νm,n(f) = sup
x∈R

∣∣(1 + x2)m f (n)(x)
∣∣

Proof:

[... iou ...]

///

[5.6] Hermite polynomials

Up to a constant, the nth Hermite polynomial Hn(x) is characterized by

Hn(x) · e−x
2/2 = Rn e−x

2/2 = (i
∂

∂x
− ix)n e−x

2/2

The above discussion shows that H0, H1, H2, . . . are orthogonal on R with respect to the weight e−x
2

, and
give an orthogonal basis for the weighted L2-space

{f :

∫
R
|f(x)|2 · e−x

2

dx < ∞}

6. Discrete spectrum of ∆ on L2
a(Γ\H)

The invariant Laplacian ∆ on Γ\H with Γ = SL2(Z) definitely does have some continuous spectrum, namely,
pseudo-Eisenstein series, which we have shown are decomposable as integrals of Eisenstein series Es. We
prove that the orthogonal complement to all pseudo-Eisenstein series in L2(Γ\H), which was shown to be
the space of L2 cuspforms, has an orthonormal basis of ∆-eigenfunctions.

The original arguments were cast in terms of integral operators, as in [Selberg 1956], [Roelcke 1956]. The
proofs here still do rely upon the spectral theory of compact, self-adjoint operators, but via resolvents of
restrictions of the Laplacian. Compare [Faddeev 1967], [Faddeev-Pavlov 1972], [Lax-Phillips 1976], and
[Venkov 1979].

This approach illustrates some interesting idiosyncracies of Friedrichs extensions of restrictions, as exploited
in [ColinDeVerdière 1981/2/3].

The H1-norm is

|f |1 =
(
〈f, f〉L2(Γ\H) + 〈−∆f, f〉L2(Γ\H)

) 1
2

(for f ∈ C∞c (Γ\H))
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For a ≥ 0, let

L2
a(Γ\H) = {f ∈ L2(Γ\H) : cP f(iy) = 0 for y ≥ a}

H1
a(Γ\H) = H1-norm completion of C∞c (Γ\H) ∩ L2

a(Γ\H)

[6.1] A seeming paradox The space L2(Γ\H) contains the space L2(Γ\H) of L2 cuspforms, for every
a ≥ 0. For a� 1, it is properly larger, so contains various parts of the continuous spectrum for ∆, namely,
appropriate integrals of Eisenstein series. Yet the Friedrichs extension ∆̃a of a restriction ∆a of ∆, discussed
below, has entirely discrete spectrum. Evidently, some part of the continuous spectrum of ∆ becomes discrete
for ∆̃a. That is, some integrals of Eisenstein series Es become L2 eigenfunctions for ∆̃a. In particular, for
a ≥ 1, certain truncated Eisenstein series become eigenfunctions. The truncation is necessary for L2-ness,
but creates some non-smoothness. The non-smoothness can be understood in terms of the behavior of
Friedrichs extensions, but that discussion is not strictly necessary here.

[6.2] Compactness of H1
a(Γ\H) → L2(Γ\H)a As earlier, to prove that a Friedrichs extension has

compact resolvent, it suffices to prove that a corresponding inclusion of Sobolev H1 into L2 is compact.

[6.2.1] Theorem: H1
a(Γ\H)→ L2(Γ\H)a is compact.

Proof: We roughly follow [Lax-Phillips 1976], adding some details. The total boundedness criterion for
relative compactness requires that, given ε > 0, the image of the unit ball B in H1

a in L2(Γ\H)a can be
covered by finitely-many balls of radius ε.

The idea is that the usual Rellich lemma on Tn reduces the issue to an estimate on the tail, which follows
from the H1

a condition.

The usual Rellich compactness lemma asserts the compactness of proper inclusions of Sobolev spaces on

products of circles. Given c ≥ a, cover the image Yo of
√

3
2 ≤ y ≤ c+ 1 in Γ\H by small coordinate patches

Ui, and one large open U∞ covering the image Y∞ of y ≥ c. Invoke compactness of Yo to obtain a finite
sub-cover of Yo. Choose a smooth partition of unity {ϕi} subordinate to the finite subcover along with U∞,
letting ϕ∞ be a smooth function that is identically 1 for y ≥ c. A function f in the Sobolev +1-space on Yo
is a finite sum of functions ϕi · f . The latter can be viewed as having compact support on small opens in
R2, thus identified with functions on products of circles, and lying in Sobolev +1-spaces there. Apply the
Rellich compactness lemma to each of the finitely-many inclusion maps of Sobolev +1-spaces on product of
circles. Thus, certainly, ϕi ·B is totally bounded in L2(Γ\H).

Thus, to prove compactness of the global inclusion, it suffices to prove that, given ε > 0, the cut-off c can
be made sufficiently large so that ϕ∞ ·B lies in a single ball of radius ε inside L2(Γ\H). That is, it suffices
to show that

lim
c→∞

∫
y>c

|f(z)|2 dx dy
y2

−→ 0 (uniformly for |f |1 ≤ 1)

We note prove a reassuring, if unsurprising, lemma asserting that the H1-norms of systematically specified
families of smooth tails are dominated by the H1-norms of the original functions.

Let ψ be a smooth real-valued function on (0,+∞) with


ψ(y) = 0 (for 0 < y ≤ 1)

0 ≤ ψ(y) ≤ 1 (for 1 < y < 2)

ψ(y) = 1 (for 1 ≤ y)
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[6.2.2] Claim: For fixed ψ, for t ≥ 1, the smoothly cut-off tail f [t](x+ iy) = ψ
(y
t

)
· f(x+ iy) has H1-norm

dominated by that of f itself:

|f [t]|H1 �ψ |f |H1 (implied constant independent of f and t ≥ 1)

Proof: (of claim) Since |a+bi|2 = a2 +b2 and ∆ has real coefficients, it suffices to treat real-valued f . Since
0 ≤ ψ ≤ 1, certainly |ψf |L2 ≤ |f |L2 . For the other part of the H1-norm,

〈−∆f [t], f [t]〉 = −
∫
S1

∫
y≥t

( ∂2

∂x2
+

∂2

∂y2

)
f [t] · f [t] dx dy

= −
∫
S1

∫
y≥t

ψ
(y
t

)2

fxxf +
1

t2
ψ′′
(y
t

)
ψ
(y
t

)
f2 +

2

t
ψ′
(y
t

)
ψ
(y
t

)
fyf + ψ

(y
t

)2

fyyf dx dy

Using 0 ≤ ψ ≤ 1, the first and fourth summands are∫
S1

∫
y≥t
−ψ
(y
t

)2

fxxf − ψ
(y
t

)2

fyyf dx dy ≤
∫
S1

∫
y≥t
−fxxf − fyyf dx dy ≤ 〈−∆f, f〉 ≤ |f |2H1

Using the fact that ψ′ and ψ′′ are supported on [1, 2], the second summand is∫
S1

∫
y≥t

+
∣∣∣ 1

t2
ψ′′
(y
t

)
ψ
(y
t

)
f2
∣∣∣ dx dy �ψ

∫
S1

∫
t≤y≤2t

f2

t2
dx dy

≤
∫
S1

∫
t≤y≤2t

(2t)2 f2

t2
dx dy

y2
≤ 4|f |2L2 � |f |2H1

The remaining term is usefully transformed by an integration by parts:∫
S1

∫
y≥t

2

t
ψ′
(y
t

)
ψ
(y
t

)
fyf dx dy =

∫
S1

∫
t≤y≤2t

1

t
ψ′
(y
t

)
ψ
(y
t

)
· ∂
∂y

(f2) dx dy

=

∫
S1

∫
t≤y≤2t

∂

∂y

(1

t
ψ′
(y
t

)
ψ
(y
t

))
· f2 dx dy

and then is dominated by∫
S1

∫
t≤y≤2t

∣∣∣ ∂
∂y

(1

t
ψ′
(y
t

)
ψ
(y
t

))∣∣∣ · f2 dx dy ≤
∫
S1

∫
t≤y≤2t

∣∣∣ ∂
∂y

(1

t
ψ′
(y
t

)
ψ
(y
t

))∣∣∣ · f2 · (2t)2 dx dy

y2

= 4

∫
S1

∫
t≤y≤2t

∣∣∣ψ′′(y
t

)
ψ
(y
t

)
+ ψ′

(y
t

)2∣∣∣ · f2 dx dy

y2
�ψ |f |2L2

with implied constant independent of f and t ≥ 1. ///

[6.2.3] Remark: To legitimize the following computation, recall that we proved above that f ∈ H1(Γ\H)
has square-integrable first derivatives, so this differentiation is necessarily in an L2 sense.

Let the Fourier coefficients of f be f̂(n). Take c > a so that the 0th Fourier coefficient f̂(0) vanishes
identically. By Plancherel for the Fourier expansion in x, and then elementary inequalities: integrating over
the part of Y∞ above y = c, letting F be Fourier transform in x,
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y>c

|f |2 dx dy
y2

≤ 1

c2

∫ ∫
y>c

|f |2 dx dy =
1

c2

∑
n 6=0

∫
y>c

|f̂(n)|2 dy

≤ 1

c2

∑
n6=0

(2πn)2

∫
y>c

|f̂(n)|2 dy =
1

c2

∑
n 6=0

∫
y>c

∣∣∣F∂f
∂x

(n)
∣∣∣2 dy =

1

c2

∫ ∫
y>c

∣∣∣∂f
∂x

∣∣∣2 dx dy
=

1

c2

∫ ∫
y>c

−∂
2f

∂x2
· f (x) dx dy ≤ 1

c2

∫ ∫
y>c

−∂
2f

∂x2
· f (x)− ∂2f

∂y2
· f (x) dx dy

=
1

c2

∫ ∫
y>c

−∆f · f dx dy

y2
≤ 1

c2

∫ ∫
Γ\H
−∆f · f dx dy

y2
=

1

c2
|f |21 ≤

1

c2

This uniform bound completes the proof that the image of the unit ball in H1
a(Γ\H) in L2(Γ\H)a is totally

bounded. Thus, the inclusion is a compact map. ///

[6.2.4] Corollary: For λ off a discrete set of points in C, ∆̃a has compact resolvent (∆̃a − λ)−1, and the
parametrized family of compact operators

(∆̃a − λ)−1 : L2(Γ\H)a −→ L2(Γ\H)a

is meromorphic in λ ∈ C.

Proof: Friedrichs’ construction shows that (∆̃a − λ)−1 : L2(Γ\H)a → H1
a(Γ\H) is continuous even with the

stronger topology of H1
a(Γ\H). Thus, the composition

L2(Γ\H)a −→ H1
a(Γ\H) ⊂ L2(Γ\H)a by f −→ (∆̃a − λ)−1f −→ (∆̃a − λ)−1f

is the composition of a continuous operator with a compact operator, so is compact. Thus,

(∆̃a − λ)−1 : L2(Γ\H)a −→ L2(Γ\H)a is a compact operator

We claim that, for a (not necessarily bounded) normal operator T , if T−1 exists and is compact, then

(T − λ)−1 exists and is a compact operator for λ off a discrete set in C, and is meromorphic in λ. [16] To
prove the claim, first recall from the spectral theory of normal compact operators, the non-zero spectrum of
compact T−1 is all point spectrum. We claim that the spectrum of T and non-zero spectrum of T−1 are in
the bijection λ↔ λ−1. From the algebraic identities

T−1 − λ−1 = T−1(λ− T )λ−1 T − λ = T (λ−1 − T−1)λ

failure of either T − λ or T−1 − λ−1 to be injective forces the failure of the other, so the point spectra are
identical. For (non-zero) λ−1 not an eigenvalue of compact T−1, T−1−λ−1 is injective and has a continuous,

everywhere-defined inverse. [17] For such λ, inverting the relation T − λ = T (λ−1 − T−1)λ gives

(T − λ)−1 = λ−1(λ−1 − T−1)−1T−1

[16] This assertion and its proof are standard. For a similar version in a standard source, see [Kato 1966], p. 187 and

preceding. The same compactness and meromorphy assertion plays a role in the (somewhat apocryphal) Selberg-

Bernstein treatment of the meromorphic continuation of Eisenstein series.

[17] That S − λ is surjective for compact self-adjoint S and λ 6= 0 not an eigenvalue is a corollary of the spectral

theory of self-adjoint compact operators, which says that all the spectrum consists of eigenvalues. This is the easiest

initial part of Fredholm theory.
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from which (T −λ)−1 is continuous and everywhere-defined. That is, λ is not in the spectrum of T . Finally,
λ = 0 is not in the spectrum of T , because T−1 exists and is continuous. This establishes the bijection.

Thus, when T−1 is compact, the spectrum of T is countable, with no accumulation point in C. Letting
Rλ = (T − λ)−1, the resolvent relation

Rλ = (Rλ −R0) +R0 = (λ− 0)RλR0 +R0 = (λRλ + 1) ◦R0

shows Rλ is the composite of a continuous and a compact operator, proving compactness. ///

[6.3] Discreteness of cuspforms We claim that the space L2
cfm(Γ\H) has a Hilbert space basis of

eigenfunctions for ∆.

The compactness of the inclusion ja : H1
a(Γ\H)→ L2(Γ\H)a ⊂ L2(Γ\H), is the bulk of the proof.

[... iou ...]

[6.3.1] Claim: (∆̃a − λ)−1 stabilizes L2
cfm(Γ\H)

This stability property would imply that (∆̃a − λ)−1 restricted to L2
cfm(Γ\H) is a compact operator.

Proof: The space of L2 cuspforms can be characterized as the orthogonal complement in L2(Γ\H) to the
space of pseudo-Eisenstein series Ψϕ with arbitrary data ϕ ∈ C∞c (0,+∞). However, the relation

〈(∆̃a − λ)−1f,Ψϕ〉 = 〈f, (∆̃a − λ)−1Ψϕ〉 = 〈f, (∆− λ)−1Ψϕ〉 = 〈f,Ψ(∆−λ)−1ϕ〉

suggests considering a class of data ϕ closed under solution of the corresponding differential equation. Letting
y = ex and ϕ(ex) = v(x), as above, the differential equation is

u′′ − u′ − λu = v

Taking Fourier transform,

û =
−v̂

x2 − ix+ λ

With λ = s, the zeros of the denominator are at is and i(1 − s). Taking s large positive real moves these
poles as far away from the real line as desired. Thus, from Paley-Wiener-type considerations, if v̂ were
holomorphic on the strip |Im(ξ)| ≤ N , and integrable and square-integrable on horizontal lines inside that
strip, certainly the same will be true of û. The inverse Fourier transform will have a bound e−N |x|.

The corresponding function u on (0,+∞) will be bounded by yN as y → 0+, and by y−N as y → +∞. A
soft argument (for example, via gauges) proves good convergence of the associated pseudo-Eisenstein series.

Thus, we can redescribe the space of cuspforms to make visible the stability under (∆̃a − λ)−1. This
completes the proof that L2

cfm(Γ\H) decomposes discretely, that is, has an orthonormal Hilbert space basis

of ∆̃a-eigenvectors. ///

7. Appendix: spectrum of T versus T−1 versus (T − λ)−1

Following [Kato 1966], p. 187 and preceding, we show that, for a (not necessarily bounded) self-adjoint
operator T , if T−1 exists and is compact, then (T −λ)−1 exists and is a compact operator for λ off a discrete
set in C, and is meromorphic in λ.

Further, we show that the spectrum of T and non-zero spectrum of T−1 are in the bijection λ↔ λ−1.
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First, from the spectral theory of self-adjoint compact operators, the non-zero spectrum of T−1 is all point
spectrum. From the algebraic identities

T−1 − λ−1 = T−1(λ− T )λ−1 T − λ = T (λ−1 − T−1)λ

failure of either T − λ or T−1 − λ−1 to be injective forces the failure of the other, so the point spectra are
identical. For (non-zero) λ−1 not an eigenvalue of compact T−1, T−1−λ−1 is injective and has a continuous,
everywhere-defined inverse. That S−λ is surjective for compact self-adjoint S and λ 6= 0 not an eigenvalue is
a consequence of the spectral theorm for self-adjoint compact operators [18] For such λ, inverting the relation
T − λ = T (λ−1 − T−1)λ gives

(T − λ)−1 = λ−1(λ−1 − T−1)−1T−1

from which (T −λ)−1 is continuous and everywhere-defined. That is, λ is not in the spectrum of T . Finally,
λ = 0 is not in the spectrum of T , because T−1 exists and is continuous. This establishes the bijection.

8. Appendix: total boundedness and pre-compactness

For us, pre-compact means has compact closure. A subset of E a metric space is totally bounded when, for
every ε > 0, the set E has a finite cover of open balls of radius ε.

[8.0.1] Claim: A subset of a complete metric space is pre-compact if and only if it is totally bounded.

Proof: If a set has compact closure then it admits a finite covering by open balls of arbitrarily small radius.

On the other hand, suppose that a set E is totally bounded in a complete metric space X. To show that E
has compact closure it suffices to show that any sequence {xi} in E has a Cauchy subsequence.

Choose such a subsequence as follows. Cover E by finitely-many open balls of radius 1. In at least one
of these balls there are infinitely-many elements from the sequence. Pick such a ball B1, and let i1 be the
smallest index so that xi1 lies in this ball.

The set E ∩ B1 is totally bounded, and contains infinitely-many elements from the sequence. Cover it by
finitely-many open balls of radius 1/2, and choose a ball B2 with infinitely-many elements of the sequence
lying in E∩B1∩B2. Choose i2 to be the smallest so that both i2 > i1 and so that xi2 lies inside E∩B1∩B2.

Inductively, suppose that indices i1 < . . . < in have been chosen, and balls Bi of radius 1/i, so that

xi ∈ E ∩B1 ∩B2 ∩ . . . ∩Bi

Then cover E∩B1∩. . .∩Bn by finitely-many balls of radius 1/(n+1) and choose one, call it Bn+1, containing
infinitely-many elements of the sequence. Let in+1 be the first index so that in+1 > in and so that

xn+1 ∈ E ∩B1 ∩ . . . ∩Bn+1

For m < n, d(xim , xin) ≤ 1
m , so this subsequence is Cauchy. ///
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Laplaceschen Functionen höherer Ordnung, J. fúr Reine und Angew. Math. 66 (1866), 161-176.

[Minakshisundaram-Pleijel 1949] S. Minakshisundaram, Å. Pleijel, Some properties of the eigenfunctions of
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