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Chapter 1

Kronecker’s Limit Formulas

1 The first limit formula
1

Let s = o + it be a complex variabler andt being real. The Riemann zeta-
function{(s) is defined foro- > 1 by

9=k
k=1

herek™S stands fore $°9k | with the real value of log. The series converges
absolutely foro- > 1 and uniformly in evens-half-plane defined by > 1 +
e(e > 0). It follows from a theorem of Weierstrass that the sumefiom £(s)

is a regular function of for o > 1. Riemann proved thaf(s) possesses
an analytic continuation into the whokeplane which is regular except for a
simple pole as = 1 and satisfies the well-known functional equation

1-
w7 (3)e9 = 92 (13 - 9,

I'(s) being Euler's gamma-function.
We shall now prove

Proposition 1. The function/(s) can be continued analytically into the half-
planeos > 0 and the continuation is regular far > 0, except for a simple pole
at s= 1 with residuel. Further, at s= 1, /(s) has the expansion

L(s) - 3%1 =C+ay(s—1)+ay(s— 1+

1



Kronecker'’s Limit Formulas 2

C being Euler’s constant.

We first need to prove the simplest form of a summation fornaluia to
Euler, namely.

Lemma. If f(X) is a complex-valued function having a continuous deriativ
f’(x) in the intervall < x < n, then

e 1 f(1) + f(n)
fo(kz_;f(x+k)(x—§)]dx+T

n

= Z f(K) — fl f(x)dx (1)
k=1

Proof. In face, if a complex-valued functiog(x) defined in the interval
x < 1, has a continuous derivatig(x), then we have from integration by
parts,

folg’(x)(x: %)dx= %(Q(O)+g(1))— folg(X)dx @)

(Formula (2) has a simple geometric interpretation in thatright hand side of
(2) represents the area of the portion of thegyf-plane bounded by the curve
y = g(X) and the straight lineg— g(0) = (g(1) - g(0))x, x = g(0) andx = (g1)).

In (2), we now seg(x) = f(x+Kk), successively fok = 1,2,...,n—1. We then
have fork=1,2,...,n-1,

k+1

folf’(x+ k)(x—%)dx:%(f(k)+f(k+1))—j; F(dx

Adding up, we obtain formula (1). O

This is Euler's summation formula in its simplest form, witie remainder
term involving only the first derivative off ().

It is interesting to notice that if one uses the fact that tberker series
eZninx

- i (n = 0, omitted) converges uniformly to— 1/2 in any closed in-

n
terval €, 1 — €)(0 < € < 1) one obtains from (2) the following useful result,
namely,

If f(X) is periodic in x with periodlL and has a continuous derivative, then

f(x) = i e fo lf(x)e’z’””xdx

N=—00
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Proof of Proposition 1.Let us now specializé(x) to be the functionf(x) =
xS = e Xl09X (]og x taking real values fok > 0). The functiox S is evidently 3
continuously difterentiable in the interval ¥ x < n; and applying (1) to the
functionx 3, we get

n-1 1 1 1
-s x+k‘s”1(x——)dx+—l+n‘s
3, f) et (x5 o 5

n n
= Z k™S — f Xx~Sdx
k=1 1

_ ZE:1 kj _ _1fs_n1‘5(.if s# 1) o
Sh k= logn(if s=1).

Let us now observe that the right-hand side of (3) is an efitinetion of s.

We suppose now that > 1. Whenn tends to infinityfln xSdx tends to
n
1/(s - 1). Further, as tends to infinity, 3, k= converges ta’(s). Thus for
k=1
o > 1, the right hand side of (3) convergesds) — 1/(s — 1) asn tends to
infinity.
On the other hand, let the left-hand side of (3) be denoted,fs). Then
©n(9) is an entire funciton o and further, forr- > € > 0,

1 .\, 4. 1+ne€
< = fy ————
len(s)l < sl él K+ 5

< %|s| Z kKley1
k=1

Thus, as tends to infinity,on(S) converges to a regular function efin the
half-planes- > 0; this provides the analytic continuationg{f) — 1/(s— 1) for

o> 0.
Now the constandy in the power-series expansionst 1 of

(9~ sog =+ a(s- D+ a(s— 1P+

is nothing butn limgn(1). In other words,

lim 1+1+ +1—I0 n
& > n g

nN—oo
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= C (Euler’s constant).

Proposition 1 is thus proved. 4

The constan€ lies between 0 and 1. It is not known whether it is rational
or irrational; very probabily, it is irrational.

One could determine the constaaisay, . . . also explicitly but this is more
complicated.

We shall consider now an analogous problem leading toKitemecker
limit formula (Kroneckersche Grenzformle).

Instead of the simple linear functiog we consider a positive-definite bi-
nary quadratic fornrQ(u,v) = al? + 2buv+ c\? in the real variablesu andv
and withreal coeficientsa, b, ¢ (we then havex > 0 andac - b? = d > 0).
Associated withQ(u, v), let us define

o= > @Qmmn)™ (4)

mn=—co

where),” denotes summation over all pairs of integarsr(), except (00).

Q(u, v) being positive-definite, there exists a real number 0, such that
Q(u,v) > A(U? + v?) and it is an immediate consequence that the series (4)
converges absolutely fer > 1 and uniformly in every half-plane defined by
o > 1+ €(e > 0). Thus{g(s) is a regular function o§, for o > 1.

As in the case of(s) above, we shall obtain an analytic continuation of
£o(9) regular in the half-plane- > 1/2, except for a simple pole at= 1. The
constangy in the expansion & = 1 of {o(9), viz.

4q(S)=§ll+ao+a1(S—l)+~--

is given precisely by the Kronecker limit formula. The cargta_; which is
the residue of(s) ats = 1 was found by Dirichlet in his investigations on the
class-number of quadratic fields.
Letus first éfect some simplifications. 5
SinceQ(u, V) = Q(-u, —v), we see that

fo9 =25 @moy=+23 3 @mny (5)
m=1

n=1 M=-co

Further

b 2
Qu.Y) = a(u+ aV) R (C_ _)Vz
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( b )2 d ( b+ v—d ]( b- v—d ]
=alu+-v| + V¥ =alu+ v|ju+ Vv
a a a

=a(u+zy(u+2zvy

where argty/—d) = /2 andz = (b + V—d)/a = x + iy with y > 0.

Also, we could, without loss of generality, suppose that1; if Q;(u,V) =
(1/ Vd)(@aw? + 2buv+ c\?) = agl? + 2bjuv + V2, thengo, () = d¥2¢o(s) and
a;c; — b2 = 1. The functiond¥? (choosing a fixed branch) is a simple entire
function of s and therefore, to studyo(s), it is enough to considefo,(s).
Then we have = y* andQ(u, V) = y X(u+2zW)(u+2V) = y Yu+zv2. Now (5)
becomes

{9 = 2y5i m> + Ni i Im+nz~>
m=1 n=1 m=—oo

00

=2%(29+2° ). > Im+nz > (6)

n=1 m=-c0

We know from Proposition 1 thad{(2s) has an analytic continuation in the
half-planec > 0, regular except for a simple pole at= 1/2. To obtain
an analytic continuation fafo(s), we have, therefore, only to investigate the
nature of the second term on the right hand side of (6), asaifumof s. For
this purpose, we need tiisson summation formula.

Proposition 2. Let f(x) be continuous if{—co, o) and let § f(x + m) be
M=—o00
uniformly convergent il® < x < 1. Then

00

Z f(x+m) = i g 2rikx f f(£)e™ g,

m=—oco k=—c0

Proof. The functiong(x) = m?]m f(x + m) is continuous in {0, ) and pe-
riodic in x, of period 1. Ifa, = fol ()& d¢ then, by Rjer's Theorem, the
(C,1) sum of § ae~ 2k s equal tap(x). In particular, if 3’3 lay| converges,
then forxin (kj;go ) o

o

S rcrm = g9 = Y el fo e
k=—c0

m=—o0
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In view of the uniform convergence ofy, f(x+m)in0<x<1,

fo ' ;}w f(& + meF*ds = m:im fo ' f(& + meFde
= f N f(£)e ¢ de.
Thus - . N
D fxrm)= ) ek f fe)ede, @)
m=—oo k=—0c0 -

which is the Poisson summation formula.
Now we setf(x) = |x + iy|™® = |72 for x in (=0, ). Then we see

that the series Y, |m+ Z2% converges absolutely, uniformly in every interval

m=—oco
—-N < x < N, for o > 1/2. For this purpose, it clearly fiices to consider the
interval 0< x < 1, since the series remains unchanged whenreplaces by
x+ 1. ForO<x<1,

(o] (o]
Z Im+ 272 < Z Im+ 2%
M=—co m=—co
(o)

<14 +1z-17% + Z:(m’z‘r +m )
m=1

% 1
<2y 4 ZZ m 2" (0' > 5).
m=1

o 7
Thus, by (7), folo > 1/2,
i m+27% = i R f e+ iy e
Moo rd oo
- i e f @)
o oo
Sy Y e [(areryeme @

k=—oc0

whenever the series (8) converges. Actually, we shall pthaeit converges
absolutely foro- > 1/2. For this purpose, let us consider for- 0, f_°;(1+
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)~ d;s as a line integral in the complexplane; let¢ = ¢ + in. The
function (1+ £%)~S has a logarithmic branch-point &t= i and/ = —i. In
the complex-plane cut along the-axis fromn = 1 ton = co and from

n =—-1ton = —oo, let ABCDEFGdenote the contour consisting of the straight
line GA(n = 0,l¢] < R), the arcAB(¢ = Ré’r > 6 > n/2), the straight line
BC(¢ = 0,3/2 < n < R) on the left bank of the cut, the circle

CDE({ =i +(i/2)g¥,0 < ¢ < 2n),
the straight lineEF on the right bank of the cut(= 0,3/2<n < R)

Fig. 1

andthe arcG(¢ = Re?, 7/2 > 6 > 0). If slies in a compact seéf of the 8
s-plane witho > 0, then on the arcABandFG,

L+ ¢ < 1+ £ e Rsing
_ O(R_Zg-e—27rky Rsiné))

since-r < arg(1+ £?) < = on the whole contour. The constants in the
estimate depend only df. Thus

/2
(1+§2)‘5e2”iky4d,:‘ = o(R-z‘f f " oy RS‘”"R(B)
AB 0

r/2
ol [ e
0

— O(R—Z(r)’

and hencef, ,(1 + £?)~%¢*™d/ tends to zero aR tends to infinity. Similarly
Jee(1+ £3)~5e*™ ¢ d7 also tends to zero @&tends to infinity. I denotes the
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contourBCDEF in the limiting position afR tends to infinity, then foo- > 0,
we have, by Cauchy’s Theorem,

f (@t ) = f (L+ ) sz, ©)
B N

LetI'~ denote the limiting position o8’C’D’E’F’ (which is the reflection
of BCDEFwith respect t&-axis), aRtends to infinity. We can show similarly
that wherk < 0,

f (L4 )iy = f (1+ 3%z (10)
—00 I

We shall now show that the right hand side ®P(defines an entire function
of s. Infact, if s= o +it lies in a compact séf in the s-plane witho- > —d(d >
0), then, on™* we have for a constam depending only oK, |1 + /%" <
¢, Thus fork > 0,

(1 + {2)—se2rriky{dé«
l—‘+

< f L+ &) Sy
r+

< [ s greateingg <o [ et
r+ I+
< Cze—ﬂkyf UZde—any(n—%)|dé/| < Cze—n'kyf nZde—Zny(n—%)|d§|
I+ I+
< cze™, (11)
the constants, andcz depending only oK. Hencefp(l + %)™ d con- 9
verges absolutely and uniformly Khand therefore defines an analytic function

of sin any domain contained . Sinced is an arbitrary positive number, our
assertion above is proved. Similar to (11), we have als& fo0,

< cie M, (12)

(1 + 52)—SeZJriky{d§
-

and thereforg (1 + £)~%¢*"¥d; defines fork < 0, an entire function o$.

In view of (??), (10), (11) and (12), we see that in order to prove the abso-
lute convergence of the series (8), for> 1/2, we need to prove only that for
o>1/2, 7 (1+¢?)~%d¢ exists. But, in fact, forr > 1/2,

f T+ P)odr =2 f 1+ s
—00 0
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= f (L+2)S12dA  (setting?? = )
0

1
= f (31— p)>%2du|settingd = —H—
0 1-u

1 1
=B[=Z,s- =
(Z’S 2)’

whereB(a, b) is Euler’s beta-function. Hence

°° B OICE)
[ ey =Tt

Thus, foro > 1,

S -2s _ ﬂF(S 2) 25 125 —2rimx 2\—S2rimyl
n;mlmul —Tg Z e f(1+:) ez,

—00

where the accent anindicates the omission of = 0. Substituting this in (6), 10
we have foro > 1,

£o(9) = 2y (29)+
O (705 3) L oe 1o 1ioe 19
+2}ﬁ;{ NG nt Zsyl 25, pt 2sy1 25y

y Z/ e—znimnxfw(1+{2)—se2nimny_(d{}

m=—oco

By (??) and (10), therefore, far > 1,
nl(s— 3)
1"( s)

+ 2y1 sznl 2s Z e—anmnxf (1+§’2) se27r|mny(d§

M=—0c0

o(9) = 2y%¢(29) + 2y {(2s- 1)+

-3)

(9 = 2°¢(@9) + > E (25— 1)+ Y SZ 2o

> {Z e—27rimnxf (1+ 42)—se2nimn){d§+
m=1 e
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eznlmnx 1+ év2) a %Imn%dg} (13)
2.

m=

The double series in (13) converges absolutely, uniformlgvery compact
subset of thes-plane, in view of the fact that by (11) and (12), it is majeds

by
[ee] o0 (]
2yl—(r Z ni-2r (03 Z g mny C’3 Z e—zrmny] i
n=1 m=1 m=1

whichclearly converges. Since we have seen earlier tha¢thes of the double 11
series define entire functions sfit follows by the theorem of Weierstrass that
the double series in (13) defines an entire functios. of

Formula (13) gives us an analytic continuatior¢gfs) for o > 1/2. For,
£(29) is regular foro- > 1/2 and from the fact thaf(s) can be analytically
continued into the half-plane > 0 such that(s)-1/(s-1) is regular fowr > 0,
we see on replacing by 2s — 1 that/(2s — 1) can be continued analytically
in the half- planeo- > 1/2 such that(2s - 1) — 1/2(s — 1) regular foro- >
1/2 :T(s- —)/F(s) is regular foro- > 1/2 and non-zero a¢ = 1. Hence from
(13), we see thajg(s) can be continued analytically in the half-plane- 1/2
and its only singularity in this half-plane is a simple polesa 1 with residue
equalto 2 72 - 72 - 1/2 = r.

lo(8) — n/(s— 1) has therefore a convergent power-series exparsgien
a(s—1)+--- ats= 1. We shall now determine the constapt Clearly, from
(13),

2@+ im (2D sy
a0 = 2y((2) +lim | 2y TC( - )__l +
+22 (Zemenxf (1_'_4«2) 1e2mmny(dé,+
n=1
imnx 2\-1 —2ximny
+;e2” fr_(1+;j) e dg)
Now from
(9 = —+C+a1(s 1)+--
we have

[(2s-1)= +C+2a(s—-1)+---.

1
2(s-1)
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Also replacings by s— 1/2 in the formula

F(s+ %)F(s) = V- 2Y°251(29).
wehave L
r (s— E)F(s) = Vr22 (25 - 1).
At s= 1,I'(s) has the expansion
rs)=1+a(s-1)+---

and hence
r’(s)=1+2a(s-1)+---

Further ats= 1,
r2s-1)=1+2a(s-1)+---

Hence we have &= 1, by Cauchy multiplication of power-series,

F(2s—-1)r2s) =1+b(s— 17+

and thus
2y} )2)4(2 s 1) = 229 H D )1):(2 -1
=27(1+b(s—1)? +---)x
><(1—2Iog(2\/§/)(s—1)+--~)><
—1 C
x(2(5_1)+ )
In other words,
. s 1T(S—3)
lslgﬂl(Zy ™ TE {@s-1)--— ] 27(C - log(2vy))/

Now (see Fig. 1), fomn > 0, since (1+ £2)~! has no branch-point @t= i or
5 = _i!
(1+§2)—1e27rimny(d§ — f (1+é«2)—1e2ﬂimn)(d{
r+ CDE

imny

= 2ri [Residue ofezn— atl =i
1+/22

12
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= e 2 mny,
Similarly, formn> 0, 13
. —2mimny,
(1+ gZ)—le—Zﬂlmn%dg = —27i (RESidue Ongz atf = —I)
-
—2rmny

=ne

Hence

7T2 X 1 S —27imnx-2rmny
ao=§y+27r(C—Iog(2\/)7))+2nZﬁZ‘ie +

n=1 m=
(o) 1 (o9
+ Zﬂ_z = Z g&rimnx-2rmny
n
n=1 m=1

These series converge absolutely and it is practical to siamndirst. Then

e—27r|mn2 +

Sl

2 (o) [ee)
T
2= Zy+ 2ﬂ(C—I092W)+2n;lnz:;

+ Zﬂi i %eZnimnz

m=1n=1

2 i P
= %y +27(C - log(2y)) - 21 ) log(1— 2m2)
m=1

-2 i log(1 — e#M?)
m=1

21(C - log(2+)) - 2n(log ™€ 2 1 log [ [(1 - ™)+
m=1

+log ]—[(1 — grimz)),
m=1
For complexz = x + iy with y > 0, Dedekind defined the-function,
T](Z) — e(riZ/lZ 1—[(1 _ e2ﬂim2)‘
m=1

Inthe notation of Dedekind, then, 14
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ap = 271(C - log 2+Y) — 2rlogn(2)n(-2))
= 21(C - log 2~ log(\¥In(@)")).

Thus we have proved

Theorem 1. Let z= x +iy, y > O and let Qu,v) = yX(u+ v - (U + V2.
Then the zeta functiotiy(s) associated with Q,v) and defined by gy =
>(Q(m,n))~S, s= o +it, o > 1, can be continued analytically into a function
mn

of s regular foro- > 1/2 except for a simple pole at=s 1 with residuer and at
s=1, {o(s) has the expansion

(o9 = 57 = 2n(C ~ 109 2~ log(Vyin(dP) +as(s— 1)+

This leads us to the interestifiigst limit formula of Kronecker , viz.

im (¢0(9) = = | = 2r(C - log 2~ log \in(P).

We make a few remarks. It is remarkable that the residug@) ats= 1
does not involvea, b, ¢ and this was utilized by Dirichlet in determining the
class-number of positive binary quadratic forms. Of couweehad supposed
thatd = ac- b? = 1; in the general case, the residueZgfs) at s = 1 would
bex/ Vd.

This limit formula has several applications; Kronecker &éifi gave one,
namely that of finding solutions of Pell's (diophantine) ationx? — dy? = 4,
by means of elliptic functions. It has sereval other appilices and it can
be generalized in many ways. In the next section, we shailvghat as an
application of this formula, the transformation-theory;(f) under the elliptic
modular group can be developed.

2 The Dedekindn-function

Let $ denote the complex upper halt-plane, namely the set-=of + iy with
y > 0. Forze $, Dedekind defined thg-function

7’](2) — e(riZ/lZ ﬁ(l _ eerimZ).
m=1

15
This infinite product converges absolutely, uniformly irBvcompact sub-
set ofH. Thus, as a function of, n(2) is regular in$. Since none of the factors
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of the convergent infinite product is zero § it follows thatn(2) # 0, for z
in 9. If g andgs are the usual constants occurring in Weierstrass’ theory of
elliptic functions with the period-pair (%), then (2)%?(2) = g3 - 27g2. The
functionn(2) is a “modular form of dimensior1/2".

Leta, B, y, 6 be rational integers such thad — 8y = 1. The transformation
z— 7' = (az+ B)(yz+ 6)~* takes$ onto itself; for, ifz* = x* + iy*, then

_1 s _1 az+pB  aZ+p
yk_Zi(Zk Z)_Zi(72+6 72+6)

1 _ _ _
= E(Z_ Dlyz+ 62 =ylyz+ 6> 0, (14)

and clearlyz = (62 -B)(—yz'+a) 1. These transformations are called “modular
transformations” and they form a group called the “elliptiodular group”. It
is known that the elliptic modular group is generated by tihhgpe modular
transformationsz — z+ 1 andz — —-1/z In other words, any general modular
transformation can be obtained by iterating the transftionaz — z+ 1 and
z— -1/z

We shall give, in this section, two proofs of the transforimraformula for
the behaviour ofy(2) under the modular transformatian— —1/z. The first
proof is a consequence of the Kronecker limit formula prowve$i 1.

With z = x + iy € $, we associate the positive-definite binary quadratic
form Q(u,v) = y~(u+ vz)(u+ v2). By the Kronecker limit formula foro(s) =

Y (Qmn)~
mn=-co

im (¢a(9) - < ) = 2r(C - log 2~ log(\51n@)P)) (15)

Letz' = (az+B)(yz+6)~t = x* + iy* be the image of under a modular trans-
formation. Then withez*, let us associate the positive-definite binary quadratic
form

Q'(u,v) = yHu + vZ)(u+vz)).

Again, by the Kronecker limit formula for 16

9= > (@mn)=
mn=—oco
v/

sTl) = 27(C - log 2 - log y*In(z")1?). (16)

im (2o (9 -
Now, by (?7?),

vy Um+nZ 2 = y Yyz+ 62m+ n(az + B)(yz + 6) Y2
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=y im(yz+ 6) + n(az+ B)?
= yHI(ms + nB) + (my + na)z’.
Sincea, B, y, ¢ are integral andvé — 8y = 1, whenm, n run over all pairs

of rational integers except (0), so do (nd + N8, my + na). Thus, in view of
absolute convergence of the series,dos 1,

fo(9 =" (y m+nzP)
mn
= >y H(ms + ) + (my + na)z?)
mn
= >V time )
mn

i.e. foro > 1,
5o(9) = 4q (9

(Co(s) is what is called a “non-analytic modular functionzsy.
Sincelo(s) and{q-(S) can be analytically continued in the half-plame>
1/2, {o(s) = Lo (9) even foro > 1/2. Hence, from (15) and (16),

log(V¥in(@)F) = log(\y In(2));
ie. . .
n@lys = n(z)ly?.
By(?7?), then, we have

‘n(ﬂ)| = @Iz + 3. (17)

yZ+96
Let us consider the function
n((az+B)(yz+6)™)

\YZ+on(2)

where the branch ofy/yz+ ¢ is chosen as follows; namely, if = 0, then

a = 6 = =1 and assuming without loss of generality that 6 = 1, we choose
\Vyz+6 = 1. If y # 0, we might suppose that> 0 and theny/yz+ ¢ is that

branch whose argument always lies between Orafwdt z € $. Sincen(z) and

vyz+ 6 never vanish i, (17) means that the funcitof(z) which is regular
in $ is of obsolute value 1. By the maximum modulus princifdl€) = ¢, a

constant of absolute value 1. We have thus

f(2) =
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Proposition 3. The Dedekind-function
n@ =] |@1-e"m),ze 9
m=1

satisfies, under a modular transformation-z («z + g) - (yz+ 6)7* the trans-
formation formula

n((az+B)(yz+06)™") = erflyz+ on(2
with € = €(a, 8,7, 6) and|e| = 1.

We shall determine for the special modular transformatiors;—» z+ 1
andz — -1/z
From the very definition of(2),

n(z+1) = €%(2) (18)

and so here = /12,
Also if we setz = i in the formulan(-1/2) = e+zn(2), we haven(i) =
e Vin(i). Sincen(i) # 0, = 1/ Vi = e /4,
Thusy(—-1/2) = €™/ \/zy(2). We rewrite this as 18

o[-3)- ﬁn(z), (19)

v/z/i being that branch taking the value 1zat i.

To determinee in the general case, we only observe that any modular
transformation is obtained by iteration of the transfoiioraz — z+ 1 and
z— —1/z Since every time we apply these transformations we geigin of
(18) and (19), a factor which is7/12 or e7/4, we see that is a 24" root of
unity; e can be determined this way, by a process of “reduction”.

The question arises as to whether there exists an explisiesgion fore,
in terms ofa, B, y ands. This problem was considered and solved by Dedekind
who for this purpose, had to investigate the behaviouy(gf asz approaches
the ‘rational points’ on the real line. This problem has dbe@n considered
recently by Rademacher in connection with the so-callediééd sums’.

We now give a very simplalternative proofof formula (19).
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Letus consider the integral 19

1 nl d¢
éLCOIﬂ{COt??

whereC; is the contour of the parallelogram in tlfeplane with vertices at
¢ =t, tz, -t and—tz (t positive and not integral).
The integrand is a meromorphic function/ofit has simple poles dt= +k
. . 1 k 1
and? = +kzk = 1,2,3,...) with residues— cot% and — cotrkz respec-
T

k nk
tively, as one can readily notice from the expansion

1 gnu
cotru= — — — +

au 3
valid for 0 < |u] < 1. Also, the integrand has a pole of the third ordef &t0,
with residue-1(z+ 1/2).

Lett = h+ 1/2, h being a positive integer. Then there are no poles of

the integrand orC; and insideC; there are poles at = 0, £k and +tkzZk =
1,2,...,h). By Cauchy’'s theorem on residues,

. ( h h
1 r 1 k r 1 1 1
—f cotn§cotn£% = @ Z — cotﬂ— + — cotrkz— = [z+ = )¢,
8Jc,,, z¢ 8 |~ 7k z & ok 3 z

the accent o indicating the omission df = 0 from the summation. In other
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words,

cde( 1) i1 k
fC cotn{cotn—1—2(2+ ) é{zk(cotnkucot?)}. (20)

he L 3 k=1

ool

We wish to consider the limit of the relation (20) hgends to infinity
through the sequence of natural numbers.
For this purpose, let us first observe thaf i & + in, then

gl 4 g7id

cotnd = |m

tendsto-i if  tends toxo, and tends te, if n tends to-co. Similarly cotr(¢/2) 20
tends to-i, when the imaginary part df/ztends toco and toi, when the latter
tends to—c. If O is the origin and? tends to infinity along a rapP with
P on one of the open segmemd, BC, CD, DA of Ch+, (see figure), then
cotn - n(£/2) tends to the valuesl, -1, +1, -1 respectwely Moreover, this
process of tending to the respective values is uniform, wtherrayOP lies
between two fixed rays fror®, which lie in one of the sectoraOB, BOC,
COD or DOA and neither of which coincides with the lings= 0 or = Az
(4 real). This means that the sequence of functi@os$m(h + 1/2)¢ cotr(h +
1/2)(¢/2)} (h = 1,2,...) tends to the limits+1 or —1 uniformly on any proper
closed subsegment of a side@f.

Moreover, this sequence of functins is uniformly boundedGan This
can be seen as follows. L& denote the disck — j| < 1/4, j = 0, 1,
+2,.... In view of the periodicity of cot/, let us confine ourselves to the
strip, 0 < ¢ < 2. We then readily see that in the complement of the set-
union of the disc¥y, K; andK; with respect to this vertical strip, the function
cotn is bounded; for cot tends tari asn tends torco and is bounded away
from its poles a = 0, 1 and 2. Indeed therefore, egtis bounded in the
complement of the set union of the did€g j = 0, £1,... with respect to the
entire plane. Since the contoutg, ;, forh = 1,2,. I|e in the complement,
we have cotnl| < afor ¢ € Ch+1 anda mdependent of and/. By a similar
argument for cot//2) concernlng its poles atkz we see that for € Cm ,
h=12,...|cotx/2)| < B, B mdependent oh and{. In other words, the
sequence of functionsotr(h+ 2){ cotn(h+ 1)(g/z) is uniformly bounded on
¢1. Now

A ds 1 1) {d
fcml cotn{cot7? = fcl cotn(h+ 2)§cotn(h+ 2) 2 (21)
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and in view of the foregoing considerations, we can intemgieathe passage to
the limit (ash tends to infinity) and the integration, on the right side of)(2
Thus, lettingh tend to infinity, we obtain from (20),

e d) sl L L L)F
= 12 {Z % (cot;rkz+ cotﬂ—zk)}. (22)
Now 1/ o . Nar 1/ [ g 21
WL L L)E L L)

For z in the -plane cut along the negativeaxis, let logz denote the branch
that is real on the positive-axis. Then we see

ﬁ%:logz and Il%zlogz—ni.

Thus from (22),

i 1y 1 i i[> 1 7k
1—2(Z+ E)+ é(logz— E) = é[ék(cotﬂ'kZ'F COt;)} (23)

We insert in (23), the expansions

ikz

. e _ SH—
cotrkz= —i (1+ Zm) =i [1+ Zleez”'m Z)

and _
e—2mk/z

ik o o N —2imrk/z | .
Cot?—|(1+2m)—l[l+2216 ,
m=

then we see that the resulting double series is absolutelyecgent. We are
therefore justified in summing ové&ffirst; we see as a result that the series (23)
goes over into

_i:log—(l_ez,rima = 7](_%)+ﬂ—i(z+%).

A-ezmy 975 T2

m=1
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Finally

log TI(—%) = }(Iogz— ﬂ—l) = log \/?
n(2) 2 2 i’
whereyz/i is that branch which takes the value 1zt i i.e.n(-1/2) = 22
Vz/n(2).
We wish to remark that it was only for the sake of simplicitattive took
a parallelogranC; and considered ‘dilatation£h+% of C1. It is clear that
instead of the parallelogram, we could have taken any otlesied contour
passing through 1z, -1, —z and through no other poles of the integrand and
worked with corresponding ‘dilatations’ of the same.

3 The second limit formula of Kronecker

WE SHaLL consider now some problems more general than the ones cimger
the analytic continuation of the functiaf(s) in the half-planer > 1/2 and
the Kronecker limit formula foto(s).

In the first place, we ask whether it is possible to contigiy(s) analytically
in a larger half-plane; this question shall be postponethfepresent. We shall
show later § 5) that/(s) has an analytic continuation in the entire plane which
is regular except for the simple polesat 1 and satisfies a functional equation
similar to that of the Rieman{+function.

Instead ofp(s) = f’ (Q(m, n))~3, one might also consider
mnN=—oco

D, Qm+pn+v)

mn=—co

whereu andy are non-zero real numbers which are not both integral andavhe
mandn run independently from oo to +00. Or, instead of the positive-definite
binary quadratic forn@Q(u, v), we might take a positive-definite quadratic form
in more than two variables. Let, in fa@,= (s;), 1 <1, j < p be the matrix of

a positive-definite quadratic formy, sjx x; in p variables. Let us consider
1<i,j<p

(o]

{s(S) = Z [Z Sij Xixi]
0

X1,..., Xp running over allp-tuples of integers, except,(Q.,0). The func-
tionZs(S), known as the Epstein zeta-function, is regular &d@p/2. It was 23
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shown by Epstein thdg(S) can be continued analytically in the ent&@lane,
into a function regular except for a simple poleSat p/2 and satisfying the
functional equation

7 T(S)¢s(S) = 1812 @29 (2 - 8) 254 (2 - o)

Epstein also obtained fak(s), an analogue of the first limit formula of Kro-
necker but this naturally involves more complicated fumresi thamn(2).

We shall now consider a generalizationZg{s) which shall lead us to the
second limit formula of Kronecker. namely, letandv be independent real
parameters. Let, as befoi®(m, n) = an? + 2bmn+ cr? be a positive-definite
binary quadratic form and letc — b? = 1, without loss of generality. We then
define, foro- > 1,

§Q(5, u,v) = Z, ez”i(m'**“V)(Q(m’ n))—s (24)
mn

m, n running over all ordered pairs of integers excepOJ0 The series con-
verges absolutely for- > 1 and converges uniformly in every half-plane
o > 1+ ¢e(e > 0). Thuslg(s u,v) is a regular function o6 for o > 1. If

u andv are both integers, thefy(s, u, v) = {o(s) which has been already con-
sidered. We shall, suppose, in the following, that

u and v are not both integers. (*)

Furthermore, on account of the periodicity &f(s, u,v) in u andv, we can
clearly suppose that 8 u, v < 1. The condition £) then means that at least
one of the two conditions @ u < 1, 0< v < 1 is satisfied. We might, without
loss of generality, suppose thatO u < 1. For, otherwise, ifu = 0, then
necessarily O< v < 1. In this case, let us take the positive-definite binary
quadratic formQ.(m, n) = cn? + 2bmn+ ar?; we see then that, far > 1,

fo(s u) = ) M MI(Qym ).

mn

And here, since & v < 1, v shall play the role otiin (24).

Weshall prove now thafy(s, u, v) can be continued analytically into a func24
tion regular in the half-plane- > 1/2 and then determine its value &t 1,
this will lead us to the second limit formula of Kronecker.

Foro > 1, by our earlier notation,

(Q(S, uv) = ys Z eZJrimulm|—25+ys Z g2rinv Z eZJTimUIm+ nZI_ZS. (25)

N=—o00
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The first series in (25) converges absolutelydor 1/2 and uniformly in
every compact subset of this half-plane. Hence it defineg@aefunction of
sfor o > 1/2. The double series in (25) again defines a regular function o
sin the half-planer > 1. To obtain its analytic continuation in a larger half-
plane, we shall carry out the summation of the double semnid¢ise following
particular way. Namely, we consider the finite partial sums

Z' Z e2ni(mu+nv)|m+ nz‘—Zs'

N <nN<n; M <m<ny

We shall show that whemy, andn; tend to—o independently andy, andn,
tend toco independently, then these partial sums which are entiretifums of
s converge uniformly in every compact subset of the half-plan- 1/2. The
proof is based on the method of partial summation in Abel'sarem.

iku
. (Recall that O< u < 1).

Let us define for any integds, ¢ = TR

Thene”™ = ¢,.,1 — Cy. Moreover,
lCml < 11— €™ = @

whereqa is independent ofn. Now

’

e2ni(mu+nv)|m+ nZ‘—ZS
N <N<np ME<m<my

PRSI
Im+ nz|25

n=n;
= Z g¥rinv Z Cm(IM=1+nZ"%° = |m+ nZ"2%)+
n=n; m=m+1
+ Crmps1|Mp + NZ ™25 — Gy Iy + NZ725). (26)
Let us also observe that 25

|Cmy 1l + N7 < ain[ 27y 2

and
2 20\ 20
|Cmy IMy + NZ7%| < @In["27y >,

Further

Im=1+n72"2 - |m+nz"%
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‘—25 f ) (e + N2 + n2y2) S L + nx)d,u'
m-1
<2s fm (( + nX)? + N2 @+ Dy,
m-1

Thus (26) is majorised by

2sa Z Z ((,1 +nX)2 + n2y2) " Ddy + 20y 2 Z 2. (27)
n=n; m=m+1 n=ny
In (27), we sunmfrom —oo to +oo instead of summing fromy + 1 tom, and
then we see that (26) has the majorant

209 Z f (e + N2 + 222D dy + 20y Z =2

n=nNg n=nNg

Now 2
f ((u+ 12 + n?y?) Dy = f (1 + n?y?) "+ Dy

_ n 2y f L+ e, (28)

Since the integral in (28) converges for> 1/2, we see that (26) is majorised
by s Z In|=2", B depending only on the compact set in whislies in the

half- pIaneo- > 1/2 and onx andy.
If, in (26), we now carry out the passagerof andn; to —c and ofm,
andn; to +co independently, then we see that the double series in (25)®aim

in this particular manner, is majorised by the ser;EsZZn‘z" Hence it con-

verges uniformly wherslies in a compact set in the half -plape> 1/2. Since
each partial sum (26) is an entire functionspfve see, by Weierstrass’ Theo-
rem that the double series in (25) converges uniformly toration which is
regular foro- > 1/2 and which provides the necessary analytic continuation in
this half-plane.

Thus under the assumption theandv are not both integergg(s, u, v) has
an analytic continuation which is regular fer> 1/2. We shall now determine
its value ats = 1. We wish to make it explicit that hereafter we shall makeyonl
the assumption«} and not the specific assumptiorkQu < 1.

From the convergence proved above, it follows that

e2mmu
Lo(Luv) = Z —+

Im2
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imu

z2-2 v inv
2 Z & Z (Mm+ n2(m+ n2) (29)

N=—o00

where the accents dhhave the usual meaning.

o imu o é%mu
In order to sum 3, e we observe that since the seriey, 27
m=—o0 mM=—o00
converges uniformly to/A1/2 — u) in any closed interval. @ p<u<qg<1,
we have
u © e&mu u “,e&mu
f Z du= I|m ( Z ] du
0 mM=—o00 m €0 € [1=e] m
émmu
-im > [
ie.
m/é%mu w,é%mu
27i(u— u?) = — lim - ,
ie.
>, é%mu ”2
2%(W% —u —~ -,
(F-v)= Y = -3
m=—o0
0o imu
since Y’ is continuous iru. In other words,
mM=—o00 mz

w,éhmu o[ 5 1
n;m = =2n (u u+6).
We shall sum the double series in (29) more generally atplaced by,
where-r € $. Leter, we shall set = z. We remark that with slight changes,
our arguments concerning the serfgse? (M*™)|m + nz-2% above will also
go through for the double serigd e (M*™)((m + n2) - (m+ nr))~S. Now for

summing the series

|nv S ezmmu
Z Z (m+ n2(m-+ nr)

N=-—0c0
- Skl S NP | 1
_Eg_:w n n;me& (m+nr_m+nz)' (30)

we could apply the Poisson summation formula with respent to the inner
sum on the left side of (30), but we shall adopt fietient method here.
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Letus define, for complex= x + iy, 28

b > imu —27imu
f(2 = % + Z + (ezn + c )
m=1 m=1

Zz+m z-m
and considerf(2) in the strip—1/2 < x < 1/2. It is not hard to see that
wheneverz lies in a compact set not containizg= 0 in this strip, the series
converges uniformly and hendg€z) is regular in this strip except at = 0,
where it has a simple pole with residue 1. Moreover, one cawshatf(z) —
1/zis bounded in this strip. Further

f(z+1) = e ZU{(2).

Consider now the function

—2riuz
92 = him;
0(2) is again regular in this strip exceptat 0 where it has a simple pole with
residue 1. Moreoveg(2) = 1/zis bounded in this strip; as a matter of fact, if
0 < u<1,9g(2 tends to 0 ify tends to+oo or —co and ifu = 0, theng(z) tends
to 0 or Zri according ay tends to+co or —co. Furtherg(z + 1) = e 2"g(2).

As a consequence, the functid(z) — g(2) is regular and bounded in this
strip and sincef (z+ 1) - g(z+ 1) = e 2U(f(2) - g(2)), it is regular in the whole
z-plane and bounded, too. By Liouville’s theorefifz) — g(2 = c, a constant.
It can be seen that, if # 0,c = 0 and ifu = 0, ¢ = i, by using the series
expansion for the functioncotzz In any case,

f(nr) - f(n2 = g(nr) - g(n2). (31)

In view of the convergence-process of the series (29) destiabove, we
can rewrite the double series (30) as

1 eV 1 & 1 1 1 1
— — =4 e2mmu + _ _
2i Zm n {nr nz ; (m+ nr -m+nr m+nz -m+ hz)}

00

1 , grinv >, g2rinv @ Zriunr @ 2riunz
ZZZ n (f(nr)_f(nz)):ﬂz n (1_€27rinr _1_827rinz)’
=— N=—o00
(32)
by (31). Now, we insert in (32), the expansions 29

- Sna @M (0> 0)

L€ 2™ (n<0)

(1 _ e—2ninZ)—1 — {
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Zor;:o e—2:rimnr’ (n > 0)

_ p2minry-1 _
(1 e ) - {_ Zor;:j_ ez,,imm—’ (n < 0)

valid for z, —r € $ and then the series (32) goes over into

21 . ) > .
P = eZmn(v—ur) + e—2mn(v—uz) + e—27r|n(v—uz—mz)+
H 2

4 grin(v-ur-mn)  rin(v-uzinvz) | e2ﬂin(V“f+mf))} (33)

If 0 < u < 1, then this series converges absolutely, smeea € 7. Carrying
out the summation overfirst, we see that this double series is equal to

- rlog {ﬁ(l _ e*2ﬂi(V7UZ7mZ))(1 _ eZJri(v—urfmr))><
m=0

x l_[(l _ e27ri(v—uz+mz))(1 _ e—27ri(v—ur+mr))} _ (34)
m=1
If u=0, then necessarily @ v < 1 and in this case,
7y %(ezﬂ"‘v +e2™) = —rlog(1- &™)(1- &™),
n=1
Therest of the series (33) is absolutely convergent and snghavern first, 30
we see that the value of the series (33) is given by the expre&34).

Let us now set — uz=w, v—ur = g. Then replacin@ by r in (29), we
have finally, for O< u, v < 1 andu andv not simultaneously zero,

Z—r > e27ri(mu+nv)
2i Z (m+n2(m+ nr)
mn=-oco

— 2; 2 1 = —27i(W-m2)
_—n|(z—r)(u —u+g - nlog rT]:([)(1—e WMy

X(l _ e,27ri(q—mr)) % ﬁ(l _ e,27ri(w+m2))(1 _ e—2ni(Q+mr))} (35)
m=1

Forz € $ and arbitrary complexv, the elliptic theta-functior®;(w, 2) is
defined by the infinite series,

ﬂl(W, Z) — Z e(ri(n+%)22+2ni(n+%)(w—%).

N=—o00
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It is clear that this series converges absolutely, unifgnvtienzlies in a com-
pact set inH andw in a compact set of the-plane. Hence?1(w, 2) is an
analytic function ofz andw for z € $ and complexw. It is proved in the
theory of the elliptic theta-functions thét(w, z) can also be expressed as an
absolutely convergent infinite product, namely,

’l?]_(W, Z) = —ieﬂi(z/4)(é7iw _ —7'riW)><
8 ﬂ(l rilma)(1 - g2 M) (1 - ™). (36)
We shall identify these two forms &f,(w, 2) later on. For the present, we shall

considen?(w, 2) as defined by the infinite product.
Now a simple rearrangement of the expression (35) gives

—I‘ e2m(mu+—nv)
Z (m+ n2(m-+ nr)
= —i(z- r)(u2 —u+ %) + 7l ((W— q) + %(z— r))—

 rlog M1 9916 -1)

n@n(-r)
— —7T2i (W - q)2 - IO l?]_(W, Q)ﬂl(Qa _r)
z-1 n@n(-r)
Z lerl(mLH—nV) _ ﬁl(W Z)ﬁl(q, I’) é.”((w_q)Z/(Z_r)). (37)
—27r| (m+ n2(m+ nr) n(2n(-r)
Settingr = Zagain, we have = w and then 31

_ _ 2: (W - V_V)2 _ ﬁl(W, Z)ﬁl(v_v’ _2)

lo(Luv) =—m I—z— > nmlog —|77(Z)|2

One can see easily from (36) that(w, 2) = 941(W, —2). Hence

P1(w, 2)

R (38)

Zo(1,u,v) = —7%iu*(z-r) - 2rlog

for 0 < u, v < 1 andu andv not both zero.
We contend that formula (38) is valid for alendv not both integral. Since
Lo(L,u+1,v) = {o(Lu,v+ 1) = {o(1,u,v) andw goes over intov + 1 and
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w — zrespectively under the transformations> v+ 1 andu — u+1, it would
sufice for this purpose to prove that

Zo(L.u.v) = —r¥iu¥(z-r) - 2rlog %
and ,
Zo(Lu,v) = —2%i(u+ 1)*(z-r) - 2rlog % :

The first assertion is an immediate consequence of the facf#ifw + 1,2) =
—91(w, 2). To prove the second, we observe that from (36), we have

191(W— z Z) ~ (e(ri(W—Z) _ e—ni(w—z))(l _ ezﬂiw)
h(w,2) (e — eW)(1 - e2i(w-2)

— e+2niw—7riz

and hence 32

91(W, 2)
n(2

Zn(log

hw-z2)]|
@ |

D = +r%i{(2W - W) - (- 2))
= —n%i(z-2)((u + 1)? — 1?).
Thus the second assertion is proved and we have

Theorem 2. If u and v are real and not both integral, then the Epstein zeta
function{g(s, u, v) defined by(24) for o > 1, can be continued analytically
into a function regular fow- > 1/2 and its value at s= 1 is given by(38).

We are finally led to the following formula: viZor all u and v not both
integral,

H1(w, 2)
n(2

Z_ZZ/ e,27ri(mu+nv) . (W—V_V)2
=—nl—— -

2i P

= I
|m + nz?2 z—-2 2rlog

mn
This is the second limit formula of Kronecker. We may rewiitas
— ’ 1
7z-7 e2m(mu+nv)
Z =lo

—27i Im+nz2

V=22 i

n(2

If uandv are both integral, them— uzis a zero ofi$;(w, z) and then both
sides are infinite.

(39)
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4 The elliptic theta-function J(w, 2)

Forz = x+iy € $ and arbitrary complew, the elliptic theta-functior1(w, 2)
was defined ir§ 3, by the infinite product (36)31(w, 2) is a regular function

of zandw, for zin $ and arbitrary complexv. We shall now develop the
transformation-theory off1(w, 2) under modular transformations, as a conse-
guence of the second limit formula of Kronecker.

Letu andv be arbitrary real numbers which are not simultaneouslyiate 33
Letz — z* = (az+ B)(yz+ 6)~ = x* + iy* be a modular transformation. Then
u* = 6u+yvandv® = Bu+ av are again real numbers, which are not both
integral. Foro- > 1, we have

& e27r|(mu*+nv‘) e2ni((rm+r18)u+(my+na)v)
s
y ng: m+nz® Z I(ms + nB) + (my + na)z2s

, e2m(mu+nv)
- ysz Im+ nz2s’

From§ 3, we know that both sides, as functionssphave analytic continua-
tions regula in the half-plane > 1/2 and hence the equality of the two sides
is valid even foro- > 1/2. In particular, fors = 1,

e,27r|(mu* +nv*) e2m(mu+nv)
= 4
ykz m+nz2 yz m+nz2° (40)
By Kronecker’s second limit formula,
2 WY g Mw* Z*)‘ w2 91(W.2)
z - z-2 n(2)

wherew = v — uzandw* = v* — U*z* = w/(yz + 6). Therefore,

log| 110 2)| _joq [P2WD)| _ i W)? i (w - W)
n(z") n(2) 22-2 2 7-7
_dy(w W) log e (rz+0)
2 \yz+d6 yz+9¢
Thus "
w aZt
ﬁl(m’ W) — 1—‘}l(W Z) (mywz)/(yz+6) (41)
n(ﬂ) yled

YZ+96

where|w| = 1 andw might depend on every one of z, «, 3, y ands. Butfrom 34
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(41), we observe thab is a regular function of in $ andw, except possibly
whenw is of the formm + nzwith integralm andn. But sincelw| = 1, we see,
by applying the maximum modulus principle doas a function ofv and ofz,
thatw is independent ofv andz. Hencew = w(a, 3,7, 6).

Now from the fact that

(W, 2) = 22w + - - -

we note thai? (0, 2), the value of the derivative df;(w, z) with respect tawv at
w = 0, is equal to 2r°(2). Differentiating the relation (41) with respectvicat
w = 0, we get

1 91(0.25) 9,09

_ o
YZ+96 n(‘;ﬁ—iﬁ) n(2
ie.
Z+ 5
z+0) 222 = wiP(@).
0z+07 2 (2228 - i)

We have thus rediscovered the formula

n(az+,8) = elyz+ on(@)

vZ+ 6

with e being a 24 root of unity depending only oa, 8, y ands andw = €.
Rewriting (41), we obtain

Proposition 4. The elliptic theta-function has the transformation forenul

W az+p 3 (riyW)/(y2+5)
| ——, = €7\yz+ 6" Y2094 (W, Z
1()/z+<5 yz+6) €Y 1(w.2)

under a modular substitution 2> (az + 8)(yz + 6)~%, € being an8™ root of
unity depending only oa, 3, y andé.

From the transformation-theory gtz) we know that corresponding to the
modular transformatiors— z+1 andz — -1/z, €2 has respectively the values
g/ ande¥/4, Hence

(W, z+ 1) = €491 (w, 2)
- 42
191(\,—\/, —}) = gW /21- \/?ﬂl(w, 2). (“42)

4 4 |

Once again using the fact that the modular transformatiors z + 1 and 35
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z — —1/z generate the elliptic modular group, we can deternathavith the
help of (42), by a process of ‘reduction’. Hermite found apl&it expression
for €3, involving the well-known Gaussian sums.
We now wish to make another remark which is of function-tleorsignif-
icance and which is again, a consequence of Kronecker'sidditoit formula.
Let us define foz € $ and realu andv (not both integral), the function

- 2 )
n(2)
choosing a fixed branch of the logarithmsn Then from (40) and (39),
(V- Uz, Z%) H(V—uz?2) it
n(z') n(2

f(zu,v) = Iog(

log &iv?| = Jog

Hence

az+p .
fl—=.,u+yv,pu+av|=f(zuv)+ia,
(yz " W.pU+ ) (zuv)
where2 is real and might depend an u, v, «, 8, ¥ andé. But sinced is a
regular function ofz, whose imaginary part is zero i 1 is independent of.
Thus

f (QZJF'B,(SU + YV, BU + av) =f(zu,v) +id(u,v,a,B,7,0). (43)
yZ+96
Let nowq > 1, be a fixed integer and latandv be proper rational fractions
with reduced denominatayi.e.u = a/q, v = a/q, (& b,q) = 1 and 0< u,
v < 1. Sincead — By = 1, we have again.

(6a+yb,pa+ab,qg) =1

¥1(V - Uz 2)

Nowfrom (39), we see that Ic* eﬂizuz' is invariant under the 36

transformationsl - u+ 1 andv — v + 71] Hencef(z u, v) picks up a purely
imaginary additive constant under these transformatibmaw, (sa+yb)/q =
(@/q9)( mod 1) and ga + ab)/q = (b*/g)( mod 1) wherea*/q, b*/q are
proper rational fractions with reduced denominaiothen

f(az+ﬁ éa+yb ,8a+yb): f(az+,8 a b )+i/l’

yz+6° q ° q yz+6'q’ q
where’ is real and depends ay b, «, 8, v andés. Writing f(z a/q,b/q) as
fan(2), we get from (43),

az+p
fa*,b* (

yz+ a) = fan(?) +i1'(a.b.a.5.7.0) (44)
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A*(a, b, @, B,v,6) being a real constant dependingarb, «, 8, y andé.
The number of reduced fractioagq, b/q with reduced denominatay is
given byv(q) = ¢ 1‘[(1 1/p?) p running through all prime divisors of Corre-

sponding to each paa/q, b/g, we have a functiori,,(Z) and the relation (44)
asserts that when we apply a modular transformation timese functions are
permuted among themselves, except for a purely imaginatijiael constant.

The modular transformatiorstoaz + 8)(yz + §)~ for which "ﬁ =19
mod q), form a subgroup#(q) of the elliptic modular group called therin-
cipal congruence subgroup of leve(stufe)q.

The group#(q) has indexqv(q) in the elliptic modular group and acts dis-
continuously ony. We can construct in the usual way, a fundamental domain
for .#(qg) in $. This can be made into a compact Riemann surface by identify-
ing the points on the boundary which are ‘equivalent’ undéfq) and ‘adding
the cusps’. Complex-valued functiori$z) which are meromorphic i and
invariant under the modular transformations.#i(g) and have at most a pole
in the ‘local uniformizer’ at the ‘cusps’ of the fundamentiimain are called
modular functions of level . They form an algebraic function field of one
variable (over the field of complex numbers) which coincidét the field of
meromorphic functions on the Riemann surface.

Inthe case when the transformatiors (ez+8)(yz+6)isin.#(q), then 37
referring to (44), we have* = a, b* = band

(az +p
faeb

yZ+ 5) = fan(@ +i1'(a b, @, ,7.9). (45)

The functionf,(2) is regular everywhere ip. To examine its singularities
(in the local uniformizers) at the ‘cusps’ on the Riemanrfee, it sdfices
in virtue of (44) to consider the singularity df(2) at the ‘cusp at infinity’.
It can be seen that at the ‘cusp at infinity,,(2) has the singularity given by
log emi4@*a*-ad+1/6) | view of (45), thenf,p(2) is anabelian integral on the
Riemann surface associated wi#i(qg) and the quantities*(a, b, a, 3, v, 6) are
‘periods’. Since the expressiarf — u + 1/6 does not vanish for rationai,
fap(2) is an abelian integraitrictly of the third kind.Ilt might be an interesting
problem to determine the ‘periodst;(a, b, @, 3,7y, 6).

We had defined the functiafy (w, 2) by the infinite product (36); now, we
shall identify it with the infinite series expansion by whitks usually defined.
For this purpose, we define fare $ and complexv,

f(w,2) = Z efri(n+%)zz+2ni(n+%)(w——) (46)

N=—0c0
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Clearly f(w, 2) is a regular function ofv andz. Moreover, it is easy to see that
fw+1,2) = —f(w,2). 47)

Also replacingn by n + 1 on the right-hand side of (46), we have

f(w,2) = i e(riz(n+1+%)2+27ri(n+l+%)(W—%

N=—c0
— _eZHiWJrniZf(W +z Z),
ie. o
f(w+2z2) = —eZW72f(w,2). (48)

We know already that
MW+ 1,2) = —h(w,2)

and o
D1(W + 2,2) = —eZW=Tizg, (w, 2).
. . f(w,2) . -
Hence,for fixedz € 9, the functionh(w,2) = (w2 is a doubly periodic 38
AL

function of w with independent periods 1 armland is regular inw except
possibly whenw = m + nz with integralm andn, sinced1(w, 2) has simple
zeros at these points. Biifw, Z) also has zeros at these points, since, replacing
n by —n — 1 on the right-hand side of (46), we ha¥é-w,z) = —f(w, 2) and
hencef(0,2) = 0 and from (47) and (48)f(m+ nz z) = O for integralm and

n. Thush(w, 2) is a doubly periodic entire function af and by Liouville's
theorem, it is independent uf, i.e. h(w, 2) = h(2).

The functionh(2) is a regular function of in $ and to determine its be-
haviour under the modular transformations, iffies to consider its behaviour
under the transformatiors— z+ 1 andz — —z1. We can show easily that
h(z+ 1) = h(2). Moreover, by (42),

9 (‘i", _}) _ gzl \/?ﬂl(w, 2.
Z Z | |

Let us assume, for the present, that we have proved the farmul

w 1 iw2.21 z
f(;,_E):eﬂ T\/;f(w,z). (49)

It will then follow thath(-1/2) = h(2). Henceh(z) is a modular function and it
is indeed regular everywhere §
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Now, a fundamental domain of the elliptic modular grougiis given by
the setofz = x + iy € $ for which|zZ > 1 and-1/2 < x < 1/2. Letztend
to infinity in this fundamental domain. Then it is easy to des the functions
91(W, 2724 and f (w, 2 "%/ tend to the same limiti(e”™V — e%). Hence
h(z) — 1 tends to zero astends to infinity in the fundamental domain. But
then, being regular iy and invariant under modular transformations, it attains
its maximum at some point iy. By the maximum modulus principlé(z) — 1
is a constant and sind€z) — 1 tends to zero astends to infinityh(z) = 1. In
other words#1(w, 2) = f(w, 2).

To complete the proof, all we need to do is to prove (49). We firay
rewrite f(w, 2) as

00

f(w,2) = ~mi(w-3)2/z Z e1riz(n+%+w/z—l/22)2

N=—oco
. 39
Leté > 0 and letg(x) = €™, for —o < X < o0. Then the seriesy, g(x+

n=—co

n) converges uniformly in the interval € x < 1 and by the Poisson summation
formula (7),

i e—ng(x+n)2 — i grinx foo e—n.fxz—Zninxdx’ (50)
N=—co N=—c0 —
(provided the series on the right-hand side converges). Now
) ~n2 /& 00
f e X=Xy € v f g0/ VB gy (V&€ > 0).

o

By the Cauchy integral theorem, one can show that
f gl VR gy f e dx = y(say)

It is now obvious that the series on the right-hand side of (edverges abso-

lutely. Hence
e—zr.f(xM)2 — na e—nnz/§+2ninx. (51)
n;oo \/g ;oo

Settingé = 1 andx = 0 in (51), we have immediately = 1. Both sides of
(51) represent, for complex analytic functions ok and since they are equal
for real x, formula (51) is true even for complex Moreover, both sides of
(51) represent analytic functions &ffor complexé with Re& > 0. Since they
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coincide for reak > 0, we see again that (51) is valid for all complewith
Re¢ > 0. We have thus thiheta-transformation formula

Z e—ng(n+v)2 _ T Z @ /E+2zinv (52)
VE

N=-—o00 N=-c0

valid for all complexv and complex with Re& > 0, /€ denoting that branch
which is positive for reaf > 0.
Setting’ = —izandv = (1/2) + (w/2) — (1/22) in (53), we have 40

e—”i(W—%)Z/Z hai s .
f(w,2) = Z g 7in?/z+2in((1/2)+(w/2)-(1/22))

\/? N=—oc0

e—nin2/z+2nin((1/2)+(w/z)—(1/22))—7ri (w-3)%/z

Now

— g (n+3)?/z+27i(n+ %)(W/Z—l/Z)—niWZ/Z-HTi/Z.

Thus

i A—TiW2/z
fw,2) = < f(w,—}),
z Z y4

which is precisely (49). Thus

Proposition 5. For the elliptic theta-function#;(w, z) defined by the infinite
product(36), we have the series-expansion

Hhw,2) = Z ezri(n+%)22+27ri(n+%)(w_%)'

N=—o0
Using the method employed above, we shall also prove
Proposition 6. The Dedekind-functionn(z) has the infinite series expansion

U(Z) — e(riZ/lZ Z (_1)/le(1iz(3/12—/l)

A=—00

Proof. Let us define foz € §,

f(Z) — e(riZ/lZ Z (_1)*e(riz(3/12—/l).

A=—00
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The functionf(2) is regular in$ and moreover, it is clear thaft(z + 1) =
f(2€"/12. Again,

f(2) = gniz/12 i e2riZ(1-(1-1/2))*-iz(1-1/2? /12

A=—00

— g i/122g7i/6 Z 3iz(1-1(1-1/2)?

A=—00
— @ mi/122gi/6 '_ Z e—;ri/lz/3z—7ri/l(1—1/z)/3
V 3z =

using formula (52). Here/i/3z denotes that branch which is positive fo i. 41
Now we split up i e /32%-71/3(-1/2) a5 04(2) + gu(2) + G2(2), where for
k=0,12, -

(@) = i @ i3k /32 (3u+k)(1-1/2 /3

N=—o00
Clearly,
- i 2
%@ = ) (-Lyen@mr,
/_[:—00
01(2) = e™3g0(2),
92(2) — i e—ﬂi(9;42+12;1+4)/3z—7ri(3/1+2)(1—l/Z)/3
/_[:—00
— o 2ri/3z-27i/3 i (_1)ue—3ni/1(/1+1)/2.
11:700
Now

Z (_1)ue—37ri/1(/1+1)/2 - _ Z (_1)116—37ri/4(/1+1)/2’
”:700 H:*OO

on replacing: by -1 — i, and hencej(2) = 0. Thus

f(Z) — e—lri/lZZ L(e(ri/G + e—ﬂi/ﬁ) Z (_1);ze—ﬂi(3,uz—/1)/z
3z

S
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Asa consequence, the functibfz) = f(2)/n(2) is invariant under the transfor-42
mationsz — z+ 1 andz — —1/zand hence under all modular transformations.
Moreover, sincej(2) does not vanish anywhere $f h(2) is regular in$; fur-
ther, asz tends to infinity in the fundamental domain(z) — 1 tends to zero.
Now by the same argument as fi(w, z) above, we can conclude tha) = 1
and the proposition is proved. O

The integers (12)(31% — 1) for A = 1,2, ... are the so-called ‘pentagonal
numbers’.

We now give another interesting application of Kronecksesond limit
formula. Let us consider, once again, formula (37). Theheftd side may be
looked upon as a trigonometric seriesiiandy; it is true, of course, thatand
v are not entirely independent. We shall now see how, usinghfiméte series
expansion of};(w, 2), Kronecker showed that the function

91(W, 2091(q, —r)e /@
has a valid Fourier expansion inandv and derived a beautiful formula from

(37). First,

191(W, Z) — Z e(riz(n+%)2+2ni(n+%)(w—%),

N=—o00
91(g,-r) = Z grir(me ) 2ni(me )a-3).
M=—co
replacingmby -m— 1, we have

Bi(q-r) = Y erm2m e,

m=—o0

Hence
B1(w, 2)91(q, —r)

_ i i il 324200 D= B)-r(ms -2 3)a- D1

M=—00 N=—00

This double series converges absolutely and replatiomgn + min the inner
sum, we have
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D1(w, 2)91(a, —r)

i i e;ri(z—r)(m+%)2+2ni(m+%)(w+nz—q)+;rinzz+2n-in(w——)

M=—00 N=—0c0

i (_1)ne(rinzz+27rinw—7ri(w+nz—q)2/(z—r) i e(ri(z—r)(rm%Jr(wmz—q)/(z—r))2

N=—o00 mM=—oco

Applying the theta-transformation formula to the inner swa have

91(W, 20 (q, —r)em /@)

i = in2 H i(n2
— [ —1)"gmn Z+27inwW—rri (N 22+2nz(w—q))/(><—r)><
Z—Tr n:Z;x:( )

% i (_1)me—7rim2/(z—r)—2nim(w—q+nz)/(z—r)

m=—oo

/ i i N . 8 N
— - Z(_l)mmrm-ne i(m+n2)(m+nr)/(z-r)+2xi ((m+n2) g—(m+nr)w) /(z-r)
Z—r e

Vi/z-r being that branch which assumes the value Zfor =i.
Let

Q) = (€ +nd(E +) = 8% + ben + o
where ) . .
a:l_,bzm and C:ﬂ'
z—r zZ—r zZ—r

Then

91(W, 2)94(, —r)eri a7/

i )
— -1 mn+m+ne—nQ(m,n)+2m((m+nz)q—(m+nr)w)/(z—r)
Vo ;( )

Formula (37) now becomes

, eZm(mu+nv) ,ﬁ Zmn(_l)mmmne—nQ(mn)+2ni(mu+nv)
lo
ZnZ Qmn) @)

43

It is remarkable that the quadratic for@(m, n) emerges undisturbed on thea4
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right-hand side; the right-hand side is free framandr, except for the fac-
tors vi/(z-r) andn(2)n(-r). To eliminatez andr therefrom, we dferentiate
B1(w, 291 (g, —r)e"W-9%/@") once with respect tow andg atw = 0, q = 0, and
then we get

91(0,2)91(0, -r) = w/# Z(-1)mn+m+ne—nQ(mn)x
mn

2ri(m+n2 —2xi(m+ nr)
z-r z-r

n 3
T = ( V ﬁ] %n:(‘l)(”””(””)Q(m n)e " Amn,
n@n(-r) = 4/ # {;(_1)(m+1)(n+1)Q(m’ n)e—er(mn)} i

the branch of the cube root on the right-hand side being nhéted by the
condition that it is real and positive when= Z, sincen(2)n(-2) > 0.
We have then the followingprmula due to Kroneckenamely

)

It is remarkable that, eventually, on the right-hand sidé53), z andr do
not appear explicitly and only the quadratic foim, n) appears on the right.

The quadratic fornQ(¢&, n) = dé?+bén+cy? introduced above is a complex
quadratic form with discriminant

, e2m(mu+nv) Zmn(_1)mn+mne—7rQ(n1n)+27ri(mu+nv) (53)

Qmn) { P (= 1)mDODQ(m, n)efer(mn)}% '

—(r+2°%+4rz

2 — =
b® — 4ac Z-1)

= -1

Moreover,its real part is positive-definite for reabndn. For proving this, 45
we have to show that forg(n) # (0,0), Re($(§+ m) - (E+ rn)) >0

ie. Im(-L(+zn(E+rm) > 0. If y = 0, this s trivial. Ify # 0, we may
taken = 1 without loss of generality and then we have only to show that

zZ—r . 1 1
m((§+2)(§+r))>0’ He 'm(ﬁ T;Tz)”
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But this is obvious, since —r € $ and¢ being real¢ + z, —(¢ + r) and hence,
=1/(¢ + 2), 1/(¢ +r) are all in$.

Conversely, ifQ(¢, 1) = a&? + bén + ci? is a complex quadratic form with
real part positive-definite for reglandn and discriminant-1 and if Rea > 0,

it can be written aszl—r(§+nz)(§+77r) for somez, —r € . Infact, if Rea > 0,

Q(&, 1) = al€ + n2)(¢ + nr), wherez, r are the roots of the quadratic equation
al? — bad + ¢ = 0. Since the real part d@(¢, ) is positive definitez andr
have both got to be complex. Now the discriminant)@§, ) is —1 and hence
a%(z-r)? = -1,i.e.a= +i/(z—r). We may takex = i/(z—r) and therz—r € $.

Now Q(&,n) = ﬁ(g + n2)(¢ + nr). We have only to show tha —r € $.

Consider the expressidp(¢, 1) = ﬁ(f + 2)(£ + ). If bothzandr are in$
then asf varies from—oo t0 +c0, the argument 0Q(¢, 1) decreases byr2and
if both —z and-r are in$ then ast varies from—oo to +o0, the argument of
Q(¢,1) increases bys2 But neither case is possible, since @, 1) > 0 and
S0 Q(¢,1) lies always in the right half-plane for regl Hence eitheg, —r or
-z, r € $. But, again, since—r € $ we see that, —r € $.

When we subject the quadratic for@(¢,n) to the unimodular transfor-
mation ¢,n) — (aé + Bn, y¢é + 6n) wherea, B, y, 6 are integers such that
ad — By = =1, thenQ(&, 1) goes over into the quadratic for@Q*(¢,n7) =
Q(aé + Bn, y€ + 6n). The quadratic form€&*(£,n) and Q(&, n) are said to be
equivalent Q*(¢,n) again has discriminant1 and its real part is positive-
definite for reak andz.

Letu = au+yvandv® = Bu+ év. Then we assert that the right-hand
side of (53) is invariant if we replad®@(m, n), u andv respectively b@*(m,n), 46
u* andv*. This is easy to prove, for the series on the right-hand siteerge
absolutely and whem, n run over all integers independently, then songio=
am+ An, i = ym+ én. And all we need to verify is that-()(™+D("+1) =
(-1)(m™DO+D) - This is very simple to prove; for{L)™D0+) = 41 unlessm
andn are both even; anth andn are both even if and only in* andn* are
both even.

The invariance of the left hand side of (53) under the tramsé&ionQ(m, n),

u, v to Q*(m n), u*, v* could be also directly proved by observing that for

i(Mu+nv)
Res> 1, W is invariant under this transformation and hence, by

d

analytic continuation, the invariance holds good eversferl.
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5 The Epstein Zeta-function

We shall consider here a generalization of the funciig(s, u, v) introduced in
§ 3. LetQ be the matrix of a positive-definite quadratic fof@{x,, ..., X)) in
X1

thenvariablesx,, ..., X,(n > 2). Further letx denote ther-rowed column; .
Xn
A homogeneous polynomia?(x) = £ (X, . .., X,) of degregyin X, ..., X,
is called aspherical function (Kugel-funktion) of order g with respect to
Q(xa, ..., Xn), if it satisfies the diferential equation

Z L PP2(X) _o
1<i,j<n ! 0%0x; ’
where the matrixd;;) = Q.

Let, for a matrixA, A’ denote its transpose; we shall abbreviat®A as
Q[A], for ann-rowed matrixA. By anisotropic vectorof Q, we mean a com-
plex columnw satisfyingQ[w] = 0. It is easily verified that ifv is an isotropic
vector of Q, then the polynomialX Qw)? is a spherical function of ordeg
with respect tdQ(xy, . . ., Xn). Moreover, it is known thatif”(x) is a spherical 47

M
function of orderg with respect taQ(x1., ..., X)), thenZ(x) = X (X Qw, )¢,
m=1

w,, ..., W,, being isotropic vectors d.
Let u, v be two arbitraryn-rowed real columns and, a non-negative in-
teger. Further, let”(x) be a spherical function of ordey with respect to

Q(X1, ..., Xn). We define, folo- > n/2, the zeta-function

Z(M+V)

(suvQ )= ) &M T

mH+v=0

wherem runs over alin-rowed integral columns such that+ v # 0 (0 being
then-rowed zero-column). By the remark o#(x) above /(s u,v, Q, &) is a
linear combination of the series of the form

Z ezﬂimfg ((m""Y)’le)g
e QM+ V)92
w being an isotropic vector d. These series have been investigated in de-
tail by Epstein; in special cases as whers 0 andQ is diagonal, Lerch has
considered them independently and has derived for themctidual equation
which he refers to as the “generalized Malmsten-Lipsclatation.”
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The series introduced above converge absolutely-forn/2, uniformly in
every half-planer > n/2+ (e > 0), as can be seen from the fact that they have
a majorant of the form

for a constant depending only or®, w andg. Hence they represent analytic
functions ofs for o > n/2. Thus{(s, u,v, Q, &) is an analytic function o6
for o > n/2.

We shall study the analytic continuation and the functioegliation of
(s u,v, Q, #). The proof will be based on Riemann’s method of obtainirgy ths
functional equation of thé&-function using the theta-transformation formula.

First we obtain the following generalization of (52).

Proposition 7. If Q is the matrix of a positive-definite quadratic form in m
variables with real cogicients and \an n-rowed complex column, then

. 1 e
Z g™y — Q2 Z g™ 1m+2ﬂmfy, (54)
m m

where, on both sides nuns over all n-rowed integral columns ang|? is the
positive square root df)|, the determinant of Q.

Proof. We shall assume formula (54) proved f@randv of at mostn — 1 rows
and uphold it fom. Forn = 1, the formula has been proved already.
Now, it is well known that

P q _(P 0 E Pl
A=(g )-8 -pually )

whereP is (n — 1)-rowed and symmetric anH, the f — 1)-rowed identity
matrix. Settingl = r — P~1[q] and writingm = ('{) andv = (VHV) with k andu of
n— 1 rows, we have, in view of (55),

Z g QM _ Z E—zr/l(l+w)2 Z e—nP[L<+g+P‘1g(l+w)]’
m 1 k

m, k running over alh-rowed and ff — 1)-rowed integral columns respectively
andl over all integers. By induction hypothesis,

Z e—nP[I5+g+P’19(I+W)] - |P|7% Z e—nPflm+2niI5'@+P*19(I+W))
k k
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Thus

S S 4 2riy Y e
m k [

Now, by (52), 49
i e—ml(l+w)2+27rik’ P1q(l+w)
|=—00

=€

|=—c0

(o]
~n AW+ 27k PG Z 22l (< Pigidw)
[ee]

1 g2k Pig Z o 1K Pig-iaw)?

|=—c0

_ 1 Z oA (1=K Pig) 2+ 2riw

But|Q| = |P|1 andQ~Y[m] = PY[K] + A7(-K P‘lg +1)? and hence

3 ermal - gt ] g imizritush
m kKl

and (54) is proved. O

Formula (54) can also be upheld by using the Poisson summfationula
in nvariables. Further, it can be shown toadid even forcomplex symmetric
Q whose real part is positivé.e. the matrix of a positive-definite quadratic
form). For,Q! again has positive real part and the absolute convergence of
the series on both sides is ensured. Moreover, consideriohetsons of the
n(n + 1)/2 independent elements &, they represent analytic functions and
since they are equal for all real positi@z we see, by analytic continuation,
that they are equal for all complex symmet@avith positive real part.

Let u be another arbitrary complexrowed column. Replacing by v -
iQ tuin (54), we obtain

Z gmAmv-iQ™ _ o3 Z g7 Q ml+2rim’ (v-iQ7'w)
m m

3 eramedizinty _ g grQ 2wy, (56)
m m
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Letw be an isotropic vector dp andJ, an arbitrary complex number. Replac-
ingv by v + Aw in (56), we have 50

Z @ QUM+ -2 (M) Qw27
m

_1 _O-1 i a2 ’
S (Qr Y e im iy v wr
m

Both sides represent analytic functionsjoind diferentiating them bothy
times with respect td at1 = 0, we get

Z e QMY+ (1 4 v Qw)9
m

e—ng v

i9

IQI_% Z e—nQ’llm—WZﬂim’!((m_ u)’'w)9. (57)

Associated with a spherical functio#f(x) with respect tdQ[x], let us de-
fine 2*(x) = 2(Q71x); 2*(x) is a spherical function of ordeywith respect

to Q71[x]. Moreover 2**(x) = Z(x). Further, if 2(x) = g(g’lei)g, then
i=1

Z*(X) = EQ(’v_vi)g. Thus, if we set
i=1
f(Qu,V, Z) = Z e—nQ[m+ﬂ+2nim’9y(m +V),
m

wheremruns over alh-rowed integral columns, then we see at once from (57)
that f(Q, u, v, &) satisfies the functional equation

92V F(Q,u v, ) = |QTEH(Q LY, —u, ).

If now we replaceQ by xQ for x > 0, then?(x) goes intox8.#2(x) and
Z7*(X) remains unchanged and we have

9UVE(xQ U, Y, 2) = x VEIQE f(x 1Q Ly, -u, 7). (58)
Thus we have

Proposition 8. Let Q be an m-rowed complex symmetric matrix with positive
real part, #(x) a spherical function of order g with respect to Q aaef (x) —
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2(Q71x). Let u and v be two arbitrary m-rowed complex columns and(x
Then

e2riu'v,g Z e mXQM+20i U (1 4 )

= x 2 g|Q| Z m(lQ Y m-u]+rim’ V'@*L _)
51

To study the analytic continuation ¢fs, u, v, Q, &), we obtain an integral
representation of the same, by using the well-known fornaua to Euler,
namely, fort > 0 and Res > 0,

o dx
aST(9t s = f xS =
0 X'

Foro > n/2, we then have

—(s+g/2)r(s+ )K(S»U v.Q. 2)

Z e,2mmu<@@+_)f X5+9/2 —zer[m+J dx

m+v£0
:f X5+9/2 Z @ X QM)+ 2y u(gz(m_'__) (59)
0 m+v£0

in view of the absolute convergence of the series, unifomafa n/2 + (e >
0).
Let now, for ann-rowed real columrx,

0, if xis not integral,
p(x,9) =41, if xisintegral andy = O,
0, if xis integral andy > 0.

Then
Z e—nxQ[m+J+2mm u(@®+_) — f(XQ u,v, (@) —2mu v (V g)

m+v£0

From (59), we see, as a consequence, that

—(S+9/2)r(s+ ){(&U v.Q )
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e - dx
= | xst92 g XA+ p(m 4 v) b
| > (m+v)

m+v£0

1 ool
. f IH(xQUY. 2) D~ pl. g f x92 %X
0 0

In view of (58),

1
f x*92£(xQ,u, v, 3”)%
0 == X

_1 1
Q2 $-9/2-n/2 £ (y~1A-1 dx
= . x5 9 f(x v, —U, *)—.

jgeriuy o xXQv.—u. &) X

Again, since
f(x Qv —u, %)
- Z e—ﬂX’lQ’l[EFQJrZﬂim’yy*@ —u) + p(u, g)eFuY,

m-u=0

we have

1 dx
f Xs_g/z_n/zf(x_lQ_l,V, —u, y*)_
0 - - X

1
. - dx
_ xS-9/2-1/2 E g 7x 1Q Y m-ul+2rim Y@ (m-u)l —+

m-uz0

wv [ s(0/2)-(n/2) 4X
+p(u, Q™Y [ x —
0

X
_ 7 v2-si@2) Q-]+ 20y e dx
= X € Z*(m—-u); —
m-u#0
oo
g n-
S_ P —
272

Thus, foro- > n/2,
792 (54 2) (s u v Q )

_ |Q|_%p(g, o)) ~ p(v, g)e—Znig’y+
ig(S— 9_ D) s+ 3

2 2 2
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+

*° inv dx
x5+9/2 e—;er[m+ﬂ+2mm YPm+v)t —+
U HNE

(o] f © 2)-s+g/2) Z —x QL mul+ 2xim'y dxl
+—— X g™ i TIx Z*(Mm—-u) —|.
i9e2ivy. ), e X

(60)

53

One verifies easily that the functions within the square ketscon the
ﬂ.s+g/2

right-hand side of (60) are entire functionssJSincer(S+—€J/2) is also an en-
tire function ofs, formula (60) gives the analytic continuationdgs, u, v, Q, &)
into the wholes-plane. The only possible singularities arise from those of

792 | IQEpug) o ge

F(s+g) ig(s—%—g) s+g

Now
75+9/2 7S+9/2

r(s+8)(s+3) Tls+§+1)

is an entire function ofand sos = —g/2 cannot be a singularity ¢{s, u, v, Q, &°).
Moreover, ifg > 0 or if u is not integral, therp(u,g) = 0 and hence in
these casess = (g + n)/2 can not be a pole of(su,v,Q, &). If g = 0,
andu is integral,{(s u,v, Q, &) has a simple pole & = n/2 with residue
7r“/2|Q|‘%/1"(n/2). Moreover, from (60) it is easy to verify thafs u,v, Q, &)
satisfies the functional equation

n‘sr(s+ g)g(&g,y, Q 2)
_ e_zijgy|Q|—%n-(n/2-S)r(g ~ s+ g)g(g -sVv,-u.Q™, 9’) (61)

Wehave then finally. 54

Theorem 3. The functior?(s, u, v, Q, £?) has an analytic continuation into the
whole s-plane, which is an entire function of s if eithes @ orifg =0and u
is not integral. If g= 0 and uis integral, therZ(s, u, v, Q, &?) is meromorphic
in the entire s-plane with the only singularity atsn/2 where it has a simple
pole with the residua“/z/(|Q|%l“(n/2)). In all cases/(s u,v, Q, &) satisfies
the functional equatiof61).
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Let nown = 2 andQ(x1, X2) = Y i|x1 + X2z, in our earlier notation.
Letx = ( ) m= (mz u= (”2) andv = ( 2) Both( )and( )are isotropic
vectors on[_] but we shall take the spherical functic(x) = (—i(x1 + X22))¢,
corresponding to the former. Then by the above, the function

y (Mo + v+ Z(mp + v2))9

{(su,v,Q, ) = |My + v + Z(mp + Vp)|25+9

m+v#0
satisfies the functional equation

-Sr(s+ ){(s,u v,Q, 2)

e27r|uv sy 1
=—n F(l S+ )g(l S V,-uU,Q ", 7).

Now Q~1[x] has the simple formy*|x;z— x,|? and moreoverZ*(x) = (—x1z+
X2)9. Thus foro > 1,

{(sv,-u Q)

— y5+9/2 Z g2ri(Mmuvi+mevz) (—(my — wp)z+ mp + uy)9

| = 2(My — Up) + My + Ug|?S+9

m-u#0

_ ys+g/2 ri(muvo—myva) (Mg + ug) + Z(Mp + Up))? .
( )+( )#O (ml + ul) + Z(m2 + u2)|28+g

Let us now define fou* = (1), v* = (%), the function

‘ i(MyU— (M + V1 + Z(mp + V)9
su,v,zg) = g2 (Myp—mpuy) ’
ds.z9 4 m;;:o My + Vi + Z(Mp + V)|?S+9

forc > 1. Itis clear thatZ(s u,v*,z g) = i% 9%/(su,v,Q, #) and from 55
(??) we see that(s,v*,u*,z g) = y 92/(s,v, -u, Q71, 22*). If now we defined
e(s U, v,z 0) = nT(s+ g/2){(s u", v,z g), we deduce from above that
o(s U, v*, z g) satisfies the nice functional equation

p(s U, V', zg) = eyl - s v, u*,z Q).

In the casegg > 0, (s, u*, v,z @) is an entire function ok and one can
ask for analogues of Kronecker’s second limit formula evereh For evem,
one gets by applying the Poisson summation formula, a lioninfila which is
connected with elliptic functions. For odylthe limit formulas which one gets
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are more complicated and involve Bessel functions. If we tdde particular
caseg = 1, there occurs in the work of Hecke, a limit formula gdends to 12)
which has an interesting connection with the theory of cexphultiplication.

Forn > 2, Epstein has obtained far= 0, v = 0 andg = 0, an analogue of
the first limit formula of Kronecker. This formula involvesame complicated
functions that the Dedeking-function. Perhaps, in general far> 2, one
cannot expect to get a limit formula which would involve anig functions of
several complex variables.
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Chapter 2

Applications of Kronecker’s
Limit Formulas to Algebraic
Number Theory

1 Kronecker’s solution of Pell's equation

57
Let K be an algebraic number field of degne@ver Q, the field of rational

numbers. Let, for any idealin K, N(a) denote its norm. Further Ist= o + it
be a complex variable. Then for > 1, we define after Dedekind, the zeta

function
k(9 = D (N@)™,

where the summation is over all non-zero integral ideals .of
More generally, with a charactgrof the ideal class group df, we asso-
ciate thel-series

L(sx) = D x(@(N@)° = [ [ - xm)NE) ™™,

for o > 1. The product on the right runs over all prime idealsf K.

We haveh such series associated with all theharacters of the ideal class
group of K. It has been proved by Hecke that these functibgés, y) can
be continued analytically into the whole plane and theys$ath functional
equation fors » 1-s.

52



Applications to Algebraic Number Theory 53

Now, y being an ideal class character, we may write

Lk(s.x) = ZX(A)Z(N(G)) °

acA

A running over all the ideal classes kf If we definel(s A) = Z (N(a))~s,

then it can be shown that Ima 1)/(s, A) = «, a positive constant dependings

only upon the fieldK and not upon the ideal clasé. (For example, in the
case of an imaginary quadratic field of discrimindnk = 2/wv—d, w being
the number of roots of unity itk and« = 2loge/ Vd in the case of a real
quadratic field of discriminard, wheree is the fundamental unit and > 1).
Sincelk(s) = %{(a A), we have

lim(s— 1)¢i(s) = zA] lim(s - 1)¢(s A) = k- h

whereh denotes the class numberkof

From now on, we shall be concerned only with quadratic fiefdtiscrim-
inantd.

We have then, on direct computation,

k(9) = £(9)La(s): (63)

where/(s) is the Riemann zeta-function ang(s) is defined as follows:

00

L9 =Y (5] @)

n=1

(g) being the Legendre-Jacobi-Kronecker symbol.
Then
lim(s—1)¢k(s) = lim(s— 1)¢(s)La(s) = lim La(s) = La(1),
s—1 s—1 s—1

sinceLy(s) converges in the half-plane > 0 and qu(s— 1)(s) =1
S—
We obtain therefore,

La(1) = i (9)3 =«-h. (64)

n=1
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For the determination of the left-hand side, we considerengenerally, for
any charactey(# 1) of the ideal class group ¢,

im L(s.0) = L) = Y, 45,

Now, 59
K
(s A= E+P(A)+'“ ,

and so

Li(sx) = D x(A(s A)
A

PR CICEVCRY

= Z x(A)p(A) + terms involving higher powers os¢ 1),
A
since,y being# 1, Y x(A) = 0. On taking the limit as — 1, we have
A

Le(Lx) = D x(Ap(A). (65)
A

Therefore, the problem of determinationlof(1, x) has been reduced to that
of p(A).

We now studyL (s, y) for a special class of characters, the so-cajledus
characters(due to Gauss) to be defined below.

We call a discriminant, arime discriminantif it is divisible by only one
prime. In that cased = +pif d is odd, or ifd is evend = —4 or +8.

Proposition 9. Every discriminant d can be written uniquely as a product of
prime discriminants.

Proof. It is known that ifd is odd, thend = +p; ... px wherep,..., px are
mutually distinct odd primes. Le®; = +p; according ap; = =1( mod 4);
thenP; is a prime discriminant and/P; is again an odd discriminant. Using
induction on the numbek of prime factors ofd (odd!) it can be shown that
d/Py = Ps,...,PxwhereP; are odd prime discriminants. |

If dis even, then we know that

(&) d=+8py,...,pk if d/4=2( mod 4),
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(b) d==+4py,..., p« if d/4=3( mod 4),

P2, ..., Pk being odd primes. Now we may write= P;d; whereP; is chosen
to be—4, +8 or -8 such that; is an odd discriminant. From the above it iso
clear thatd = P;P,... Px wherePy, ..., Py are all prime discriminants.

This decomposition is seen to be unique.

We may now introduce the genus characters.

Letd; be the product of any of the factors, ..., Py of d. Thend; is again
a discriminant andl;|d. Letd = d;d,; dy is also a discriminant. Indentifying
the decompositiond = d;d, andd = d,d;, we note that the number of such
decompositions (including the trivial ond, = 1 - d) is 2 wherek is the
number of diferent prime factors ad.

For any such decompositiah = d;d, of d and for any prime ideab not
dividing d, we define

() = xa(0) = (%)

Where(ﬁ) is the Legendre-Jacobi-Kronecker symbol. We shall shotv tha

N(»)
o= (5 - (v
YT \NW )~ \Nw )
In face, sincep x d, p belongs to one of the following types. (a)’ = (p),
N(») = por (b)» = (p), N(p) = p* If pp’ = (p), N(p) = pthen

(9)-1- (1) ()
P/~ \N@®/\NG®)

' | o) o[
which means that either both aré or both are-1. IIGI(W) = (N(%))' If
p = (p), N(») = p? then(4) = —1; but

(o) (52) =

so that we have aga(r}%) = (%)

d; ) ( do )
Whenp|d, one of the symbols—— |, | —— | is zero, and the other non-
4 y éN(p) NGP) |
zero, we takee(p) to be the non-zero value. In any cag€p) = +1. This

definition can then be extended to all idealsf K as follows: Ifa = p*q',..., 61
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we definey(a) = (x(»))“(x (1)), . . ., so that
Xx(ab) = x(a)x(b)

for any two ideals, b of K.

By agenus charactemwe mean a charactgrdefined as above, correspond-
ing to any one of the '21 different decompositions af as product of two
mutually coprime discriminants.

We shall see later that the genus characters form an abebap gf order
2«1,

Now we shall obtain an interesting consequence of our digfiimiaf the
charactey, with regard to the associatédseries.

Consider the.-series, fos= o +it, o > 1

Li(sx) = ) x(@(N@) ™ = | J@-x()NE) ™)™
=TI [@—x®mNE) ™

P pl(p)

The prime ideal of K are distributed as follows:

@ v = (), (%) _ 1 NG = P
() 3’ = (P), (%) —ALNG) = P,
© 12 = (), (%) ~ 0N = p.

In case (a)(g) =-1= (ﬂ)(%) implies that one o(%), (%) is +1 and the
p p/\p p p
other-1. So

[Ja-xeNE) ™™ =@a-p>7?

pl(p)
=1-p)ta+pt

8o b))

In case (b), 62
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e d A\t d e
[]@- xS = (1— (Bl) oS (1_ (31) 0 )

|
(5o () )
oree 1= ) = () ) o vl ;) -

that p|d; or pld,. We shall assume Wlthout Ioss of generality tpb. Then
d>
=0and
p

[Ja-xemer=(1-(2): p-S)_l <(1-(%) p‘s)_l.

vi(p)

) In case (c)pld implies

From all cases, we obtain

Le(sx) = [ [ ] J@-xmNGE)™

P »l(p)

() ) 3 )
= L4 (9L, (9)-

We have therefore,

Theorem 4 (Kronecker). For a genus charactey of a K corresponding to
the decomposition & d;d,, we have,

Lk(s.x) = Lay(9)La,(9)- (66)

Let us consider the trivial decomposition= 1-d ord; = 1 andd, = d.
ThenLg, (s) = £(s) andLq,(S) = La(s). In other words, (66) reduces to (63).
If di # 1, {o(vap)(S) = ¢(9Lay(9), from (63). ButLg,(s) can then be continued
analytically into the whole plane and it is an entire funatio

Two idealsa andb are said to bequivalent in the “narrow senseif a =
b(y) with N(y) > 0. (Fora € K, N(a) denotes its norm ove).)

This definition coincides with the usual definition of equérece in the case 63
of an imaginary quadratic field since the norm of every elengepositive. In
the case of a real quadratic field, if there exists a aitthe field withN(e) =
-1, then both the equivalence concepts are the same, as dgnbeaseen.
Otherwise, ifhy denotes the number of classes under the narrow equivalence
andh, the number of classes under the usual equivalence, wehgaveh.
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Proposition 10. For a genus charactey, y(a) = x(b), if a andb are equivalent
in the narrow sense.

Proof. We need only to prove that{(«)) = 1 for @ integral and\(«) > O.

(a) Let (@, d;) = (1). We have to show th{ ((2;))) = 1. SinceN(a) > 0,

this is the same as proving t)‘(%%) =1

@)

)

Supposel; is odd. Ther(%) =1. Ifdisevend = 4m(say). Then

a = X+ y+ymwith x, y rational integers. If not, = X +y vm
with X’ andy’ rational integers. In any case, sinck/@4) = 1, itis

suficient to prove tha( dh ) =1. i.e.(#) = 1 for two

N(2a) aZ —mk?
rational integers, b with & — mi? > 0 and 62 — mk?,d;) = 1, in
both cases. Nowl;|d implies thatd;|m so that from the periodicity
of the Jacobi symbol, this is the same(%é) =1for (a,d;) = 1,
which is obvious.

Supposel; is even. Therd; = (even discriminantix (odd dis-
criminant) and we need consider only the even part, sinceawve h
already disposed of the odd part in 1). We have then threehiless
itiesd; = -4, +8 and-8.

(i) di = —-4. Thend = (-4)(-m) so that-mis again a discrimi-
nant ancs 1( mod 4).

Consider now
di | -4 )
()= (=g

(¥*—=my?) = 1( mod 4) since botl, y cannot be even or odd,
for («,d;) = (1). From the periodicity of the Jacobi symbolga

follows then that
-4 -4
(xz—myz) - (T) =t

(i) d; = +8. Hered = 8 x m/2; m/2 is then an odd discriminant
and= 1( mod 4) or equivalentlyn = 2( mod 8).

Now,
(N?l)) i (xz —Smf);
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(x> —=my?) = +1( mod 8) so that

(254 (3

If d = -8, m= -2( mod 8) andx’> — my? = 1, 3( mod 8)
d \ _ (=8) (1| _ . 3 3
and(@ = (D)= (3) = 1. s0. if ) = (@) () =
1. If (a,d1) # (1) and ¢, dz) = (1), we can apply the same
arguments fod, instead ofd; and provey((a)) = 1.

(b) If (a,d1) # (1) and ¢, dy) # (1), we decomposey] as follows: () =
p1p2 ... piqg Wherepj|d and @, d) = (1). We choose in the narrow class of
pil, an integral idead; with (d, q1) = (1). Then for the element; with
(@1) = p1- a1, N(a1) > 0, x((a1)) = 1, since {1, dh) or (a1, dr) = (1).
Similarly for p,, constructy, with (d, g2) = 1 and fora, with (a2) = p2q2
andN(az) > 0, y((a2)) = 1 and so on.

Finally, we obtain

(@araz...) = pip5... pfp
where b,d) = (1). Butpi|dimply thatp? = (p;) with pi|d. Therefore i ...) =
(p1p2...)b so thatb is a principal ideak (o) (say). NowN(aaias...) =
p2p3... PAN(p) andy((aaz ... ™)) = x((p)) = 1 sinceN(p) > 0 and p,d) =
(1). Butx((a1)) = 1,...x((m)) = 1 so thaty((@)) = 1. The proof is now 65
complete. O

We have just proved that(a) depends only on the narrow classafsay
A - y is therefore a character of the ideal class group in the tmagense”.
Then,

Lk(sx) = > x(A) D (N@) ™ = >’ x(A)(s A) (67)
A acA A

whereA runs over all the ideal classes in the ‘narrow sense’.

Using a method of Hecke, we shall now give aternativeproof of the
fact thaty((«)) = 1 for principal ideals¢) with N(e) > 0 and ¢, d) # (1).

Denote byy, that character of the ideal class group in the narrow sense,
such thatyo(a) = x(a) for all idealsa in whose prime factor decomposition,
only prime ideals which do not divided, occur. We need only to prove that
x(a) = yo(a) for all idealsa.
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Let f,,(s) = 20'])(0(<1)(N(a))‘S andf,(s) = ZI])((a)(N(a))‘S. Then

fo(® _ 7 @-x®NE)™)
09 LT xomNE)S

since the remaining factors cancel out. We shall show tleaptbduct on the
rightis= 1, or f, (s) = f,(9).
We know thatf,(s) = Lg,(s) = Lg,(8) from (66) andf, () = X xo(A).
A

(s, A) from (67). Both have functional equations of the same tgpehat if we
denote byR(s), the quotient, the functional equation is simplfs) = R(1 - s).
We shall now arrive at a contradiction, by supposing fhat yo. For, then,
there exists a prime idealwith p|d andy(p) = 1, xo(») = F1.

M (k, such thats # 0). This means thap== =

logp
F1. Consider the product

Choose-s =

171 @ =x(®)(N(®) ")
0= [ e vmmmrs

The above value o is a zero of the denominator and it cannot be cancelled by
any factor in the numerator, for that would mean

log(1) + 2k log(+1) + 2Ixi
logp B logq

s

or in other words,2 = logp/logq is rational; i.eq' = p holds forp, q 66
primes andl rational. This is not possible singe# g. By the same argument,
the zeros and poles &{(s) cannot cancel with those on the other side of the
equationR(s) = R(1 — s). But this is a contradiction. In other wordg(a) =
xo(a) for all idealsa of K.

Tow idealsa andb arein the same genusf y(a) = x(b) for all genus
charactery defined as above, associated with the decompositiods of

The idealsa for which y(a) = 1 for all genus characteps constitute the
principal genus Then the narrow classésfor which y(A) = 1 are the classes
in the principal genus. IH denotes the group of narrow classes &)dhe
subgroup of classes lying in the principal genus, the qnbtieoup® = H/G
gives the group of dierent genera. We claim that the order@fis 21, k
being the number of fierent prime factors ai. For, suppose we have proved
that the genus characters form a group of ordet.2From the definition of a
genus and from the theory of character groups of abeliarnpgrauve know that
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this group is the character group ®f By means of the isomorphism between
® and its character group, it would then follow that the orde®as also 2.
If now remains for us to prove

Proposition 11. The genus characters form an abelian group of ordéer,
where Kk is the number of distinct prime factors of d.

Proof. Now, y(a) = +1 implies thaty? = 1 for all genus charactess. So,
the charactey* exists and= y. We shall prove that the genus characters and
closed under multiplication and that they are affefient for diferent decom-
positions ofd.

Letd = did;, = d;d;. Setd; = qu; andd; = qu; so thatq = (dy, d;) and
(ug,up) = 1. O

If d3 = uyuj thendyd; = g°ds. Also for the charactergg, and)(d; associ-
ated with the two decompositiousd, andd;d; of d, we haveyq,xq; = x4, and
ds|d, since bothd;|d anduj|d and they are coprime. Hengs, is again a genus
character. Now, ifl; # dj, we have to show thaty, # xa: Of xa,xa; # x1 (the
identity character); or in other words, we need only to prthat for a proper 67
decompositiord = dszd;, the associated characjfeis not equal toy;.

We have, from (66), foor- > 1,

Lk(S.X) = Lay(ILes(9) = D x(A(s A).
A

Comparing the residue at= 1 in the two forms folk (s, x), we havey, y(A) =
A

0, which implies thaj # y1.

Thus the genus characters aréetient for diferent decompositions af
and they form a group. Since there atealifferent decompositions of this
group of genus characters is of ordér’2

A genus character is a narrow class character of order 2. etesly, we
can show that every narrow class character of order 2 is asggraracter. For
this, we need the notion of an ambiguous (narrow) ideal class

A narrow ideal clas#\ satisfyingA = A’ (the conjugate class &in K) or
equivalentlyA? = E (the principal narrow class) is called ambiguousgdeal
class. The ambiguous classes clearly form a group.

Proposition 12. The group of ambiguous ideal classesQ@Vd) is of order
21, k being the number of distinct prime factors of d.

Proof. We shall pick out one ambiguous ideal(i.e. such that = ©’, the
conjugate ideal) from each ambiguous ideal classnd show that there are
21 such inequivalent ideals.
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Let a be any ideal in the ambiguous ideal classSincea ~ «/, we may
takeaa’ ! = (1) with N(1) = 1 and2 totally positive (in symbolsa > 0). (For
d < 0, the condition “totally positive” implies no restrictipnLetp = 1 + A.
Thenp # 0 sinced # —1. Furtherd = (1 + 2)/(1 + ') = p/p’. If we define
b = a/(p), theb = v/, forb/b’ = a/a’(0’)/(0) = (1). Furthers € A, sincep > 0
(i.,e.po > 0,p" > 0). We may take to be integral without loss of generality.
We callb primitive, if the greatest rational integerdividing b is 1. For any
ambiguous integral idealwe haveb = rb; with r, the greatest integer dividing
b andb; primitive. If b € A, by € A, O

We shall now prove that any primitive integral ambiguousaldeis of the 68
formpgt, ..., pi with 4 = 0 or 1 andpil®, (»i # pj), whered is the diferent of
K = Q(Vd)overQ. Letb = ¢,..., ¢&*. Nowb = b’ implies thaty]", ..., ds* =
a4, d's. We have thenf* = ¢’{" oru; =y anday = of. We assert then
t =1, for if not, g1 = of implies thata} = g; and the factor'a}* = (a10) ) is a
rational ideak: (1). This is a contradiction to the hypothesis thé primitive.
Hencet = 1 andq; = q;. The same argument applies to all prime idegls
Sinceqi2 = (p;) with prime numbersp;, the exponentg; are either O or 1.
for otherwise they bring in rational ideals which are exelddby the primitive
nature ofo. Therefore, we have = p;*,..., pi* with pil¢ andA; = 0 or 1.

Now, we shall show that there are exactly2inequivalent (in the narrow
sense) such ideals. For the same, it is enough to prove ta ith only one
non-trivial relation of the forma'll, cel, plkk ~ (1) in the narrow sense, for, then,
it would imply that among the*2such ideals, there aré2 inequivelent ones,
which is what we require.

We shall first prove uniqueness, namely that if there is ometrigial re-
lation, then it is uniquely determined. Later, we show thistexice of a non-
trivial relation.

(@) Letp},...,pf = (o) withp > 0 and; li > 0 or (p) # (1). Then the set
(I1,...,1x) is uniquely determined.

For, (o) = (0’) implies thato = n - p’ with a totally positive unit;.
The group of totally positive units iiK being cyclic, denote by, the
generator of this group. (Note that, fdr< 0, the condition “totally
positive” imposes no restrictions). Singd & (oe"), whenp is replaces
by pe", 7 goes over tge?". Choosingn suitably, we may assume without
loss of generality; = 1 ore. We shall see thajpj # (1) implies that
n # 1. For, ifn = 1, thenp = p’ = a natural number. NowN(p)) =
(%) = vl e = (p}..... P, if N(pi) = pi, pi # pj andp being a
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(b)

natural number, this is possible only if §ll= 0, in which cased) = (1).
But that is a contradiction to the hypothesi$ ¢ (1).

We are therefore left with the cage= €. Thensei=1-n=1-€+ 0.
We haveu = —nu’. Denoting bys = Vd, (o/ué) = p/ué =t = a
rational numbet: 0. Hence ) = (u6)(r) and the decomposition

60) = ()0 = 7 oo

is uniquely determined or in other words, the det.( ., lx) is uniquely 69
fixed.

We shall now prove the existence of a non-trivial reianifj, ey p:(k ~
(1D (li = 0 or 1) in the narrow sense.

Consideru = 1 - €. Thenud is in general not primitive. Now choose
a rational number suitably so thatué is primitive and denote it by.
Thenrus = p = ¢o’. Now if d < 0, N(u6) > O clearly and ifd > 0,
N(us) = dei’? > 0, again. Hencél(p) > 0. We may assume that> 0
and since: is not a squarey is not a unit, so thato) # (1). Since p) is
primitive, (p) # rational ideal. Nowg) = (0’), p > 0 and p) is primitive

so thatp,..., p = (o) ~ (1) in the narrow sense. Further this relation
is non-trivial as we have just shown. Proposition 12 is thusgletely
proved.

Now, the group of narrow class charactgrsvith y?> = 1 is again of
order X1, since it is isomorphic to the group of ambiguous (narrow)
ideal classes iK. But the genus characters from a subgroup (of order
241y of the group of narrow class charactgraith y? = 1. Hence every
narrow class character of order 2 is a genus character. Oivadently
every real narrow class character is a genus character.

For any genus charactgr y(i?) = 1 for every ideal. In other words,
i2 is in the principal genus. Or, for any two idealsndb with a ~ bi?

(in the narrow sense), we hayéx) = x(b) for every genus charactgr

That the converse is also true is shown by

Theorem 5(Gauss). If two idealsa andb are in the same genus, there exists
an ideal i such that ~ bi2, in the narrow sense. In particular, i is in the
principal genusga ~ i? for an ideal i.

Proof. Two narrow classe8 andB are by definition, in the same genus if and
only if ¥(A) = x(B) for all genus charactegsor by the foregoing, for all narrow
class characterg with y? = 1. But from the duality theory of subgroups of
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abelian groups and their character groups, we deduce inategdthatAB ! =
C? for a narrow ideal clas§. This is precisely the assertion above. O

Remarks. (1) The notion of genus in the theory of binary quadratic fernio
is the same as above, if one carries over the definition by snefthe
correspondence between ideals and quadratic forms.

(2) Hilbert generalized the notion of genus to arbitraryehigic number
fields and used it for higher reciprocity laws and class fib&bty.

We now come back to formulas (66) and (6@)< 0). If d = dids

La(ILar(8) = D XA A),
A

the summation running over all (narrow) ideal claséés K = Q(Vd).
Consider any ideal € A™L. Fora € A, ab = (y) with N(y) > 0 we have
then

A= TS vye

bly#0

wherew denotes the number of units i = Q(Vd).

Let [a,B] be an integral basis of. Then we may writeb = [a,8] =
(2)[1,B/a] so thatB/a = z = x+ iy with y > 0, i.e. we may suppose that
b = [1,Z. Then, fory € b, if y = m+ nzwith m, n integersz (0,0),
N(y) = [m+ nz2. We obtain

{(sA) = —N([t’lz])s >V Im+ g2
mn

Now, abs|} 2| = |z — 2 = 2y = N(b) V[d], so that

1 2ys ! -2s
sA:—(—) m+n
(s” =gl %' +n3

_12 (27§
_W\/ﬂ(\/ﬂ) ;ﬁzmn|m+nz| )

From Kronecker’s first limit formula, we obtain the follovgrexpansion:

’ -2s _ L _ _ 2y, ...
ys;llernzl _n(s_1+2c 2log 2— 2log(\yin(@P) + )
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Further 71

2\ sy wﬁ_( ~1)log 2o )
(\/ﬂ) =¢ 9 =(1+(s 1)Iog\/ﬂ+ )

On multiplication, we obtain

2n 1
0(s.1) = 225 (75 + 20 - logldl - 2log(NTL AP+
+ terms with higher powers of(- 1)).

We now set
F(A) = VN(L, 2)In(2). ()
Clearly,F(A) depends only upon the classlA.cased < —4,w = 2, so that

La(9La(9 =~ > (A IogF(A)+
A

+ terms with higher powers of( 1).

Takings = 1, we have
-2n
Lo, (DLe,(1) = —= ) x(A)logF(A).
i &

Let us assume without loss of generalily,> 0, d, < 0. Then, by Dirich-
let's class humber formula for a quadratic field, we have

2h;loge
Ly, (1) = ———
d1( ) \/d_j_
whree is the fundamental unit arfg} the class-number d®(+/d;) and
2rhy
Lg,(1) = ———,

h, denoting the class-number angthe number of roots of unity iQ(+vdz). 72
On taking the product of these two, we obtain

2h hy
w

loge = — ZX(A) log F(A).
A

Summing up, we have the following. Ldt= did, < —4 be the discrimi-
nant of an imaginary quadratic field o@rand letd; > 0, d, < 0 be again dis-
criminants of quadratic fields ov€ with class-numberk;, hy, respectively.
Letw be the number of roots of unity iQ(+/d,). Then one has
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Theorem 6. For the fundamental unit of Q( Vd,), we have the formula

e2nha/w _ I—[(F(A))_X(A)’ (68)
A

where A runs over all the ideal classes@{Vd) and F(A) has the meaning
given in(x) above.

If w= 2, the exponent of in (68) is a positive integer.

Now e satisfies Pell’s diophantine equatiof — diy? = +1. And F(A)
involves the values df;(2)|. So we have a solution of Pell’s equation by means
of “elliptic functions”. This was found by Kronecker in 1863

AN ExampLE. We shall taked = -20,d; = 5,d, = -4 so thad = d;d,. We
know thath; = h, = 1, w = 4. The class number &(V-20) is 2 and for the
two ideal classes, sada, Az, we can choose as representatives the ideals

by =[L, V=5] = (1) and by = 1,1+2‘/"_5 .
Now N(b;) = 1 andN(b,) = 1/2. From the definition ofF (A), we have
2
B2 _ 1| (1++-5
F(A) = In(V-5)7 and F(A) = el E

If x(# 1) be the genus character associated with the above deciimpas d,

then necessarily(A;) = 1 andy(Ap) = (g) = —1. Formula (68) now takes the
form
1+ V=5
1 ‘"( 2 ]'
S 2 (VB

From the product expansion of thefunction, we obtain 73

(69)

n(V=5) = e ™1 - P)(L- )1 -F)...|,

77[1+ V-5

whereq = e V5 and for 5

]‘ the following expansion:

"7[1 - 2«/?3 )‘ = eV (1+ L - )L+ P)L- ).
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On substituting these expansions in (69), we have

1
€= Ee?"/g/ﬁ(l +O* L+ P+ ). ...

Now, € V53 > 10 so thatg < 1073 or ¢® < 10°°. Hence the product on the
right converges rapidly and if we replace the infinite prdaducl, we have

1
€= éeﬂ\@/6 +0(10°%)"

ezl +2‘/§ ~ %eﬂ‘@ﬁ (upto an error of the order of 18).

It is to be noted that in the expression #oas an infinite product, if one

cuts df at any finite stage, the resulting number on the right is abtegnscen-
dental, but the limiting value on the left is algebraic.

We consider now the trivial decomposition

Za(9) = {(La(s) = D LS A).
A

On substituting the expansion &fs, A) on the right side in powers o&( 1),
we have

2rh 1 2

On the other handj(s) = 1/(s— 1)+ C + --- andLg(s) = § (g) ns= 74
n=1
L(1)+ (s—1)L’(1) + ---. From (70), we have now the equation,
2rh 1 2
——|—+2C—-logld|— = » logF(A)+---
wm(s—l gllh;g() ]

1 ’
s—1 "')(L(1)+(s—1)L(1)+...)_

On comparing ca@cients of J(s— 1) and constant terms on both sides, we
obtain

2nh
L) = —,
(1= G
L) = 20

5 (71)
e [c ~ logld| -+ ZA: logF(A) |,
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or we have an explicit expression for

v _

2
Ol C - logld - & ; log F(A). (71y

We shall obtain now for the left side, an infinite series exgiam
Let us consider the infinite product

-G

this product converges absolutely for> 1, and on taking logarithmic deriva-

tives, we obtain
L' _ <, (d (9) s
[ - ;(l ()77 (5500

g

=- ) . (72)

o]

On passing to the limit as — 1, if the series on the right converges ats
s = 1, then by an analogue of Abel's theorem, it is equal’{d)/L(1). But it
is rather dificult to prove. One may proceed as follows:

Let 7, (X) = {p: pprime< X and(%) = 1} andn_(X) = {p : p prime

< X and % = -1}. Thenn (X) — 7_(X) tends toco less rapidly thanr(X)
asX — co. If one could show that this function has the estimaté/Qog X))
wherer > 2, then the convergence of the series on the right side of g72)
s = 1, can be proved. For this estimate, one requires a geredrafizof the
proof of prime number theorem for arithmetical series.

We shall now computé’(1)/L(1) for some values ad.

Examples.d = —4. The quadratic fiel@( Vd) = Q(V-1) with discriminant
—4 has class number 1. Also,

(%):1 if n=1 (mod4)and=-1ifn=3 (mod 4)

Therefore,
L()=1°-33+5°5—...
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and
L1)=11-314+51_...

the so-called Leibnitz series. From Dirichlet’s class nenmformula, we have

2r 7w
LQ)=-F==-=11-31451_...
W=22"3 3745

More interesting is the series faf(1)/L(1):
L'(1) log3 B log5 N log7 . log 1 log 13 _
L)~ 4 4 8 12 12
= (C - log4- 4logn(i)).

Now

o) = 2] -2,
n=1

We have 62 < 1/400 and henc% e ™ is rapidly convergent. In other wordsré
n=1

4 ﬁ (1 — e2) is absolutely convergent and upto an error of?/0t can be
n=1
replaced by 1. We obtain consequently

I:((ll)) - (

v/
C-log4+ 5)'

2 Class number of the absolute class field of

Q(Vd)(d < 0).

We shall now apply the method outlined§rb7 to determine the class number
of the absolute class field &% = Q(Vd), with d < 0. But, for the time being,
however, leKg be an arbitrary algebraic number field. Tdigsolute class field
K/Kq is, by definition, the largest field containingKo, which is both abelian
and unramified oveKg (i.e. with relative discriminant ovefg equal to (1)).

The absolute class field, first defined by Hilbert, is also kmag the
Hilbert class field its existence and uniqueness were proved by Fambher. It
can be shown that there are only finitely many abelian unraché@ktensions of
Ko and all these are contained in one abelian extension anis this maximal
one. It has further the property that the Galois gr@{l/Ko) is isomorphic to
the narrow ideal class group K.
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Consider now any abelian unramified extengiqrof Ko. ThenG(K1/Kg)
is isomorphic to a factor group @&(K/Ko), i.e. to a factor group of the narrow
ideal class group dKg. The character group @(K;/Kp) is a subgroup of the
group ofhg ideal class characters in the narrow sense.

We have then for the zeta function, 77

Ga(9 = [Lsx.

X

the product on the right running over all characters in thisgsoup.

We shall now derive an expression for the quotidiih of the class num-
bersH of K andh of Ky in the caseKo = Q(Vd) with d < 0, by using the
above product formula fdk; = K and comparing the residue & 1 on both
sides.

We have indeed ,

(9 =] | Lsn) -z,
X
the producf]’ running over all charactejs# 1.
On comparing the residues st 1 on both sides, we obtain

2 (27)"2R 2rh
H= L(2, v). 73
WD WWH()«) (73)

Herer; andr, denote the number of real and distinct complex conjugates of
the fieldK;. The regulator oK is denoted byR and is defined as follows: By

a theorem of Dirichlet, every unitof K is of the forme = €€} ... & with
rational integersj;, o being aroot of unity. Theey, ..., & (withr =ri+r,—1)

are called fundamental units. Define integerss follows. IfK®, ..., K(1),

are the real conjugates & andK{"*V, ... K{"*? the complex ones, then
we define

[1ifksn
“l2ifrp<K<r.
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ThenR = det(elogle¥|)(I,k = 1 to r); here® denoting the conjugates ef
in the usual order.

The regulatoR is then a real numbet 0 and without loss of generality,
one may assumR to be positive. It can then be shown thits independent
of the choice of the fundamental units. In the case of thematinumber field
and an imaginary quadratic fielR,is by definition, equal to 1. Further in (73),
D denotes the absolute discriminantaf andW, the number of roots of unity
in Ki.

We shall now takéK; = K, i.e. the absolute class field. Th&his totally 78
imaginary of degreel® i.e.r; = 0, r, = h; sinceK is unramified oveiKo,

D = d". We shall further assume that< —4. Then (73) may be rewritten as

@0)"RH _ #h v 2 [
widfh2 ~ «/|H|l:[ Vidl ( ZA:X(A)IOQF(A)]

or
% =n[] (— > x(Alog F(A)] . (74)
X A

With every elemen#y of a finite group{A, . .., An}, we associate an inde-
terminateup (k = 1,...,h). Then the determinarti, 14| is called thegroup
determinant and was first introduced by Dedekind and extensively used by
Frobenius. In the case of an abelian group we have then a g@sition of
this group determinant, as follows:

-T] ; X(A)UA) = (; uA] (1‘[ D x(Rua

X x#1 A

s

Let us supposéy, = E (the identity); we can show by an elementary transfor-
mation that

|uA;1A (k1=1toh-1)

_ [Z UA] i~ Uy

Then, from the above, we deduce that

-]

x#l

Zx(A)uA] :
A

‘UA;IA{ - UA‘zl

Takingua = —log F(A), we obtain
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) FIAY
]_[ [_ Z Y(A) log F(A)) = det(log m)

x#1 A
VN(bA)In(zZa)P

= det|log = A(say)
\/ N(bAkA;l)m(ZAkA;l)F
From 74, we gather that 79
2H A
WhoR (73)

In other wordsA/R is a rational number. We shall now discuss the-(1)-
rowed determinan.
Now, bx,l is a principal ideak (8) (say) withg, € Ko. ThenN(bZ‘,1 =82

so thatN(ba+)"? = |B)|. Define

PRl )
B (242)
We shall now prove that are all units in the absolute class fiddd For

the same, we first see thatdepends only upon the clasgl. If bis replaced
by b(2) with A € Kq, then

(=1 toh-1).

7724h(17 ZE)
(B1A120) 1~ 12240 (1’ Zpr

Pl — =pQ
)

since, in the “homogeneous” notatioft*(Aws, Awy) = 1™ 2n(w1, wy).

Now, we pick out a prime ideal in the cIassA;l with the property that
pp’ = (p), p # ¥’; such prime ideals always exist in each clagsK) as a
consequence of Dirichlet's theorem. We shall show thatghgefined with
respect tg are units in the absolute class fidd

Let(p) = By,..., By be the decomposition afin K. If we denote deg, B; =
v, thenr - v = h. The idealp” is principal and equal tgs] (say). Let fv1, w>]
be an integral base &, and ;, w;] an integral base of. Then we have
(wjw3) = (w1w2)Py WhereP, is a 2-rowed square matrix of rational integers
and|P,| = p.

Denoting by
12 7724((0)17 w2) Pp)

?4(w1, w2))

(with w = wy/w1), we know from the theory of complex multiplication thago

op, (W) =p
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¢p,(w) € K and the principal ideal
(¢p, (@) = (")
(meaning the extended ideal ). On taking the/™ power on both sides,
(e, (@)) = (') = (@™)2 = B
or in other words,
(¢p,(@) =B with €, aunitin K.
Writing out explicitly, we have, finally, sincig|> = Np¥ = pY,

B4 (w1w2)Py) .
P (wr2)) =¢, aunitink.

The same also holds for a suitable uaitalso withh instead ofv sincevih.
(See references (2) Deuring, specially pp. 32-33, (4) Eri¢k) Fueter).

If o : a®™ — o®(k = 1toh) denotes the automorphism &f/K, cor-
responding to the clas& under the isomorphism betwe&{K/Ky) and the
ideal class group dko, it can be shown that

12n
JN(® 2
10%9] = (ba)Im(Za,)] (k=1toh—1)
NOAA1) - |77(ZAkA1‘1)|2
We may then rewrite (75) as
eh2on det(loglo{¥])
12h"22"H = w (k| =1toh-1), (76)

det(logle ™)

wheree, ..., -1 are a system of fundamental units asﬁla, pl(k) denote the
conjugates o§ andp(l = 1 toh- 1) respectively, the conjugates being chosen
in the manner indicated above. Since the number on the Isfitictly positive,

the (h—1) unitspy, ..., pn-1 are independent, i.e. they have no relation between
them. Hence the group generated by these units is of finieximdthe whole 81
unit group and the index is precisely given by the integertenleft side of
(76).

We have thus proved
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Theorem 7. Let K be the absolute class field of an imaginary quadraticfiel
Ko = Q(Vd), d < -4, H, h the class numbers of K and kespectively, R the
regulator of K and W the number of roots of unity in K. Then fowl have
the formula

H W A

h~ 2 R
whereA = |(log|o® Y1), I, k = 1,2,...,h—1andp® are conjugates of h 1
independent unitgy, ..., ph-1 in K, as found above.

Example.We shall taked = -5, i.e. Ko = Q( V-5).
The class numbeh of Kq is 2. The absolute class field is then a bi-
quadratic field and is given §o( V-1) = Q( V-5, V-1). Further,
Q(V5, V-1) =K
)2
Q(V-5) =Ko
)z

Q

W = 4 and the fundamental unitis= (1 + V5)/2. We takeA;, Ax(= E)
to be the two ideal classes Kf and the unit; = ¢ 1. The bases for the two
ideal representatives are giventyy = [1, (1 + V=5)/2] andba, = [1, V=5].
(Refer to the example on page 71. Then from the above, we have

12

_ | 2n(v-5)"
lpal = | ———
'n(hzﬁ)
and from (69), we have thep| = |e1|*2. From (76), we gather then that
1222. 1 =4.9901D _ 415 ormo1
log(lexl)

82

We shall consider, later, class numbers of more generdiwelabelian
extensions (which are not necessarily unramified) of imagiguadratic fields
by using Kronecker’s second limit formula.
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3 The Kronecker Limit Formula for real quadratic
fields and its applications

In the last section, we applied Kronecker’s first limit folato determine the
constant term in the expansionsat 1 of the zeta-functior (s, A) associated
with an ideal clas#\ of animaginaryquadratic field ove. In what follows,
we shall consider first, a similar problem foreal quadratic fieldko = Q(Vd),
d > 0. This problem which is more fficult, was solved by Hecke in his paper,
“Uber die Kroneckersche Grenzformétfreelle quadratisched¢per und die
Klassenzahl relativ-abelschekper”. We shall, however, follow a method
slightly different from Hecke'’s.

We start from the series

fz9=y Y -Im+ng™,

mn=—co

with z = x+1iy,y > 0O ands = o +it, o > 1. It is easy to verify that
f(z 9) is a ‘non-analytic modular function’, i.e. for a modulaamsformation
z— Z = (az+p)/(yz+ 6), we havef (z, s) = f(z 9).

We now make a remark which will not be used later, but whichtisresting
in itself, namely,f(z s) satisfies the partial fierential equation

VAT = s(s— 1)f (77)

whereA = (9%/0x?) + (6%/dy?) is the Laplace operator.

For proving this, let us first observe thatHf(z, w) is a complex-valued
function, twice diferentiable ire andw and if (z w) — (z°, w") wherez' (ez +
B)yz+6)L, w = (aw+B)(yw+ )L with «, 8, y, 6 real andwd — By = 0, then 83
it can be shown directly by computation that

262(F(29W)) = (7 - V\fk)ZazF(zk’\N*)

(z=w) dzow Az oW

(

Settingw = zandad—By > 0, we see thaf?A is an operator invariant under the
transformatiorz — z*. Now consider the functioy®. It satisfies the equation

YA(Y) = s(s— 1)y

If we use the invariance property giA, then we see that

VAY) = s(s- 1y
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Sincey* = (a6 — By)y - lyz+ 6|72, we have
YA lyz+617%%) = S(s— 1ylyz+ 6]

wherey, § are real numbers not both zero.
It is now an immediate consequence tlié, s) satisfies the equation (77).

In fact, it also follows that the serig€ 3’ |m + nZ-2e?(M+M) gatisfies the
(mn)
differential equation (77).

We shall now derive some properties of a functierwhich satisfies the
equation (77).
Suppose the functioh itself can be written in the form,

F=(F_)/(s—1)+Fog+Fi(s—-1)+---;

then on setting(s - 1)F = (s— 1)°F_ + (s— 1)F in (77) = and by comparing
codlicients, we obtain the recurrence relation

Y?AF,=Fp 1+ Fn2n=012,...,

whereF_, = 0.

Now, consider the functiori(z, s). From Kronecker’s first limit formula,
F_; = m and from the above recurrence relation, we obydikFy = 7. If we
write Fg = —rlogy + G, theny?AG = 0. In other wordsG = Fo + rlogyis a
potential function. This is also explained by the fact that

G = 27(C - log 2 - log|n(2)[%).

84

For the functionF(z ) = Y53 i, IM + nZ=25e2(M*™) from Kronecker’s
second limit formulaF_; = 0 so that/?AFq = 0, i.e. Fy is a potential function,
which can also be seen directly from the expressiorfor

These remarks stand in connection with the work of Maass etite&) on
Harmonic analysis.

Now, Iet(‘”§ be the matrix of a hyperbolic substitution having two real
fixed pointsw, w'(w # «’), both being finite. We shall assume without loss of
generality, that’ < w. Setu = (z—w)(z-w’)™. Thenu* = (Z —w)(Z —w’) L.
The transformatiom — z* corresponds to the transformatior- u* = Auwith
A, a positive real constast 1. We can also assume without loss of generality
thata > 1 (otherwise, we may take the inverse substitution). If visoifuce a
new variablev,by definingu = 1Y, then the transformation — u* = Au goes
overtov— v: =v+1.
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Consider a non-analytic functioh of z, invariant under the substitution
z— 7' = (az+B)(yz+6)~L. Thenf considered as a function of has period
1. If v= vy +ivyp, thenf(2) = g(vi1, v2) has period 1 irv;.
log |ul
log1
a valid Fourier expansion with respectvy it is of the form

Now|u| = A orvy = so thate?™V1 = |u/Zi/1094  |f g(vy, v») possesses

e

f(z) = g(Vl, Vz) = Z Cn(vz)eZHinvl

N=—oc0
— Z C;(:)|u|2mn/log/l (78)
Nn=—o0 u
_ logu/u . . .
sincev, = g_/ In general, the Fourier c@&ientsc; in (78), are not
2ilog A "

constants but iti has a constant argument, i.eujfu is a constant, theg;, are
constants.

We shall compute the Fourier déieientsc;, of f(z s) in the case whem,
«’ come from a real quadratic fiekly = Q(Vd) with discriminantd > 0. It
is interesting to see that upto certain factdhg Fourier cogicients are just 85
Hecke’s “zeta-functions with Grossencharactessociated withKg.

Suppose is a non-trivual ¢ +1) unit in Kq. Let [w, 1] be an integral basis
of an idealb in Kq. Without loss of generality, we may suppose that «’
(otherwise-w has this property!).

Now (€)b = b so thatew = aw + B, € = yw + § with rational integers, ,
v, 6. We may also write

a fl\fw o\ _ (w o\fe O

vy 6/)\1 1) \1 1/Jl0 ¢
It follows then thatwé — By = e’ = £1. In the cased — By = 1, defineu
wu+ o’ az+f wu* + o’

such thatz = orif z = ——=—, thenzz = —————; in other words,
yZ+ 6 u-+1
zZ—w . zZ—w
u=2"% andu = €u. If a6 - By = N(€) = —1, defineu = ——% and
w-2Z w-2Z
. azZ+p o . . .
if z2 = -5 u* = —e“U. Sincez — Z* is a hyperbolic transformation, the
Y

pointsw’, z, Z*, w lie on the same segment of a circle in the chige) = 1. We
may assume without loss of generality, thdies to the right of, or otherwise,
we can take the reciprocal substitution. We have #fen 1, sincee > ¢, as
a consequence of our assumption ttidies to the right ofz- € itself might be
positive or negative. I is negative, we take instead @f 3, v, ¢, the integers
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—a, =B, —y, —6 so that we secure finally that> 1. In the second case, when
N(e) = -1, if zlies on the small segment’ Aw (see figure)z* would lie on

the big segment’ uw which is the complement of the small segment obtained
by reflecting the original one on’w. If we takez on the semicriclev’vw on
' w as diameter, themandz* would lie on the same segment. So, in this case,
under the same argumeat; 1.

In either case¢ > 1 and consequently’ < 1 so thate — ¢ > 0. But 86
€—€ =vy(w - ') implies thaty > 0.

Now, if zlies onw’vw, U is purely imaginary with arg = 7/2. On setting
u = Ui, we obtain the transformatiarf — u* = €2U’; U’ is real and positive.
Hereafter we need not distinguish between the two cases.

If we definev such thatu = ¥ (writing u instead ofu’) thenu — u*
becomess — v + 1. The functionf(z s) = Y%/ alm + nZ=25, is invariant
under the modular substitutian— (ez+ 8)(yz + 6)~* and hence as a function
of v, it has period 1. It has a valid Fourier expansiow iof the formf(z s) =

Y ae . Now

k=—c0

1 .
a = f f(z s)e>"dv
0
2

1 € i du
— f —mk/logs_.
2Iogef1 (z 9u u

On changing the variable from to z, the seriesf(z s) being uniformly
convergent on the corresponding segmenbatv, we may interchange inte-
gration and summation and obtain

2
1 © y® _rik/loge AU
= — g
& 2Ioge;f1 m+ nz2s u
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. Ui+ o' .
From the relatiorz = % it follows that

UWw — ')
y= P+l

m+ nw)ui + (M+ N’
andm+nz=( w) .+( + ')
+1 u+1

SettingB = m+ nw thenB € b sincem andn are both rational integers and
w — ' = N(b) Vd. Then our integral becomes

i du
/2 —nik/loge 2~
B))SdS Z f (,82u2 /3/2) 7/ log "

b|3£0

To bring the right hand-side to proper shape again, we usdemadf Hecke.
We shall now get rid of3 in the integrand by introduciny = u|3/g’|. The 87
integral then reduces to

B

ﬁ/
on writing u instead ofU. For two elementg, v, # 0, (8) = (y) implies that
y = +Be", n=0, +1, +2,... with e > 1, being the fundamental unit @( Vd).
Then

Be"
penl’
We have therefore, on taking into accognt Be" of y = —B€",

Z f(ﬂé/ﬁ'é’)l ys-(ik/loge) gy

bjg=0 v IB/B'] (UZ + 1)5 u

0 f(ﬁe"*l/ﬂ'e’””) us—(rik/loge) qu
[(Be"/B €M) (U2 + 1)5 u’

nik/loge |(Be/B'€)l ys-(mik/ loge) g,
Ner [ e
oy (WPH1F U

/ ! y
yl = 1Be"l, ly'| = B¢ and | = | =

4

=2
bl(B)#0 n=—co

Now sincee > 1, the intervals|g/8) - €, |8/8'| - €MD) fill out the half-
line (0, «0) exactly once, without gaps and overlapsnaends to—co on one
side and+co on the other side. Hence we have

[(Be™L/B ™| ys(rik/loge) du o | s-(rik/loge) g
2 f L= =2 f © -
n;x, I(Ben/pe™) W@+1F u o (UW+1) u

and

s mik S N nik
f“ us-rk/logd gy~ \2  2loge) \2  2loge
o (WR+13 u I'(s)
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Therefore, we have

1 «
a = f f(z e ZVdv
0

F(§— mik )F(§+ mik )
_ 1 (N(B))%d2 2 2loge/ \2 2loge o
2loge I'(s)

nik/ loge
<3 |5

- IN(@B)I ™,
b|(B)#0 'B/

since the expression under the summatiodoes not change for associatess
elements andy.
Upto a product of -factors, the Fourier cdicientsay are Dirichlet series.

Fork =0,
s
2=
°(3)
2loge T(s)

1 ”(3)

-2 loge T'(9)

1
2= [ 1= 42 3 (NG)

acA

d¥22(s, A,

whereA denotes the ideal class bf! in the wide sense. Ik # 0, we define
foro > 1,

{sxA) = ) T@MN@)™
aeA
= @) > XB)HN@)™,
al?i&)
The functionZ(s,y, A) is called the zeta-function of the claAsand associated
with the Gibssencharact@f, which is defined as follows:
The charactey is defined on principal idealg) of Ko as

B

B
(x((B)) is independent of the generaby definition). Theny is extended to
all idealsi as follows: Ifi = (v), definey(i) as aht" root of y((v)) so that

nik/loge

x((B)) =

v nik/loge

x(") = x((v) = v
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It is clear thafy is multiplicative. 89
We have now

YOUETHA = > X(BHN@)™
w={31(0)

= (N@®)° D> XBINB)I™,
5/(8)#(0)

so that we may rewrite the expression #ras follows:

r S mik r S N mik
_ 2loge¥® \2  2loge) \2 = 2loge
T d %0

X(b) (s x. A).

One can make some applications from the nature of the Faxg@icients
a.
We know that the functiorf(z s) satisfies the following functional equa-
tion, viz.
(9 f(z9) =7 Ir(A-9f(z1-9).

One can then show that from the analytic continuatiorfi(@f s) it follows
that theFourier cogficients @ as functions of s have also analytic continua-
tions into the whole s-plane and satisfy a functional equragimilar to the
above. In the particulacase, whetk = 0, it follows that

ﬂ,—sds/2l—~2 (ES){(S’ A) — ﬂ,—(l—s)d(l—s)/zrz(l; S) ((1 B SA)-

Hence, for the zeta-functiafy,(s) = X (s, A), we have
A

S 1-s
nSd¥2r? (E) ko (9) = =9 gA-9/212 (T) lko(1—9).

This was discovered first, by Hecke, who also introduced ¢fte-finctions
with Grossencharacters and derived a functional equation foraine s

We shall now use Kronecker's first limit formula to study thehaviour of 90
(s A)ats=1.

From Kronecker’s first limit formula, we have

T

f(z9) = 1t 27(C - log 2 log \yn@)P? + - - -).
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It can be shown that the series on the right can be integratadtiy term with
respect tos (after transforming into v) in the interval (01), i.e.

s
folf(z,s)dv: 1 Fz(é)

s/2
2loge T'(s) a7 A

- " 2nC-log2)-2r [ | 2)d
- S5 +2x(C - log2) -2 [ log(SIAPdv+ -

It follows therefore that the function on the left has a pdlesa 1 with
residuerr and the constant term in the expansion is provided by thgrate
which cannot in general be computed. It is to be noted hetartlihe case of
the imaginary quadratic field, we had only the integrand enrippht side and
the argument was an element of the field, but herés a (complex) variable.
One cannot get rid of the integral even if one uses the sexjgnsion for the
integrand.

The above formula was found by Hecke and is Krenecker limit for-
mula for a real quadratic field. One can also consideg for k # 0 and obtain
a similar formula.

Changing this integral to a contour integral, we shall latietain an ana-
logue of Kronecker’s solution of Pell’s equation in termsediptic functions.

We have now, for real,

1 v+1
ao=j(; f(z,s)dv=fv f(z s)dv

_ 1 FZ (;)ds/z ( A)
~ 2loge I(9 (EA.
Using the Legendre formula 91
S\ [s+1) 1-s
F(E)F(T) = Vr2T T,

we obtain

s+1 s+1
re (9 FZ(T) FZ(T)

s\ s 1\  722@-91()
IGEE

2 2) %=

But on the other hand,

5

I'(s)

=1+ termsin 6—1)%,
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so that we have

ds A = 21092 T [ 12 g0
r(3) >

2|096(220|”)(91)(1+ terms in 6— 1)2)f f(z s)dv.

7 Vd

By setting (2d-3)(s-D) = gs-D2log2-210g ¥) and expanding it in powers 0§ ¢
1), and applying Kronecker’s first limit formula fdi(z, s), we obtain finally,

2loge
nVd
X (& +2C - (2log 2— 2 log Vd)—

(S A= (1+ (s— 1)(2log 2- 2log Vd) +

Vv+1
2 f log(vyVdin@P)dv+ - )

[sA) = 2Ioge( 1

Vvd \s-1
2loge

From this, we deduce thé(s, A) has a pole a$ = 1 with residue—d which 92

+2C -2 f " log(\vyVdin@))dv + - - ) (79)

is independent of the ideal claBs This result was first discovered by Dirichlet.

It would be nice if one could compute the integral and expieissterms
of an analytic function, but it looks impossible. We shallyosimplify it to a
certain extent by converting it into a contour integral.

’

Lo 2=
From the substitutioni = @ follows that

Uz Im(z—w') _ Y(w - ')

w-12 (z- w)(Z-w)

and similarly

. Ye-o)
C z-w)EZ-w)

On multiplying the two, we have

u

1= Y . (80)

(z-w)(z-o)| [(Z-w)(Z- )
{ w - }{ w - }
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Consider now the expression

(- w)(z-w)

RO

=aZ+bz+c (81)
We then claim thad, b, ¢ are rational with& b, ¢) = 1 andb® — 4ac = d. From
Kronecker’s generalization of Gauss’s theorem on the cirtea product of
polynomials with algebraic numbers as fii@ents, we have for the product
(€ —wn)E -on), (L-w(,-) = (1 -(v+ &), ww’) or in other words,
oo’ = (1, 4, 1) whered andy are rational, i.e.

14 L)_
N(b)” N(b)" N(b) ) ~
A H

= —— so that

_ 1
But, from our definition ofF(2), a = W’ b = W c N(D)

(a,b,c) = 1. The discriminant oF(2) is

(w+ W)? = 4w’ _(w— w')? B

R T O

Furthera = % > 0. We can then show that the class of the quadratic foan

F(2) is uniguely determined by the ideal class
From (80) it follows thaty’d = F(2) - F(2) or equivalently, \/)7{‘/3 =

JF@ - F@®.

Now, for the integral in (79), we have

—4loge (V! 4 NN 4 2y dz.
=29 [ oa(vadn@Pyv=2 | ogVF@nR

since, by definition of,
ve = Vvd dz
"~ 2loge F(2)
and the transformatiom — v + 1 corresponds ta — z* on the segment of the
orthogonal circle. On the right sidemay be taken arbitrarily on the segment.
Thus, letA be an ideal class, in the wide senseKgf= Q(Vd), d > 0 and
b an ideal inA with an integral basis [W], w > «’. Corresponding ta, let
(3%) be defined as op. 85 and let forz € b, z* = (az+ f)(yz+ 6)™L. Let,
further,e > 1 be the fundamental unit ikg. Then we have
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Theorem 8(Hecke). For the zeta-functiog(s, A) associated with the class A,
we have the limit formula

. 2loge 1 \ 4Cloge z . dz
lim(¢(s A) - 7d s—l)_ 7 +2fZ Iog(|\/F(z)n(z)|2)%,

where the integration is over a segmeritaizthe semicircle on’w as diameter
and K2 is defined by81).

Now, the question arises whether one could transform tlegiat in such a 94
way that it is independent of the choicezdnd also the path of integration. It
is possible to do that, by the method of Herglotz who redubidto an integral
involving simpler functins than(2).

If N(¢) = 1, then the transformation — v + 1 is equivalent t@ — z* =

z2+p8 .
225 ith (%), amodular matrix.
vz 7

+06
If N(¢) = —1, on replacinge by €2, N(¢?) = 1 and the transformation
. 2+ B . ;g
v v+ 1 goes over to the transformatians ©22_ with (% %) amodular
Y'Z+ ¢ 4

matrix. Further, because of the periodicityfdg, s),

V+2 v+1
f f(z 9)dv= Zf f(z 9)dv
Vv \

so that we may assume without loss of generality M@) = 1.

Now, the behaviour of/F(2) - n(2) under a modular substitution can be
studied. We know thai(z*) = p vyz+ on(2) wherep is a 24th root of unity.
Further,

(z- w)(z- )

(yz+6)?

if one uses the fact that = w* andyw + 6 = e.
From these two, it follows that

(7 -w)(Z -o) =

= _ VF(@
Fz) =« Vyz+96

with «, a 4th root of unity. Therefore
VF@)n(Z) = pxyF(Dn(2). (82)

(We emphasize here that (82) holds only for a hyperbolic tdubisn and a
power of the same, since we have made essential use of thbdaetandw’
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are fixed points of the substitution in obtaining the transfation formula for
F2.)

Consider the functionyF(2);(2). It is an analytic function having no ze-
ros in the upper half plane so that on choosing a single vahradch of 95
log(¥/F(@n(2), we have a regular function in the uppehalf plane.

Let us denote lod/F(2)n(2) by g(v). Then (82) implies thag(v+1)—g(v) =
2riA (say) with A rational. One can then expreg$y means of the so-called
Dedekind sums. Setting(V) — 2ziAv = h(Vv), we haveh(v+ 1) = h(v) possesses
a Fourier development ie#", or in other wordsh(v) = 3 ¢,&¥"", where

N=—00
Cn are constants, sind#v) is an analytic function of andcy = fv vt h(v)dv.
Herev lies in a certain strip enclosing the real axis.

Now, consider the complex integrey = fvv+l h(v)dv. Herev is, in general,
complex and the path of integration may be any curve betwagilv+ 1 lying
in the strip in which the Fourier expansion is vaid. We have

W+1
f log(VF (2 TI(Z)IZ)m = 2f Re @(V))dv (vreal)

=2Re (le h(v)dv)

=2 Re (o).

The computation of the integral on the left side therefodrioes to the de-
termination ofcy, which in turn is independent efand the path of integration.
The trick for computing the integral is to convert it into arfinite integral by
lettingz —» o0 andz* — «/y. Expandingg(v) in an infinite series, one can
express this infinite integral as a definite integral of anémeletary function.
(See G. Herglotz.)

We shall now obtain an analogue of Kronecker's solution df$equation
in this case. Let us define

o =2 [ o9 JF@nR) .

Then, associated with a characteof the ideal class group (in the wide sense),
we have

2 loge

(83)

L(sx) = > x(ML(s A),
A

the summation running over all wide clasges 96
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From (79), we obtain, foy # 1, the expansion,

L(sy) = Z x(A)g(A) + terms involving 6 - 1). (84)
A

Before proceeding to derive the analogue of Kroneckerstiwni of Pell’s
equation from the above, we shall examine under what camdifia genus
character, which is a character of the narrow class grou@(ofd), is also
a character of the wide class group. Lebe a genus character, defined as
follows: If d = did,, then for all ideals: with (a,d;) = (1), x is defined by
x(a) = (%) (We may suppose without loss of generality tdais odd).
Now, in generaly is not a character of the wide class group. It will be so, if
x((@)) = 1 for all integersy with (a,d;) = (1). For elements with N(a) > 0,
this is true by the definition of.

If N(a) < 0, then

1= ()= ()

for all a, if it is true for one suchw.
Takea = 1+ Vd so thatN(a) = 1-d < 0. We need examine on(%),
d; being odd. Then

dp |\ (d-1) (-1 |J+1lifd>0
(d—l)_( d; )_(dl)_ -1ifdy <O.

Sinced is positive, either botld;, d, are positive or both are negative. In
the former casey continues to be a character of the wide class group and in
the latter case, it is no longer a character of the wide clemsgm

Cask (i). Let us assume, thdtoth d and @ are positive.Then the genus
charactey as defined above, is also a wide class character.

We have a decomposition bfs, y) due to Kronecker, from (66) as follows:
L(s,x) = Lg,(9)Lq,(S) and on taking the values on both sides at1, we obtain 97

L(Lx) = Lo, (DLe, (D).

From (84), we have now (1, y) = X x(A)g(A), summation running over
A

all wide classes\.
Further
2 |Og E]_hl

Ldl (l) = \/d_j_
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if e, denotes the fundamental unit@f v/d;) andhy, the wide class number of
Q(+/dy) and similarly forLg,(1). Thus as an analogue of Kronecker's solution
of Pell’s equation as derived in (68), we have the following

Proposition 13. Lety be a genus character @(Vd), d > 0, corresponding
to the decomposition & d;dy(d; > 0,d, > 0) of d. Let h, hy be the class
numbers ands, e the fundamental units d(+/d.), Q(+/d) respectively.
Then

ahihzlogerloge; = Vd ) x(A)g(A). (85)
A

where A runs over all the ideal classes@f Vd) in the wide sense and4) is
defined by(83).

The expression on the right side of (85) is not very simplés ot known
whether the number on the left side is rational or irratiotiails probable that
the number on the left side is a complicated transcendeutaber, so that one
cannot expect a simple value on the right side.

Cask (ii). Supposed; andd, are both negative. Then again from the de-
composition formula (66), we have

27Th;|_ 27Th2 _ 471'2h1h2
wi Vidi wo Vida]  wyw, Vd

wherehy, h, denote the wide class numbers@fvd;) andQ(+/d,), andwy,
w» the number of roots of unity iQ(v/d;) andQ(v/d,) respectively.
We shall see ir§ 5 that 98

L(L,x) = Lo, (DL, (1) =

2
L(LY) = = Y x(B)G(B),
vd
B

B running over all narrow classes @ vd) andG(B) being numbers depend-
ing only onB.

We shall further prove th#&(B) are rational numbers which can be realized
in terms of periods of certain abelian integrals of the third.

We then have, as an analogue of Kronecker’s solution ofsPetjuation,
the following:

ahih,
= ZB:X(B)G(B)-

Example. Consider the field)( V10) with discriminand = 40 = 5.8;d; = 5
andd, = 8.
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The class number @(V10) is 2. Since the fundamental usit 3+ V10
has norm-1, the narrow classes are the same as wide classes. We can now
choose the two ideal class representatives as follows
1

(1) =1y =[1, V10] and b, = |1, % «/E} with N(by) = =

2

The class numbetis; andh, of Q(V5) andQ(V8) are both 1 and the funda-

. . 5
mental units are respectlve%ﬁz—\/— and 1+ V2. The only charactey # 1

has the property that(b;) = 1 andy(b,) = -1, so that we have from (85), the
following:

) Iog[l +2\/§

]-|09(1+ V2) = V10@(E) - g(A).

We shall make a remark for more general applications. Censie abso-
lute class field ofQ(Vd) with d > 0. For computing the class number of this
field, one can proceed in the same way, as in the case of amarggjuadratic
field. For the same, one requires the computatidn(fy) for arbitrary narrow
class characters. This will be done§, for a special type of characters.

4 Ray class fields over Qvd), d <0
99

Let K be an algebraic number field of degne®ver Q, the field of rational
numbers. Let; and 2, be the number of real and complex conjugate& of

respectively, so that; + 2r, = n. Let K, ... K be the real conjugates
of K andK(*D, . K™ be the complex conjugates &f. Let, for o € K,
o e KO i =12 ... n, denote the conjugates of Further letf be a given

integral ideal inK. Two numberg; = ﬂ, Vo = % with a4, B1, a2, B2 integral
1 2

in K and withB,8, coprime tof are(multiplicatively) congruent modulp(in

symbols,;y; = yo( mod*f) if a8, = aB1( modf)). If y1, v, are integers in

K, this is the usual congruence modiilo

. . . b
Let us consider non-zero fractional idealsf the forma = — whereb and

c are integral ideals i coprime tof. These fractional idealsfocrm, under the
usual multiplication of ideals, an abelian group which walstienote by®;.
Let ®; be the subgroup ob; consisting of all principal idealsy) for which
a>0(.ea) >0 fori=12,...,r1) anda = 1( mod*f). ltis clear that if
(y) € G; andy = 1( mod*{), theny might be written as/B8 wherea andp
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are integers irK satisfying the conditionsy > 0,8 > 0, = 1( modf) and
B =1( modf).

The quotient groug;/ ®; is a finite abelian group called tiney class group
modulof; its elements are calledy classes modulp Two idealsa andb in ®;
areequivalent moduld(a ~ b modf) if they lie in the same ray class modulo
f,i.e.a = (y)b with (y) € 6;.

If ry = 0 andf = (1), equivalence modulpis the usual equivalence in the
wide sense and the ray class group modusathe class group df in the wide
sense. Ifr; = 2,r, = 0 (i.e.K is a real quadratic field) and= (1), then the
equivalence moduldis the equivalence in the narrow sense and the ray class
group is the class group &f in the narrow sense. Lgtbe a character of the
group of ray classes modufo Then associated with, we define foro- > 1,
theL-series

L(sx) = ) x(@)(N(@) ™
az0
whereN(a) is the norm ofa in K and the summation is extended over all inte-
gral idealsa coprime tof. It is clear thatlL (s, y) is a regular function o for 100
o > 1. Moreover, due to the multiplicative charactenofwve have foro- > 1,
an Euler-product decomposition fofs, y), namely

Lsx) = [ [@-xmNE) ™™

plf

where the infinite product is extended over all prime ideatsprime tof.

Hecke has shown thaf(s, y) can be continued analytically as a meromor-
phic function ofsin the wholes-plane and that whepis a “proper” character,
there is a functional equation relatings, y) with L(1 - s, y), wherey is the
conjugate character. if # 1 (the principal character), thar(s, y) is an entire
function of s. If y = 1 andf = (1), thenL(s, x) is the Dedekind zeta function
of K.

We are interested in determining the valuesat 1 of L(s, ), in the case
whenK is a real or imaginary quadratic number field gnid not the principal
character. For this purpose, we need to apply Kroneckecsrgklimit for-
mula. Later, we shall use this for the determination of tlesglnumber of the
“ray class field” ofK, corresponding to the ideél

First we shall investigate the structure of a ray class dterg. Leta and
2

B(# 0) be integers coprime tcsuch thatr = g( modf). Theny = ;% satisfies

y = 1( mod*f) andy > 0 so thaty((y)) = 1 i.e.x((e?)) = x((8%)). In other
words,

x((@) = +x((B)) or x((e/B)) = +1.
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Let £ be the multiplicative group of # 0 in K. Corresponding to a ray
class charactey modulof, we define a characterof ¢ as follows. Forl € &,
we find an integerr € K such thate = 1( modf) andad > 0 and define
V(1) = x((@)). ltis first clear that() is well-defined; for, ifv(1) = x((8))
for another integeB € K satisfying the same conditions, then we see at once

that'%X = 1( mod*f) and% > 0 and soy((@)) = x((8)). Itis easily verified

thatv(Au) = v()v(u). Moreover,v(1) = +1; for, 2> > 0 and by definition,
V(1% = x(()) for a satisfyinge = 1( modf) ande > 0 so that ¢(1))?> = 101
v(2?) = y((@)) = +1. We shall calM(), acharacter of signature.

Consider the subgroup of € consisting oft > 0. Clearlyv(2) = 1 for all
A € B. Thusv(1d) may be regarded as a character of the quotient gydh
Now £/% is an abelian group of ordef*Zxactly, since one can finte £ for
which the real conjugate”, i = 1,2, ..., r1, have arbitrarily prescribed signs.
Also, there are 2 distinct charactera of £/%3 defined by

/l—rl A0 \? i =0 el
u()_l_l[m , g=00rlaecl.
i=

There can indeed be no more thét éharacters oft /8 and hence/(1) coin-
cides with one of these charactersof £/8. We do not however assert that
every characteu of £/ is realizable from a ray class character modylm
the manner described above.

Let nowy € K such thaty = 1( mod*{) and ¢) € ®;. By definition,
V(y) = x((6)) for an integers such thats = 1( modf) andsy > 0. But
x((9)) = x((»)) and hence/y) = x((y)). Let @ andB(# 0) be two integers
coprime tof such thatr = ( modf). Theny = /8 = 1( mod*f) and

X(())
= =V = —.
) x((7) = v(y) G
Thus for integralk(# 0) coprime tof, the ratioy((e))/v(a) depends only on
the residue class af modulof and is in fact, a character of the groGgf) of
prime residue classes modiloNe may denote it by(a). Thus

V()

Proposition 14. Any charactel((«)) of the ray class group moduiomay be
written in the form

x((@)) = v(a)x(a)

where @) is a character of signature ang(a) is a character of the group
G().
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Before proceeding further, we give a simple illustratiortted above. Let
us takeK to beQ, the field of rational numbers arido be the principal ideal 102
(Id)) in the ring of rational integersl being the discriminant of a quadratic field
overQ. For an integem coprime tod, we define

(i)ﬂ ford>0
x((m) = 1M

— ford<0
[

d). .
where m is the Legendre-Jacobi-Kronecker symbol. The gréupmow

consists of fractional idealsr(/n) wherem andn are rational integers coprime
tod. We extend to the idealsifi/n) in ®; by settingy ((m/n)) = x((M))/x((n)).
Now it is known that ifm= n( mod d) andmnis coprime tod, then

)-{8) -

and
(1)m =(£)ﬂ if d<0
[mf /[ [nl/ In|
Thus q
x(m) = (Iml) for d>0
and

for d<0O

= ()

Im( /|

m . .
are characters d&(/d]). Moreoverv(m) = = is clearly a character of signa-

ture. It is easily verified thag((m/n)) is a ray class character moduld|f and
thaty((m)) = v(m)x(m).

Now L(sx) = ZAZu(a)(N(a))‘S, whereA runs over all the ideal classes
in the wide sense andover all the non-zero integral ideals & which are
coprime tof. In the classA™!, we can choose an integral ide| coprime
to f andaba = (B) whereg is an integer divisible by, and coprime tg. 103
Conversely, and principal ideg8) divisible by bs and coprime td is of the
form aba, wherea is an integral ideal irA coprime tof. Moreover,y(ba)y(a) =
x((8)) andN(bp) - N(a) = IN(B)], whereN(B) is the norm of3. Thus

L(s.x) = D XEANE)® > x((B)INE)
A bal(8)
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where the inner summation is over all principal ide@lsdivisible byba and
coprime tof. SinceA™! runs over all classes in the wide sense wihedoes
S0, we may assume thgt is an integral ideal irA coprime tof. Moreover, in
view of Proposition 14, we have for > 1,

L(sx) = > ROaANEA)S > VB BIN(E)I ™ (86)
A bal(B)

where nowA runs over all the ideal classeskfin the wide sensé, is a fixed
integral ideal inA coprime tof and the inner sum is over all principal ideals
(B) divisible byba and coprime td. We may exteng (B) to all residue classes
modulof by settingy(a) = 0 for @ not coprime tof. Thus we may regard the
inner sum in (86) as extended over all principal ideglsdivisible by ba. In
order to render the series in (86) suitable for the appbcatf Kronecker's
limit formula, we have to replacg(3) by an exponential of the formf= (M
occurring in the limit formula. We shall, in the sequel, eegBy(8) as an
exponential sum by using an idea due to Lagrange, which isliasvk.

Let x,..., X, be n distinct roots of a polynomiaf (x) of degreen, with
codficients in a fieldK, containing all then™ roots of unity. Let, further, the
field M = Ko(Xg, ..., X,) be an abelian extension &, with galois groupH.
Let us assume moreover thatoif,...,on € H, thenx = x['i = 1,2,....n.

n

Now, if x is a character ofl, then let us defing, = }, x(oi)x. Itis clear that
i=1

Y, € M and

n n
Y= Y @ = X)) Y xaio )i =Xy,
i=1 i=1

Hencey; € Ko. Now, if y denotes the conjugate charactey@ndo € H, then

Y= ) XMoo)X =x(e) Y X)X
i=1

m
m

n
If yp # 0, theny (o) = )@J > x(oi)x”. We shall use a similar method to express4
i=1

x(B) as an exponential sum whose terms invghia the exponent.

First we need the following facts concerning tigierentof an algebraic
number fieldM of finite degree oveR. Let fora € M, S(a) denote the
trace of a. Leta be an ideal (not necessarily integral)Nh and leta* be the
“complementary” ideal ta, namely the set oft € M, for which S(1e) is a
rational integer for allr € a. Itis known thatna* is independent of and in fact
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aa* = (1) = 971, whered is thedifferentof M. Further clearly ¢*)* = a and
N(#) = |d|, whered is thediscriminantof M. These facts can be verified in a
simple way ifM is a quadratic field ove®, with discriminantd. Let [a1, 2]
be an integral basis af. The ideala* is the set oft € M for which S(1a;)
and S(1az) are both rational integers. i}, o/, denote the conjugates of
anda, respectively, then it is easliy verifed tr‘[at ] , |
1(11@’2 - Q] @10, — @)

is an integral basis af*. Now a0/, — aza) = +N(a) vd and this means that
a* = (1/N(a) Vd)a’. Since N(a)) = ao’, we see that* = a~1(1/ Vd) i.e. aa* =
(1/ Vd) = 9-1. MoreoverN(®) = |d|.

Let us consider now the ideal= {91 in K; clearlya* = §. Let us choose
in the class of+, an integral idead coprime tof. Thenai~9~1 = (y) for y € K
i.e. ()9 = qf ! has exact denominatdr If K were a quadratic field and a
principal ideal, theri is principal and we may take= (1). Weshall consider
v fixed this way once for all, in the sequélet us observe that it € f, S(1y)
is a rational integer.

With a view to expresg(B) as an exponential sum, we now define the sum

T= ) x(emsw (87)

A modf

whereA runs over a full system of representatives of residue ctasselulo
f; forf = (1), clearlyT = 1. We see thaT is defined independently of the1os
choice of representativasfor, if u runs over another system of representatives
modulof, thend = u( modf) in some order and in this casg) = y(«) and
IS = e2riSm) sinceS((1-u)y) is a rational integer. Moreover, in this sum,
A may be supposed to run only over representatives of elerné@§), since
X(@) = 0, for @ not coprime tdi. The sums of this type were first investigated
by Hecke; similar sums for the case of the rational numbed figlve been
studied by Gauss, Dirichlet and for complex charactetsy Hasse.

Leta be an integer ifK coprime tof. ThenaA runs over a complete set of
prime residue classes modylavhen A does so. Thus

T= > ¥aestw

A modf

=x(@) . pemsen,

A modf

Te(@)= | x(esen), (88)

A modf
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We shall presently see that (88) is true evendanot coprime tof and that
T # 0, wheny is a so-callegpropercharacter of5(5).

Let g be a proper divisor of andy, a character o65(g). We may extend
¢ into a charactey of G(f) by settingy(1) = ¢(12) for A coprime tof and
x(1) = 0, otherwise. We say that a characteof G(f) is proper, if it is not
derivable in this way from a character @{g) for a proper divison of f.

A ray class charactgr modulof is said to beproperif the associated char-
actery of G(f) is proper;y is then said to haveasconductor

Let y be a ray class character modiland letg be a proper divisor of
f. Moreover let for integerg, g coprime tof such thate = g( modg) and
af > 0, y(a) = x(B). We can associate with a ray class charactgp modulo
g as follows. Ifp is a prime ideal coprime tf defineyo(p) = x(»). If pisa
prime ideal coprime tg but not tof, we can find a number such thatr = 1(
mod *g), @ > 0 and @)p is coprime tof. We then sejo(») = x((@)p). We
see thajyq is well-defined for all prime ideals coprime goand we extengy 106
multiplicatively to all ideals in the ray classes modgloClearly, yo is a ray
class character moduld and for integratr coprime tog, yo((@)) = xo(@)v(a),
whereyo(e) is the associated character®fg) andv(e) is the same signature
character as the one associated withWe now say the ray class character
x modulof having the property described above with respeai,tbasg as
conductor if the associatego hasg as conductor. Letrom now on y be a
properray class character modujoSincey(a) = 0 for @ not coprime td, all
we need to prove (88) for propgrand fora not coprime td is to show that the
right hand side of (88) is zero. Letbe the greatest common divisor of)@and
f and letg = fb=L. Sincey is proper, it is not derivable from any character of
G(g). In other words, there exist integetandu coprime tof such thatl = u(
mod g) andy(1) # x(u). Otherwise, if for all integerg andu coprime tof
and for whichA = u( modyg) it is true thaty(1) = x(u), then we can define
a charactey of G(g) such that fori coprime tof, y(1) = xo(1) which is a
contradiction. Thus we can find integerandy coprime tof such thaju = v(
mod g) andy () # x(v). Now clearly

T T r@)erse

(1 ezﬂis(wly) — 1 modf A 89
1 Zm;Jd fX( ) ,\_{(V) Z )?(ﬂ)eZFIS(a/lw). ( )
A modf

Further sincexu = av( modf), S(aly(u — v)) is a rational integer and hence

Z /\—,(/l)eZﬂiS(a/W#) — Z )—((/i)ezﬂis((myv).

A modf A modf
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But sincey(u) # x(v), we see from (89), that
Z )?(/l)eZHiS((My) =0
A modf

Hence (88) is true foall integral «.
We now proceed to prove tfie# O. In fact, using (89), we have

TT =T Z X(a)e_z”is(’"/)

a modf
= DL W Y emsey (90)
A modf a modf

Now if a runs over a complete system of representatives of resichssaet 107
modulof, so doesy + v for every integew and hence

Z eZiSlay) — 2niS(uyv) Z S uay)

a modf a modf

Thus, if there exists at least one integesuch thatS(uyv) is not a rational

integer, Y e¥St®) = 0. NowS(uyv) is a rational integer for all integers
a modf

if and only if uy € 91 i.e. if and only if )qf is integral i.eu € f. Thus

Z risgay _ )0 Fuét,
a modf N(f)’ if M E T

From this and from (90), we have théRj? = N(f), i.e.|T| = VN{). The
determination of the exact value ©f|T| is of the same order of fliculty as
the corresponding problem for “generalized Gauss sumssidered by Hasse.
We have, finally, for propey modulof, as a consequence of (88),

X@B) =T DT x(aeisus (91)
A modf
Let us notice thaB appears in the exponent in the sum on the right-hand side
of (??).
We now insert the value gf(B) as given by ??) in the series on the right
hand side of (86). In view of the absolute convergence of ¢énies foro- > 1
and in view of the fact that the sum in (93) is a finite sum, weal®ved to
rearrange the terms as we like. We then obtairofas 1 and for a ray class
characteyy modulof with f as conductor,

Ls0=17 3 2D REANE)
A

A modf



Applications to Algebraic Number Theory 97

x ), VB)ESUIING) (92)
bAl(B)

In (92), 4 runs over a full system of representatives of prime residasses 108
modulof, A over representatives of the ideal classeK @i the wide sense and
the inner sum is over all principal non-zero idegsdivisible byba.

We shall use (92) to determine the valueld§, y) ats = 1 whenK is a
real or imaginary quadratic field ov€. In this section, we shall consider only
the case wherK is animaginary quadratic fieldover Q, with discriminant
D < 0. Herev(B) = 1 identically, since there is no nontrivial character of
signature. Moreover, we could assuine (1), for otherwiseL (s, y) precisely
the Dedekind zeta function ¢f. Let, thereforef # (1) and letw andw; denote
respectively the number of all roots of unity and of roots ofityi e satisfying
€ = 1( modf). From (92), we have far > 1,

L0 =G X T X RN

x . ISUM(N(E) (93)

balB£0

where the inner summation is over Al 0 in ba.

We now contend that asruns over a full system of representatives of the
prime residue classes modul@andba over a complete set of representatives
(integral and coprime tf) of the classes in the wide sense, th@jbf covers
exactly w/w; times, a complete system of representatives of the rayedass
modulof. Infact, letes, ... ., &,(v = w/w;) be a complete system of roots of unity
in K, incongruent modulg. The corresponding residue classes modlditom
a subgroufE(f) of G(f). Leta;, i =1,...,r be a set of integers whose residue
classes moduld constitute a full system of representatives of the cosets of
G(f) moduloE(f). Then it is easily verified that whehruns over the elements
A1,..., 4 andba over the representatives of the classes in the wide set)sg, (
covers exactly once a full system of representatives ofdeclasses modulo
f. Our assertion above is an immediate consequence. Thuswedrom (93),
foro > 1,

L) = 17 Y RONCR)® D) 0N (94)
B bg|B+0

whereB runs over the ray classes modiilandbg is a fixed integral ideal ifB 109
coprime tof.
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Let [B1,82] be an integral basis dfz; we can assume, without loss of gen-
erality thatl’% =275 = Xg + iyg With yg > 0. Then if8 € bg, 8 = mB; + nB, for
1

rational integersn, n andN(8) = N(81) x |m+ nzg|>. Moreover,

N(bs) vIDI = [818; — BaB1l = 2ysN(By).
Thus

(N(ve)® > eSe(N(B))

bBIﬁ¢O

S
:( ZTIE')l) Z eZHiS((m@1+nBZ)7)|m+ nZB|72S,
mn

where, on the right hand side, the summation is over all edlpairs of rational
integers n, n) not equal to (00). Let us set nowg = S(B1y) andvg = S(B2y)
and letf be the smallest positive rational integer divisiblefbyrhen in view
of the fact that {)¢ has exact denominatdandbg is coprime taf, it follows
thatug andvg are rational numbers with the reduced common denomirfator
Sincef # (1), ug andvg are not simultaneously integral. We then have

(N©e)® > e SEN(N(B)

bB|ﬁ$O

_ i ° ! i(Mmug+nvg) -2s
_(\/ﬁ) ygg;ez” Im + nzg| ™. (95)

We know that the function of defined foro- > 1 by the infinite series on the
right hand side of (95) has an analytic continuation whicinentire function
of s. Its value ats = 1 is given precisely by Kronecker’s second limit formula.
Indeed, by (39), we have

%1(Vs — UgZp, Zg) i3z 2

eZni(mL\;+an)|m+ nzB|‘2 =—n1=-rlo
Ye) N @)

Inserting the factoe "s"s of absolute value 1 on the right hand side, we haueo

’ .
YBZ e2m(mu;+an)|m+ nZB|—2
mn

2
91(Ve — UsZs, Z8) griue(Usza—Ve)

=g

(96)
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Now we define for real numbets v not simultaneously integral arxk $,
the function

iuuzy) 91(V — Uz 2)
(p(V, u, Z) — emu(uz v)—.
n(2
In each ray clasB modulof, we had chosen a fixed integral idéglwith

integral basisf1,8-] and definedus = S(B1y), Vs = S(B2y) andzg = '22

Now, the left hand side of (95) depends only on the ray ckasklence frém
(95) and (96), it is clear that ldg(vg, U, zs)|> depends only o8 and not on
the special choice dfg or 81, B2.

From (94), (95) and (96) we can now deduce

Theorem 9. If y is a proper ray class character modulo an integral ideal
i # (1) of Q(VD), D < 0, the associated (s, y) can be continued analytically
into an entire function of s and its value atsl is given by

2r
L(L,x) = _W ZB:X(bB) log le(Ve, Ug, Zg) %, (97)

where B runs over all the ray classes modiilland T is the sum defined by
(87).

We shall need (97) later for the determination of the clagaber of the
‘ray class field’ ofQ( VD).

By theray class field(modulof) of an algebraic number fiekl we mean
the relative abelina extensidfy of k, with Galois group isomorphic to the
group of ray classes (modufp in k such that the prime divisors éfare the
only prime ideals which are ramified K.

We are now interested first in determining the nature of thebrers
¢(vB, Ug, Zg). For this purpose, we observe thdV, u, 2) is a regular function of 111
zin $ and we shall study its behaviour wheis subjected to modular transfor-
mations and the real variablesandu undergo certain linear transformations.
In fact, using the transformation formula fé(w, z2) andn(2) proved earlier
and the definition of(v, u, z), one easily verifies the following formulae, viz.

e(V+i,u,2) = —e™p(v, U, 2),
e(V,u+1,2) = —€™(v, U, 2), (08)
e(V+u,uz+ 1) = €/Cp(v,u,2),
o(-u,v, -z71) = e™2p(v, u, 2).
Now, corresponding to a modular transformatios z* = (az+ b) - (cz+ d)™*
we definev* = av+buandu* = cv+ du. The last two transformation formulae
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for ¢(v, u, 2) above, merely mean that corresponding to the elementadylaio
transformationg — z* = z+ 1 orz — z* = -z'%, we have

o(V', U, Z°) = pp(V, U, 2),

wherep is a 12" root of unity. Since these two transformations generate the
modular group, we see that for any modular transformatienz*,

@V, U, Z) = pe(v,u, 2) (98y

wherep = p(a, b, ¢, d) is a 12" root of unity which can be determined explicitly.
Let (v, u) be a pair of rational numbers with reduced common denominat
f > 1. Let us define for e 9,

O(v,u,2) = ¢*? (v,u,2).

Then as a consequence of the above formulaefamn, z), we see tha®(v +
1u,2 = ®(v,u,2), d(v,u+ 1,2 = ®(v,u,2) andd(V*,u*,z") = ®(v,u,2). If
z— 7' = (az+ b)(cz+ d)~! is a modular transformation of levé| thenv* — v
andu® — u are rational integers and in view of the periodicitydefv, u, 2) in v
andu, we see that

®(v,u,2) = OV, U, Z') = O(v,u,Z).

112
Let (vi,u)i = 1,2,...,q run over all the paits of rational numbers lying

between 0 and 1 and having reduced common denomirfatdrhen corre-

sponding to each paiki( u;), we have a functio®;(z) = ®(vi, u;, 2) which, as

seen above, is invariant under modular transformations\afi f. Moreover,

if z— z* = (az+ b)(cz+ d)~! is an arbitrary modular transformation, then for

somei, vi = vi( mod 1) ands; = ui( mod 1) so thatin view of the periodicity

of (v, u;, 2) in v; andy; we see that

i(Z) = O(vi, Ui, Z') = O(V}, U, Z') = (v}, uj,2) = ©j(2).

In other words, the function®;(2) are permuted among themselves by an arbi-
trary modular transformation.

Now, ®@;(2) is regular in$ and invariant under modular transformations
of level f. Moreover,®;(2) has in the local uniformizee?™? at infinity, a
power-series expansion with at most a finite number of negatwers. Since
Di(z") = ®j(2) for somej, we see thad;(z) has at most a pole in the local uni-
formizers at the ‘parabolic cusps’ of the correspondingdamental domain.
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Thus ®;(2) is a modular function of levef. Since a modular transformation
merely permutes the functionB;(z), we see that any elementary symmetric
function of the function®;(2) is a modular function. From the theory of com-
plex multiplications, it can be shown by considering theagions ‘at infinity’
of the functions®;(2), that®;(2) satisfies a polynomial equation whose coef-
ficients are polynomials, with rational integral ¢beents, inj(2) (the elliptic
modular invariant). Ifz lies in an imaginary quadratic field over Q, it is
known that forz ¢ Q, j(2) is an algebraic integer. Sinek(2) depends inte-
grally on j(2), it follows that for sucte, ®;(2) is an algebraic integer. Actually,
from the theory of complex multiplication, one may show tlatz € K(z ¢ Q),
®;(2) is an algebraic integer in the ray class field modideerK. In particular,
the numbers!?f (vg, ug, z8) corresponding to the ray classBsnodulof in K,
are algebraic integers in the ray class field modutverK.

Let now Ky be the ray class field modujoover K(= Q(VD), D < 0). Let
A, R, W andg be respectively the discriminant Kf relative toQ, the regulator 113
of Ko, the number of roots of unity iKy and the order of the Galois group of
Ko overK. LetH andh denote respectively the class numberKgandK. Itis
clear that{y has no real conjugates ov@rand has g complex conjugates over
Q. Moreover|A| = |DIN(9), whereN(#) is the norm inK/Q of the relative
discriminant? of Kq overK.

From class field theory, we know that

Zko(9) = & (9 | | Lis.xo) (+)

xo#l

wherey runs over all the non-principal ray class characters modaod if
f, is the conductor of, theny is the proper ray class character modijlo
associated witly. It is known that? = []f,. Multiplying both sides of £)

X
above bys— 1 and lettingstend to 1, we have

(29-H-R _ 2zh
WA~ wvp | H@xo)

x#1

But, from (97), we have

L(Lxo) = 5 2 Fol0e.) 109 ¢ (Ve U Ze0)[
Bo

__
Tow;, VID|

where

To=Tolr) = >, Xo()e™,

A modf,
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¥o € K is chosen such that{Vd) has exact denominatdy, By runs over

all the ray classes modulg, bg, is a fixed integral ideal iy coprime tof,

andw; is the number of roots of unity congruent to 1 modgjlo Witn N(j, )

denoting the norm itk overQ, of the idealf,, we have [T N(§,))IDI = |A]. It
X

is now easy to deduce

Theorem 10. For the class number H of the ray class field modlover
K = Q(VD), D < 0, we have the formula

H W VN(y)
a 1:! _ X

h w- RX Tow;,

Z)?o(bso) log | (Ve U, ZBO)|2
Bo

Whenf is a rational integral ideal i, Fueter has derived a ‘similar’ for-114
mula for the class number of the ray class field modwothe ‘ring class field’
modulof overK, by using a “generalization” of Kronecker’s first limit fouta.

Unlike in the case of the absolute class field okeiit is not possible, in
general, (forf # (1)) to write the producf] occurring in the formula foH/h

x#1
above, as ag- 1)-rowed determinant whose elements are of the fornm(&g
wheren®, i = 1,2,...,g - 1 are conjugates of independent unijtdying in

Ko.

5 Ray class fields over QVD), D > 0.

Let K be a real quadratic field ove&), with discriminantD > 0. Letf be a
given integral ideal irk andy(# 1), a proper character of the group of ray
classes modulpin K. As in the case of the imaginary quadratic field, we shall
first determine the value at= 1 of thelL-seriesL(s, y) associated witly and
use this later to determine the class number of specialabektensions oK.

We start from formula (92) proved earlier, namely, for- 1,

LsY) =T > %) ) ¥oa)x
A modf A

X (N@A)® D) VB SN,
bAl(8)#(0)

whereA runs over all the ideal-classes Kfin the wide senseja is afixed
integral ideal inA, chosen once for all and coprime ft@nd the inner sum is
extended over all non-zero principal idegh§ @ivisible by ba. Further,y(1)
andv(1) are respectively the character @ff) and the character of signature
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associated with the ray class charagtexs in Proposition 14. Besideg,is a
number inK such that{ vC) has exact denominatéi.e. (/) = —— where

i(VD)

(a, ) = (1); the numbery will be fixed throughout this section.

Let, for a € K, o’ denote its conjugate. We may, in the above, suppose
that [81,83,] is a fixedintegral basis oba such that ifw = /ﬂg_z then, without
1
loss of generalityw > «’. We have, then,f — w)IN(B1)| = N(ba) - VD. 115

Further, letuy = S(181y) andva = S(482y); then, if 8 = mB; + nB,, we have
g2iSUBY) — g2ri(mun+nva)

The character of signaturg1) associated with the ray class charagter
may, in general, be one of the following, namely, fiog 0 in K,

Q) v() =1

. N
0V = 150
A
(i) v(1) = o

. A
(iv) v(a) = XGE

In what follows, we shall be concerned only with such ray €lelsaracterg,
for which the corresponding() is defined by (i) or (ii). We shall not deal
with the characterg, for which either (iii) or (iv) occurs, the determination of
L(1, x) being quite complicated in these cases.

Let us first suppose that the character of signatut® associated wity
is given by Y1) = 1for all 2 # 0in K. In other words, for an integer in
K, coprime tof, x((a)) = x(@). We may, moreover, suppose that (1),
since otherwisey is a character of the wide class group ard, y) is just the
corresponding Dedekind zeta functionkof

Letz= x + iy be a complex variable with > 0. Corresponding to an ideal
classA of K in the wide sense and an integercoprime tof, we define for
o > 1, the function

Oz S A, Ua,Va) = ¥° ) €M™ m 4 g2

mn

where the summation is over all pairs of rational integars not simultane-
ously zero. As a function df, g(z s, 4, Ua, Va) is not regular but as a function
of s, it is clearly regular foro- > 1. In fact, sinceus andva are not both in-
tegral, we know thag)(z s, 4, ua, Va) has an analytic continuation which is an
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entire function ofs. For the sake of brevity, we shall denote itdp(z, 2); this
does not mean that it is a function of z ahdepending only on the class A.
does depend on the choice of the ideglthe integral basigs, 8], the residue 116
class ofa modulof and further ony. But we have takeha, 81, 82 andy to be
fixed.

In order to findL(Z1, x), we shall employ the idea of Hecke already referred

to on p. 86 § 3, Chapter Il) and express the serieg) e SWMIIN(B)|"S as
bAl(8)#(0)
an integral over a suitable path §n with the integrand involvingia(z, 1).

We shall denote the group of all units by I" and the subgroup of units
congruent to 1 moduld, by T';. Moreover, letl”; be the subgroup df; con-
sisting ofp such thafp > 0. The group?; is infinite cyclic and lete be the
generator of ™}, which is greater than 1. We see tlaat 1( modf), N(e) = 1,
e>¢e >0.

Since EB1, €87] is again an integral basis of, €8> = 882+081, €81 = CB2+
dB1 wherea, b, ¢, d are rational integers such thed — bc = N(e) = 1. Further,
if w = p2/B1, thenew = aw + b, € = cw + d so thatw = (aw + b)(cw + d)™L.
We also have the same thing true &gt namely,ew’ = aw’ + b, € = cw’ +d,
so that we have)’ = (aw’ + b) - (cw’ + d)~1. Thus the modular transformation
z— Z' = (az+b)-(cz+d) L is hyperbolic, withw, ’ as fixed points and it leaves
fixed the semicircle ow’w as diameter. If now we introduce the substitution
z = (wpi + w')(pi + 1)1 (or equivalently,po = (z - w’)(w — 2~* we see that
whenz(e $) lies on this semicirclep is real and positive. As a matter of fact,
whenz(e $) describes the semicircle forar to w, p runs over all positive real
numbers from 0 teo. Let p*i = (Z — ') - (w — )7, it is easy to verify that
p* = €2p. This means thap* > p, sincee > 1. Consequently, whenever
lies on the semicircle on’w as diameterz® again lies on the semicircle and
always to the right of.

Consider now

FALY = [ st

%

the integral being extended over the arc of this semicifoten a fixed point
2 € Htozy = (an + b)(cn + d)~L. In view of the uniform convergence of the
seriesy® 3 i, €71(MB M) |m + nz-25 on this zrc we have, far > 1,

% ;. %
f 9n(z ﬂ)d;p =, s f yim+ nZ‘zdep,
2 mn 2

wheref = mB; + nNB,. Settingu = m+ nw = B/B1, we verify easily that 117
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Im+nz2 = (12p? + 1'?)(p? + 1) andy = p(w — w’)(p? + 1)L. Thus

fzf) ys|m+n2|_2sd_pp — (w_w/)sf Ps(ll2p2+ /2) S%)
2%

Po

p

(w-')® /1’ 1P ps p
© O INQ)Is fwmpo (p? +1)s?(
(N(bA)\/_) f(ﬁﬁl/ﬁﬁl)mof p dp
L IN@) sy pipe (PP+1)° P

il

We have, therefore,

1(881/8 B1)l€* po ps d_p

F(A 14,9 = (N(ba) VD)S ) eSUMIN *Sf

(A.4,9) = (N(ba) VD) %O NG | on P FIF D

(99)

We use once again the trick employed by Hecke (p. 86). For d fixeger

B € K, all the integers irK which are associated wighwith respect td’; are

of the formBe*¥, k = 0,1, 2, .... Keepingg fixed, if we replaces by ¢’ in the
integral on the right hand side of (99), then the integralgmeer into

16818 Bl 2o d
f pi(p? +1)°°0
(881 /8 B1)le” po

Now sincee > 1, the intervals |8;|8"B1lPoe®, |88118'B1lpoe?*?) cover the
entire interval (Qoo) without gaps and overlaps, &sruns over all rational
integers from-co to +c0. Moreover, since = 1( modf) andN(e) = 1, we

havee?iSWsey) = eS8 and|N(BeX)| = IN(B)l. Thus the total contribution
to the sum on the right hand side of (99) from all integers essed with a
fixed integeB with respect td;, is given by

eZﬂiS(/lBy) foo ps d p _ e2ﬂiS(/lBy) FZ(S/Z)
(p?

IN()IS +15p  IN@®IE 20(9)
As a consequence, 118

F(a 1,9 = N ZFB()S;FZ(S/ 2 S ESwINGE (100)
bAlB(TT)

where, on the right hand side, the summation is over a compédtof integers
B # 01inba, which are not associated with respect’fo
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Let {pi} denote a complete set of units incongruent moduaond let{e;} be
a complete set of representatives of the coset$ ofoduloI?. Itis clear that
{pi€;} runs over a full set of representatives of the coselémbdulol";. Thus

F(A 4,9 = s2) VD)s e2ISUnal)|N(B)| S 101
(A9 = 5 (NE) VD) ) D) NG (101)
Pis€j bal(B)

where, on the right hand side, the inner sum is over all noo{aencipal ideals
(B) divisible byba.

By thesignatureof an elementr # 0 in K, we mean the paiu(/|a|, o’ /|o|).
Now we can certainly find a s¢f;} of integersy such thagy = 1( modf)
and the seteju} consists precisely of 4 elements with the 4 possibfiedint
signatures. LefAy} be a set of integergy constituting a complete system of
representatives of the cosets®@ff) modulo E(f). Here E(f) is the group of
prime residue classes mdgdcontaining at least one unit IK. The sef{Axoi}
is seen to be a complete set of representatives of the prigiguee classes
modulof. It is easy to prove

Proposition 15. The set of ideal$(Ayu)ba} serves as a full system of repre-
sentatives of the ray classes modilo

Proof. Obviously it sdfices to show thaf(1yu )} runs over a complete set of
representatives of the ray classes modyang in the principal wide class. In
fact, if (@) € ®;, thena = pid( mod*f) for somep; and A, and moreover, 119

we can findeju such that > 0. Sinceejy = 1( modf), we have

KOi EjHI
(@) ~ (qupiegj) = (A modulof. It is easy to verify that no two elements of
the sef{(Axw)} are equivalent modulp
From (101), we then have for > 1

D X)X (OAF (A, A, 9)

Ao, A
I'?(s/2) _ _ s
=35 -%Ax(w.)x(m)(w(m) VD)x
% Z eZHiS(/lkmp.eJﬁy)|N(ﬁ)|—s
bAl(8)
Pi€j
I'?(s/2) o s
=35 A%x(@)x(b;\)(w(m) VD)°x
x Y Xlu) ) S aIINE) S, (102)

€j, bal(8)
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= 1( modf), e Sumepy) = griS(W0BY) and sincey = 1( mod7), x(u) = 1.
Hence the sum in (102) is independenkgfy and we have

D7 XA e (ea)F (A, Aga, )

Aot A
_ 1HZ(S/Z) s/2 3 Yy s
— 4 gAX(M.)x(bA)(N(bA» x
ISA|N(B)|S.
bAl(8)#(0)
m}

Let (Akw)ba lie in the ray classB modulof. Denoting Qkw)ba by Dg,
we know thatbg runs over a full system of representatives of the ray classes
modulof. Also, if a1 = AquB1, @2 = AkwB2, then g, a3] is an integral basis 120
of bg and we may now denote the function

gA(Zs /lklll) — ys Z' e27riS((mal+naz)y)|m+ nZ!_ZS

mn

d
by gs(z 9) and [° gs(z S)Fp by F(B.9).

The use of the notatioRk (B, s) is justified for, from (101), we see that
F(B, s) depends only on the ray class B modill@and ony) andnot on the
particular integral ideabg chosen inB. For, if we replacebg by (u)bg where
u > 0,u = 1( mod*f) and ()bg is an integral ideal coprime t then it is
easy to show thab(AuipiejuBy) — S(Awupie;By) is a rational integer and in
addition, (N(ba))5IN(B)|~S again depends only on the ideal clas$ Qf

Now y((Axu))x(0a) = x(bg). Moreover,{Axoi} runs over a complete set of
representatives of the prime residue classes modil@s a consequence, we
have

_ I?(s/2)D%2 -
QCIF® 9 =2 g %MW)X

X D XOANEA)® D wxww s (BYINEB)
A bal(8)

whereB runs over all ray classes moudig******* a complete system of
prime residue classes modilandA ***** ideal classes in the wide sense. In
other words, we have far ******rrxx

ZY(bB)F(B, §) = # x  + %(8/2)([(9)) ' DY*T - L(s.x)- (103)
B



Applications to Algebraic Number Theory 108

The functiongg(z ) is an Epstein zeta-function of the type/gs, u, v, z, 0)
discussed earlier ifi5, Chapter I. Using the simple functional equation for the
Epstein zeta functiot(s, u, v, z, 0), we shall now derive a functional equation
for L(s, x).

Proposition 16. If y is a proper ray class character moduf¢~ (1)) whose
associated character of signatur¢ly = 1, then L(s, ) is an entire func-
tion of s satisfying the following functional equation, re&wm if £(s,x) =
7°T%(s/2)(DN())¥?L(s, x), then

x(a)

1-sY),
T/\/Wf( S X)

(s x) =
121

Remark. The functional equation«{ for ****** generalization to arbitrary al-
gebraic number **** derived by Hecke by using the generaliz&* formula’
(for algebraic number ****** same, it is interesting to dedelithe same ****
by using the functional equation satisfiedd{g, u, v, z, 0).

Proof. From (92), we have

7 T(s/2)D"*TL(s x) = 7 T*(5/2)D¥2 )" ¥(A) D X(ba)(N(0))®
A A

x Y, EUINE)
bAl(B)#0
_ nT2(s/2)DS?

o) 2u X 2 TEAN(ER)
A A

X
bAlB(IT)

wheree(f) is the index of; in T. Now, if we sewr* = (*), then, in the notation

Ua

of § 5, Chapter I, we havga(z s, 4, ua, Va) = £(s u*, 0,z 0) and by (100)

P TAS2DTT LX) = == 3 T 3 T
o 242

76 —S * d p
X | #7T(s)s(s U0,z 0)?
4l

By the method of analytic continuation 6fs, u*, 0, z, 0) discussed earlier i
5, Chapter I, we have

2
[Frreusy0z0
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= f *dp f ) (Z gy Himeng?s2cimuens) |54t
P Jo mn t

The inner integralf}” ... may be split up a{ol -+ [7.... Now we may use 122
the theta-transformation formula for the serjgse™ timn#*+2ri(mi+nva) gng

mn
further make use of the inequaliyy|m + nz? > c(n? + n?) uniformly on the
arc fromz, to z;, for a constant independent om andn. If, in addition, we
keep in mind thaj is not the principal character, we can show thég y) is
an entire function os. |

Using now the functional equation ¢(s, u*, 0, z, 0), we have
2 _ —
7 THS2DHTUS ) = gy )X D T
a A

%
% f 71-7(173)]_‘(1 _ S)év(l — S,Q, H*, Z O)d?p
2

Foro < 0,/(1-s0,u,20) = y*S Y [m—va + (n+ ua)Z 2?9 and by the
mn

same arguments as above, we can show that

skok sk ok sk ok sk ok sk ok sk ok sk ok skk

-2 (255 e VB 3 g s

u=p+v
BEb,

where, on the right hand side,= —8,S(182y) + 8,S(481y) = — VDAyN(bp)
andu runs over a complete set of numbers of the f@mv with g8 € b/,, such
that they are not mutually associated with respectto

Let s be an integer irK such thatf = () with an integral ideak coprime
tof. Then, foro < 0, we obtain from above that

1 T%(s/2)DY?TL(s, x) = % DU-97212((1 - 5)/2)x
x > X a)(N(A)S(N(af)) ™ > ()%
A A

x> IN@I®,

B=vé( mod ab,f)
B#0,ab|B(I7)
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where, in the inner sum on the right hand sideuns over a complete set ofi23
integers inbj, which are not mutually associated with respedtt@nd which
satisfys = vé( mod abjf). If 8 =vé mod ab,f, then

X(B) = x(v6) = x(—y VDASN(ba)) = x((N(ba)y VDA5))
= x(OA O (¥ VD8)x (1) = x (a0 (aa)x ().

Hencey(1) = x(B)x(babjaq). Further ifA runs over representatives of prime
residue classes modui@ndp runs independently over a complete set of inte-
gers inab), congruent modulab/,f to — VDAysN(ba) and not mutually associ-
ated with respect td7, then runs over a complete set of integersals, not
mutually associated with respectlip and satisfying (). abjyf) = abj, If we
note, in addition, tha(8) = O for thoseg in ab/, for which (8)(ab}) is not
coprime tof, we can show finally that

DX D INGI = x(oabaaa)x
aby |8('7)
B=vé( mod ab), F)

x > XBINE)I9.
abj B(T7)
B0

Thus, foro < 0,

R ARy
N DU921%((1 - 5)/2)x(a)x

x > x(abp)N((ab)~5x
A

7 T%(s/2)DY?TL(s, x) =

XB)INE@)
abj[(8)#(0)

(-9 (1-9/212((1 _ x(a) =
n IR - 9/2) e LL - ).
sinceab), again runs over a system of representatives of the idealedasmi-
lartoba. Sincel(s, y) is an entire function o$, the above functional relation is124
clearly valid for alls. We have now only to sé(s, y) = 7~ ST'S(s/2)(DN(f))¥2L(s, x),
to see that the equatior)(is true.
Let now [a1, 2] be an integral basis for the idesg in the ray classB
and letw = az/a1, Uug = S(a1y), Vs = S(azy). By Kronecker’s second limit
formula, we have

9e(z 9 = —rlogle(Vs, Ug, 2)|2



Applications to Algebraic Number Theory 111

+ --- terms involving higher powers o§¢ 1)....
Letting stend to 1, we have from (103),

1 _ % dp
L) = ——— 3 %(ve) f l0g (v, Us, 223,
2T VD ZB1 7 p

Now it is easy to verify that

dp_  (w-0) __\D
DI = ek
where
Fe(2 = — (z-w)(z-w) =aZ +bz+ 0y (%)

has the property that, by, c; are rational integers with the greatest common
divisor 1,8 > 0 andb? — 4a,¢; = D. Thus we have

Theorem 11. For a proper ray class character modufo# (1) in Q( VD),
D > 0, with the associated(x®) = 1, the value of s, y) at s= 1is given by

1 - f’é , dz
L(Ly) = — b logle(vs, Us, 2| ——,
(.20 = 57 2 ¥(%) | logle(ve, s P gy

where B runs over all the ray classes modubmd Fz(2) is given by(x) above.

As remarked earlier, the terms of the sum on the right hangl dabend
only onvy (fixed!) and on the ray clad€d and not on the choice of the idea
in B. We observe further that it does not seem to be possible tpli§jnthis 125
formula any further, in an elementary way. One might try ttofe the method
of Herglotz to deal with the integrals but then the invareupcoperties of the
integrand are lost in the process.

We proceed to discuss the case wktem character of signature(¥) asso-
ciated with the given ray class characpers of type(ii), i.e. for integrala(# 0)

. N(a .

coprime tof, we havey((a)) = x(a) - m. In this case, we shall now see
that the value as = 1 of L(s x) can be determined in terms of elementary
functions, using the first or second limit formula of Kronegkaccording as
f=(@)orf=(1).

The fact that the character of signatw(g) associated witly is defined by

N(2)
IN()I

V() = for 20 (104)
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implies automatically a condition o For instance, ip is a unit congruent to
N(p)
IN(p)| _
congruent to 1 modulpshould necessarily have norm 1.

To determinelL(1, y), we start as before from formula (92), namely, for
o>1,

1 modulo,f, then = x(e)v(d) = x((0)) = 1. In other words, every unit

Lsy) =T > %) ) w(oa)(N(a)*
A

A modf

i N(B) _
X S =L IN(B)|S.
bAI(ﬁZ)#(O) ING)

We shall try to express the inner sum on the right hand side astegral, as

before. We shall follow the same notation as in the casedeabove.

Let 5 - 2% 5@; then in view of the uniform convergence of the
series defining the functioga(z, s, 4, Ua, Va) (denoted byga(z 1) for brevity)
for o > 1, we have

0ga(z 1) _ 7 27i(Mua-+Nva) d . s -2s
= -%ez" 5, ym+ na™)
S

- EyH Z/ e M™)im 4 1z~ I (m+ nx) =2, (105)
mn

126
Let us now consider the integrilz6 dz, extended over the same

arc of the semi-circle iH as considered earlier. Due to the uniform conver-
gence of the series (105) on this arc, we have

% 99a(z 1) S ! 2ri(mun-+nva) % ysl
f 0z dz= 2 ; & fzo Im+ nz2s-2(m + nz)2dZ

7

0ga(z 1)

= SDA(N(bR)
. Po s—ldp
x Y, ey [ b
%G e 6P ) i

Effecting the substitutiop — |u’/u|p, we see that
P, s-1
0 2p . d p
o (WPP? + w?)SH(upi+ 1)
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(/1) s /1 1Py pS—l q
- INgar [ . ,

where W _ NG _ N@) NG

HIH 1
= = = = V(L) .
" el T NG NG NGy OV

Further @t + 1)? = (pi + 7). We have, therefore,
% agA(Z, /l) S s/2 S,
fzo 52 dz= ED (N(62))°x
(88,/8'B1)|po€? ps—l

X eZ”iS(/lﬁ“/)|N |—sf ' do.
b%‘eo g s ppoiee (P2 + 1) H(pi+7)? P

Now, sincev(e) = 1, the value ot corresponding t@ andBef(k = £1,+2,...) 127
is the same. Moreoveg? S = eiSUBY)  |f then we apply the same
analysis as in the former case, we obtain

f % Oga(z A)
% 0z

dz= gDS/Z(N(bA))Sx

00 1
SUBY) N ()~ p*dp
N |, w09

where, on the right hand side, the summation is over a compédtof integers

B # 0inba, which are not associated with respeci’fo
Effecting the transformatiop — p~!, we see that

00 ps—l 00 ps—l
fo (p2+1>*1(r+ip)2dp:‘fo @D i P

Taking the arithmetic mean, we have

o0 pst
fo @+ D e+ ippoP

_1. 0 pgl { 1 B 1 }
-3, @it G Goipp) P
B ) 00 ps+1 dp

“ZT'fo @+ p

VBB TA(s+ 1)/2)

- i I'(s+1) ’

(107)
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From (106) and (107), we obtain for> 1,

39A(Z /1) DS/ 2I'?((s+1)/2) s
V(B1) f 5 T(N([’A)) X

X ) MBESIIINE)

balB(T)

Since{piej} is a system of representatives[ofodulol’;, we have 128

BgA(z, A) 4, D TA(s+ 1)/2) s
(Bl)f o T(N(bA)) X

X ) VB WPDING),  (108)

bal(8)
Pi€j

where the summation on the right hand side is extended oveorizero prin-
cipal ideals divisible by and over the finite sets of representatiye$ and
{€;}. Summing over all ideal classésand the elements of the s¢fiz} and{z}

we obtain from (108),

2
Y, Hawneoousy [ AN,

Ao, A o 0z

DY2I?((s+1)/2) < _,, .
-5 "1 %Ax(aku.)x(bA)(N(bA» x

X D" V(Bpig) S MIN(B) S, (109)
bal(8)
Pis€j
It is quite easy to verify that
V(pi€j) = x((oie))x(pi€j) = x(pi€j) = x(oi)s
S (uppieiy) — o2riS(poiBy)

Using these facts and applying the same arguments as in tier sduation,
we see that the right hand side of (109) is precisely

52I2(s+1)/2) 5
DY 1 ;)d ) > XA (N(oA)*

X ) VBES N
bAl(8)

-2
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I?((s+1)/2)
I'(s)

To simplify the expression on the left hand side of (109), wst fobserve 129
that y (A1) = x((Aw))v(Akw). Moreover, if we denote, as before, the ideal
(Ax)ba by bg WhereB is the ray class modulpcontaining it, then, by Propo-
sition 15,bg runs over a full system of representatives of ray classesutood
f. We may assume, without risk of confusion, that,[-] is still an inte-
gral basis ofbg and setug = S(B1y), Vg = S(B2y). Further we may denote
OA(Z S A, Ua,Va) = YB3 €(ME*M6)m + nZ~2° by gg(2) = ga(z 9). The

mn

functiongg(z s) depends not just on the ray claBdut also on the choice of
the idealbg in B and on the integral basigq, 82] of bg. Sincebg and |31, 82]
are fixed, the modular transformatian- (az+ b)(cz+ d)~* is uniquely deter-
mined byeBz = 8B, + bB1, €81 = ¢B2 + dB1; w = B2/P1, W' = B5/B; are the two
fixed points of this transformation argj = (az + b)(cz + d)~1. From (109),
we have now, forr > 1,

_iD™2 I(9 998()
60 = 5 s s 172) ROV [0 o)

= -2iD%? T-L(sy).

1 z, 008(2)
Letus denotemv(ﬂl) fZO 5 dzby G(B, s). We see from (108) that,
foro > 1,
DY2r?((s+1)/2) s
G(B,s) = Al;rz—l"(s)(N(bB)) X
x U (e VISEIINGB) S,
pi€j bgl(B)£(0)

Obviously, the right hand side remains unchanged, wids replaces by an- 130
other integral ideal irB. Thus,G(B, s) clearly depend®snly on B(and ony
ands) butnoton the special choice of or its integral basis. Writing(B) for
x(bg), we see that (110) goes over into

TP C PRICECE] (111)
SX) = T (s + 1)/2)
The function%ZZS) is essentially an Epstein zeta-function of the tyfgu, v, Q, &)

discussed ir§ 5, Chapter | and it can be shown as before tﬁzét gB(;’ S)
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is an entire function o, by using the method of analytic continuation of the
Epstein zeta-function. Thus formula (110) gives the aiakybntinuation of
L(s,y) into the entires-plane, as an entire function sf Moreover, if we use

the functional equation satisfied %9%5), we can show as in Proposition
16 thatL (s, y) satisfies the following functional equation, viz. if we set
A(s.x) = 7~°T*((s+ 1)/2) ON()¥L(s x),
then /5
v(y VD
ASY) _ x(@v(y VD)
T/VN()
Let us observe that the constant on the right hand side issuflate value
1.

In order to determine the value bf1, y), we distinguish between the two
cased # (1) andf = (2).

(1-sX). (112)

(i) Let firstf # (1). Then the numbersg andvg corresponding to a ray
classB modulof are rational numbers which are not both integral. For
the functiongg(z s) we have the following power-series expansion a1
s =1, by Kronecker’s second limit formula, namely

98(z 9) = —mlogle(ve, Us, 2
.-+ (terms involving higher powers oB¢ 1)).

Applying d/dz to gs(z s) and noting thatd/d2) log ¢(vs, Us,2) = 0, we

have for% the power-series expansion,
M = _ﬂg |Og (V u Z)
62 62 ®\VB, U,

+ - -+ (terms involving higher powers o&¢ 1)).

Now sinceyp(vg, U, 2) is regular and non-vanishing &, we can choose
a fixed branch of log(vg, Ug, 2) in $ and @/dz) log¢(vs, Us, 2) is just
(d/d2 log¢(vg, Ug, 2). The codiicients of the higher powers o§ ¢ 1)
might involvez. Letting stend to 1, we have

V(B1)
2ni
We shall denot&(B, 1) by G(B) and then we have, from (111)

G(B,1) = [log ¢(ve, Us, 2)]2

7T2 —
L= ZB:X(B)G(B).
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(i) Letnowf = (1). Then, for allB, we see thayig(z S) = y° Y, IM+nz~2
and by Kronecker’s first limit formula, we have the followipgwer-
series expansion f@g(z s) ats = 1, namely

G6(z.9) ~ g = 2(C ~ log 2) - rlogWm(@I*) + -

The application ob/9z does away with the terms/(s— 1) and 2(C —
log 2). Noting that

o, 1 1 8 ——5
57109y = > and = (n(2)" =0,

2y  z-2
we have foragBa(z’ S), the following power-series expansionsat 1, 132
namely
ogs(zs) n« d 2
oz  z2-2 ndzlog(n(z)) "

+ --- terms involving higher powers os¢ 1).

We wish to replace /Az-2) if possible by a regular function af but we
shall see now that we can do this wheles on the semi-circle on’w
as diameter. In fact, the equation to the semi-circlestn as diameter
is

zZ— Z-
@ + = @ _ 0, zeb.
Z-w -

This means thaiz+ p(z+72) + g = O with p = —%, g = ww’, when

zlies on the semi-circle. But then
1 Z+p
z-2 Z2+2pz+q

d
éd—zlog(z2 +2pz+0)

d

= — —_ —_ 4 .

dZIOg V(EZ-w)(z-w)

Hence, forz on the semi-circle, we have the power-series expansion
dge(zs)  d NCEr G
- ﬂdZ|Og (z- w)(z- W) (2+

+ --- (higher powers 06— 1).
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Thus lettingstend to 1,

V(1)
2ni

for a fixed branch of log{/(z— w)(z— w’)7?(2)). DenotingG(B, 1) by
G(B) again, we have from (111),

G(B,1) =

[log Vz= )z - &)@

2
L(Lx) = % > X (B)G(B).
B

We are thus led to 133

Theorem 12. For a proper ray class character(# 1) modulofin Q(vVD)(D >
0), with associated(\) defined by104), we have

2

TT
L(L,x) = Xx(B)G(B)
TVD ZB:
where the summation is over all ray classes B modalod
Vi : .
B9 llog p(ve, us, 215 . for 1# (1),
G(B) = (113)

B9 liog(vz— o @@ [f . for i = ).

We are now interested in thexplicit determination of the values of(B)
corresponding to the various ray clasg&@ terms of elementary arithmetical
functions. The expressions inside the square brackets in (113) reyirane-
Iytic functions ofz and we know thaG(B) itself does not depend on the point
Zo chosen on the semi-circle asfw as diameter. Thu§(B) is, in both cases,
the value of an analytic function which is a constant on the semi-circle on
' w as diameter; as a consequern@€B) is a constant independentzfand in
order to calculat&(B), we might replacey in (113) by any poinzin $, not
necessarily lying on the semi-circle arfiw as diameter.

First we observe that (2ri)[log ¢(Vs, U, 2)]? is a rational number with at
most12f in the denominatosvheref is the smallest positive rational integer
divisible byf. This can be verified as follows. Let = (az+ b)(cz+ d)™*
where the rational integegs b, c, d satisfying the conditiomd — bc = 1 are
uniquely determined by the unitand a fixed integral basig{, 8,] of a fixed
integral idealbg in B, coprime tof. Corresponding ta", let vy = avg + bug
andug = cvg + dug. We know already from the properties ofvg, U, 2) that
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(W), Ug, Z') = pe(VB, U, 2) Wherep is a 12" root of unity depending only on
a, b, ¢, d. On the other hangly = aS(8,y) + bS(81y) = S(eB2y) and hence
Vg — VB = S((e — 1)B2y) is a rational integek, say; similarly,u; — ug is again
a rational integel, say. But we know from (99) that

@(Vg, Ug, Z') = (v + K, ug + 1, Z)
= 7¢(Vg, U, Z),

wherer is a 2f-th root of unity. Hence 134

¢(Vs, U, Z') = 6¢(Vs, Us, 2),
whereg is a 12 -th root of unity. Choosing a fixed branch of lg¢vg, ug, 2),

1 . . .
we see that% [log ¢(Vg, Ug, 2)]Z is a rational number with at most 12n the

denominator. Now, we know that far € $, the functione'? (vg, ug, 2) is

a modular function of levef and [logy(vs, Us, 2)]Z is just a ‘period’ of the
abelian integral log(vs, Ug, Z). The explicit computation of these ‘periods’ of
the abelian integral log(vg, Ug, 2) has been essentially considered by Hecke,
in connection with the determination of the class numberlufjaadratic field
obtained from a real quadratic fieldover Q, by adjoining the square root
of a “totally negative” number irk; employing the ideal of the well-known
Riemann-Dedekind method, Hecke used for this purpose, s atotic be-
haviour of log¥11(w, 2) asz tends to infinity andz* to the corresponding ‘ra-
tional point’ a/c on the real axis. It is to be remarked, however, that from
Hecke's considerations, one can at first sight conclude thaly/the quantities

%[log ¢(Vg, U, 2)]% are rational numbers with at most 24in the denomina-
tor.

Regarding%[log V(Z-w)(Z- )?(2)?, we can conclude again that
they are rational numbers with at mostflid the denominator. For this pur-
pose, we naotice that

Z-w , Z-w
Z-wsgagrg 7Y =0

andn?(z) = p(cz+ d)n?(2), p being a 19 root of unity depending only oa,
b, ¢, d. Hence

(z ~ )7 - )(Z) = pV(z- W)z~ (D).

Choosing a fixed branch of log{(z— w)(Z— @)7%(2)) in $, we see that our
assertion is true.



Applications to Algebraic Number Theory 120

We may now proceed to obtain the valueGiB), first forf # (1).

We make a few preliminary simplifications. We can supposé@auit loss 135
of generality that O< ug, vg < 1, since, in view of (98)¢(vg, Ug, 2) merely
picks up a 2™ root of unity as a factor whewy is replaced bysg + 1 or ug by
ug + 1 and this gets cancelled, when we consider d6g, ug, 2)]% . Moreover,
since we know already th&(B)v(B,) is real (in fact, even rational) it is enough

. 1 :
to find the real part ofﬁ[log ¢(Vg, Ug, 2)]%. Now

(,D(V u Z) — e(riu(uz—v)—zri/2+7riz/6(e(ri(v—uz) _ —ﬂi(v—uz))><

% l_[(l e2m(v—uz)+27r|m2) 1—1(1 —2n|(v—uz)+2nim2)

— emu(uz V)—7i [ 2+7iz/6+mi(v— uz)><
<[ ]a-va]Ja-vrQm),
m=1 m=0

where we have sa&f = ¢V, Q = e¥Z andQ Y = e 2"YZ_ Moreover, ifu = 0,
then O< v < 1 and in the second infinite product above we noticerttrat > O,
in any case. We define the branch ofZ#i) - log (v, u, 2) by

1 _Zf 5
ﬁloggo(v,u,z)_i(u u+—) -+ =-(1-u+

1 (o]
+ 52, logL-VQm)+
m=1
1 N -1 Am+
+ 5 ) l0g(1- VM),
m=0

where, on the right hand side, we take the principal branchte logarithms.

—1 uyn
Noting that the serlei ( Q ) converges even if = 0, since then & v <
uyn V 1M+uyn
1 and further the senesj h 1( m ) and Z 2 & converge
m=1n=1

absolutely, we conclude that

472
1(vQY)"Q" + (V1QY)"
" 2 Z 1-Q

—Iog¢(vuz)—1(u —u+é)z—}+ =(1-u)-




Applications to Algebraic Number Theory 121
Thus, forf # (1), 136

GEME) = 5 (16 - vo+ 5 -2

_[“’ L (b (vigduep )t

ol 27in Q—n/2 _ Qn/2 ,
where we have used to stand fore”V® without risk of confusion.

Nowc = (e - €)/(w— ') > 0; so, if we sez = —(d/c) + (i/cr) withr > 0O,
thenz* = (a/c) + (ir/c). Asr tends to zeroz' tends to the rational poirat/c
vertically andz tends to infinity. In view of our earlier remarks, we may let
r tend to zero in (114), in order to find the value &fB)v(81); moreover, it
sufices to find the real part of the right hand side of (114), stB(®)v(3,) is
rational. Thus, we have fdr# (1),

1 1\ (a+d
G(B)V(ﬂl)zi(UZB_UB'*'é)( c )+0'1+O'2

where

1S 1(VQQp+ (VlQiB)”]
i ,

= lim | real part of—
71 r—>0( p -1 n 1- Qn

z —Ug 1~ 3+UB\n
\% (_)
o2 = Ilm {real part of— § - )+ ( )" ]

Q—n/2 N2
> )
with Q; = €™ and Q, = €.

Asr tends to zeroQ); tends to zero exponentially and it is easy to see that
o1 = 0 unlesug = 0 and in this case

a -n _\/n
1= Z 47in
n=1
So, if we definel(ug) to be zero if 0< ug < 1 and equal to 1 ifig = O, then 137

1= A(Us) Z 47in

In order to evaluate-,, we need the identity

C —C c
q -q Z o o2kl _ Z q—(c—2k+l)’ @#q?Y

c
-1
a-q k=1 k=1

n
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ie.
qc—2k+1 c q—(c—2k+1)

1 Cc
= = - . 115
Z;Q"—OFC kZ:;qc_q{ (119)
Employing the identities (115) with = Q,"?, we have

Z i 1 (Vd;_C/Z_UB)n + (Vd;_C/Z_UB)n] .

C
i —cn/2 +cn/2
k=1 n=1 2nin Qz ]

oo =—1lim (real part of
r-0

Let nowty = 1 - (2/c)(k —ug) fork = 1,2,...c; clearly-1 < tx < 1 for
0 < ug < 1. Further, letfok = 1,...,c, Vi = e¥i(vs+@0)k-us) gnd |etP = .
Itis clear thatQS = €32 = P-2 andP tends to 1 as tends to zero. Now it
can be verified that

C 00
o 1 (VP¥M + (VPN
o2 =— IF!211 [real part ofz Z i b pn
k=1 n=1
.e. c ( n n)( tin tn)
) S 1 (V) =V (P = P
=—Ilim - . 116
72 qukZ:: ; 4rin P"—P-n (116)
tn _ P—tkn
We know that im—————— = t, and if we can establish the uniform
P-»1 P"— PN

convergence of the inner series in (116) with resped®for 1 < P < oo,

then we can interchange the passage to the limit and the stiom&& (116).

For this purpose, we remark that, for fixgdvith 1 < k < c, the function 138
X — x W .

f(X) = = is a bounded monotone function®for 1 < x < co. In fact,

it is monotone decreasing forOt, < 1, identically zero fotty = 0, monotone

increasing for-1 < ty < 0 and identically+1 for tx = +£1. Moreover iflty| < 1,

f(X) tends to 0 a tends to infinity andfy(x) tends totx as x tends to 1.

Thus the sequenddyc(P™)}, n = 1,2,... is a bounded monotone sequence for

n_\/-n

Y
1 < k < c. Further the serie$’ ﬁ is convergent. By Abel’s criterion,
n=1 7T

the inner series in (116) converges uniformly with respeéfor 1 < P < co.
As a consequence, we have from (116),

C 00 n -n
k—ug 1 Vk_Vk
O—Z_Z( c _E); 27in

=1

Let now for realx,
© eerinx _ e—27rinx
P ==Y
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as is well-known, we have

x—[x]—} for x not integral
,%z{ 2 gras

0 for x integral,

where ] denotes the integral part af Further, let for reak,

PN = - Zoo R
Clearly Z,(x) = %{(x —[X])? = (x = [X])} + 1/12. With this notation then, we
have forf # (1),

a+d)y 1

G(B)V(B1) = Z2(ug) - t3

(k- 1 k-
—Z( UB——)@l(a' uB+VB).
k=1 ¢ 2 ¢

Now, forl<k<candO<ug <1,0< (k—ug)/c<1land k—ug)/c=1only
whenk = c andug = 0. Therefore, for kX k < c,

A(ug) Z1(VB)—

k—UB _k—UB 1
'@1( c )_ c 2
and fork = c, 139
k—UB _k—UB 1 1
(@1( c )— c T 3° EA(UB)

Further wherk = c andug = 0,

9’1 (a- k _CUB + VB) = 91(a+ VB) = rgzl(VB).

Thus
@) = 72(ue) 2D 4 Liue) 7(ve)-
— ; P (k _CUB) Py (a~ K _CUB + VB) - %/I(UB)@]_(VB)
= QZ(UB)(aZ 9 _ kZ:l/ Wl(k_CuB) P (a- K- Us + VB).

(117)
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SinceZ71(X) is an odd function ok,
e@l(k— UB) _ _@1(—k+ UB)
c c

ﬁl(a- k_CUB +VB) = —ﬁl(a' _kZUB —VB).

Moreover, in the sum in (117), we can lékrun over any complete set of
residues modulg, in view of the periodicity of%?1(x). Thus

ca- 22§ A K

==@2(UB)(a+d) Z (k+u3)91(a~k+cu3—v)
k=
o1
Bk

(a+d) (k+ uB)ﬁl(a k+CuB—VB)- (118)

and

= Z5(ug)

140

It is surprising that even though, prima facie, it appeaosnf(118) that
G(B) is a rational number with a high denominator, sagf2, the factorc?
in the denominator drops out and eventudByB) is a rational number with at
most 1Z in the denominator.

The determination of the asymptotic development ofledvs — ugz 2) as
z tends toa/c is done in a rather more complicated manner by Hecke in his
work referred to earlier.

We now take up the calculation &(B) in the casg = (1). We setz" =
a/c+ir/candz = —(d/c) +i/cr withr > 0 and as before&s(B)v(8;) is

lim (real part of% [log Vz=w)z- w’)nz(z)]j) .
We shall show first that
lim (real part of = |log m]f) =
r—0 2ni z
For this purpose, we remark in the first place théd/c) < ' < w < a/c,

sincew(a — cw) = 1 impliesa/c > w ande(cw’ + d) = 1 implies—d/c < «’.
Now asz = —(d/c) +i/cr andr tends to zero, arg¢ w)(z— w’) tends tar and
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similarly arg* — w)(z* — «’) tends to zero a8 = a/c + ir andr tends to zero.
Thus our assertion above is proved.
Defining the branch of log?(2) by

logn(2) = 2% + ZZ log(1 - €™m?),
6
m=1
where on the right hand side we have taken the principal besave see that141

logn?(2) = iz ZZZ = g#rimnz

m=1 n=1

and in view of absolute convergence of the series, we have again,

2 T2 _,5 1
logr’(2) = 2;“_@,

whereQ = e*Z. Now

. 0 z
[|Ogn2(Z)]j = %I(z* -2- 2LZ:; %1 = Q”L

By our remarks above,

CEMB) =~ + 75 -

Letal )

where

o3=2- Iing)[real part of
r—

It is easily seen that

n

Z 27'[_ 1 O, fOI’ Q]_ = ez”'z.

Thus

L > 1 Q)
503 = lim | real part sz 27in 1 - Q)

J with Q, = €7,
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To determiners, we first use the identity,

to make the denominators of the ter@/(1 — Q)) real. Settingy = Q,"?in 142
this identity, we see that

S r an/Z(c—Zk)

D g = 25 2
et 2rin 1 — Qg £ 2x1in Q—nc/2 nc/2

Now Q"% = (-1)*"P" with P = €" and Q¥ = ViP~%/° whereV; = i@k,
Hence

] 27in i 2rin PN — PN
As a consequence
C 0 n -n tn
. 1 (V- V. ")Px
o3 =Ilim . - , (119)
r—0 kZ:; nz:; 2rin - P" - P n

1 (Vn k—n)ptkn

PN — P-n
tok = cis zero since/{ - V;" = 0. Hence ﬁectivelyk runs from 1 toc — 1;
but thenc — k also does the same whé&rdoes so. On the other hand kifs
replaced by — k, thenVy goes toVk‘1 andt, to —t, so that

S 1 (- VP S 1 (VPR
ZZerin Pn— P __ZZZnin Pn— P

k=1 n=1 k=1 n=1

wherety, = 1 - 2k/c. In (119), the sumZ corresponding

Taking the arithmetic mean, we see that
1. C o 1 (Vn k—n)(Ptkn _
ca=30m >, 2 5 pr_ pn

We are now in the same situation as in (116) but wigfandvg replaced by 0.
By the same analysis as in the former case, we can show that

-3 (e -5 a el

P—tkn)
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Thus, forj = (1),

c-1
GEME) = -5 + 220D - 5 (g ofag). a2
k=0

We now define 143

V() = {%1 1=

0, otherwise.

Consolidating (118) and (120) into a single formula, we $e¢ the value of
G(B) is given explicitly in terms of elementary arithmeticahfttions by

Theorem 13. Corresponding to a proper ray class characfemodulof in
Q(VD)(D > 0), with associated) defined by104)and a ray class B modulo
f, we have the formula

c-1
G(B) = V(ﬂl){yz(us)a-’- d Z yl(k+cu5) 7, (ak+CUB —VB) i)l

¢ k=0
(121)
where i = vg = Ofor f = (1).

Note.Here B1,3,] is an integral basis of an integral ideig) in B andug =
S(B1y), Vs = S(B2y). We recall thatG(B) depends only o8 andnot on the
special choice obg or of its integral basis. The rational integexs, c, d are
determined byB, = aB, + bB1, €81 = ¢B2 + dB;. The Riemann-Dedekind
method used above for the explicit determinatiorgB) does not make any
specific use of the fact that— z* is a hyperbolic substitution.

Coming back to our formula folc(1, y) for a proper ray class character
modulof in Q( VD) for which the associated(1) is defined by (104), we have
as a consequence of Theorems 12 and 13,

2

b A
TVD
whereA = Y y(B)G(B) with B running over all ray classes moduloG(B) is

B
given by (121), and

L(Lyx) = (122)

T= ), xXesw

A modf

with y € K such that{ VD) has exact denominatér 144
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We shall now use the elementary formulalidt, y) derived above, in order
to determine the class number of special abelian extenefdhe real quadratic
field Q( VD).

Let F be a relative abelian extension of degreever K = Q(+D) and
let f be the ‘Rihrer’ (conductor) of relative toK. Let /(s K) andZ(s, F) be
the Dedekind zeta functions #f andF respectively. From class field theory,
we know that the galois group &f overK is isomorphic to a subgroup of the
character group of the group of ray classes moduid. Moreover, the law of
splitting in F of prime ideals oK is equivalent to the following decomposition
of £(s, F), namely

{sF) =4sK) [ [Lsx) (123)

x#1

wherey runs over a complete set af— 1 non-principal ray class characters
modulof, with conductorf, dividing f andL(s, x) is theL-series inK associ-
ated withy. Multiplying both sides of (123) by — 1 and lettings tend to 1,
we have in analogy with Theorem 10,

2h.(27)2-R-H  4rh
= L(1, x). 124
WA " m)];! (L) (124)

In (124),r; and 2, are respectively the number of real and complex conjugates
of F overQ, H is the class number &f, W is the number of roots of unity iR,

Ris the regulator of, A is the discriminant of overQ, his the class number

of K, r is the regulator oK andw(= 2) the number of roots of unity iK.

We have been able to obtain a formula fqf, y) involving elementary
arithmetical functions only in the case when the charadtsigmaturev() as-
sociated withy is defined by (104). Thus, if we are to obtain fdr a formula
involving purely elementary arithmetical functions, the@a ought to consider
only such abelian extensiors over K, for which, on the right hand side of
(124), there occur in the product only characterahose associated ) is
given by (104). Moreover, suppose thatandy, are two such distinct char-
acters occuring in that product, thgmxgl also occurs in the product and its
associated(1) is defined by(1) = 1 for all 2 # 0 in K. But this, again, is 145
a situation which we should avoid, in view of our aim. Thusprder that we
could obtain a formula of elementary type for the class nuntbef F, we
are obliged to consider only those abelian extensiomser K, for which we
have the decompositiaf(s, F) = £(s, K)L(s, ) wherey is a ray class charac-
ter modulof, with {, as conductor and its associated character of signature is
given by (104). This, in the first place, means thais a quadratic extension
of K, i.e. F = Q(VD, V6) whered is a non-square number K. Let 9 be the
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relative discriminant of overK. We could assume thaf)(= i for an ideal
i in K, coprime tog.

From class field theory, we know that a prime ideah K not dividingf,
the conductor of relative toK, either splits into a product of distinct prime
factors or stays prime iR and moreover

(125)

1, if p splitsinF
x(p) = : o
-1, if p stays prime irF.

We also know that, dividesf.
On the other hand, lat be a prime ideal ifK not dividing¢. We can then
find ¢ € K such thab* = 6c? is prime top. Let us define then

¥(p) = (9—;),

where, forp A(2), (%) is the quadratic residue symbol iKhand if p? is the

sk

highest power op dividing (2), then(%) = +1 or -1, according as the con-

gruenced* = &?( mod p?®+?) is solvable inK or not. We see thay(p) is
unambiguously defined for all prime idealshot dividing# and we extend/
multiplicatively to all ideals: in the ray classes modulpin K.

From the theory of relative quadratic extensions of algelbramber fields,
it follows that for prime idealg in K not dividing®, x(p) = ¥(p) and hence
x(a) andy(a) coincide on the ideals in the ray classes modulo

Now, by the law of quadratic reciprocity iK, it can be shown that for
all numbersa in K for which ¢ = 1( mod*9¥) anda > 0, y((@)) = 1. In
other wordsy, and hencg, is a ray class character moduto Incidentally 146
we note thaf, dividess, sincey is a ray class character modulg with f, as
conductor. Again, using the law of quadratic reciprocitg @an show that for
integrald # 0 and coprime ta}, x((1)) = ¥ ((1)) = y()v(L) wherey(Q) is a
prime residue class character modtlandv(J) is given by

1,ife>0

|jll_|’ ifo>060 <0
V(/l): /l, .
—.if<0,0 >0
8
N(4

,if —60>0.
IN()
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But, for our purposes, we requiké(1)) to be of the formy(A) - % Thus,
finally, in order that we could calculaté in terms of elementary arithmetical
functions, we conclude th&t should be of the forniK( V6) whered € K and
-6 > 0. In other wordsF is a biquadratic field ove®, which is realized as an
imaginary quadratic extension of the real quadratic f@({&VD). We have in

this case, the following formula for the class humbtkof F, viz.

472 . R 4rh
H= L(1,
W - wyp )
&h 2
= A. 126
wvD TVD (126)

In order to determine the value dfexplicitly, we use the functional equa-
tions of (s, F), L(s, x) andZp(s) = £(s, Q( VD)), viz.

(2r) 2 TA(S)(ANY?4(s F) = (2m) 2921 - 9 x (A 9%¢(1 - s F),

71 T?(s/2)D¥%¢p(s) = =192 (1%5) DU-92/5(1 - 9) (127)

75T((+ 1/2)ONG)*L(S ) =
- o912 (225 ONG 9L - s

x(@Vv(y VD) yN(,)
= :

wherey e K such that ¥ VD) = q/f, has exact denominatdy. Further 147

L(sF) = p(9)L(s.x) andI(s/2)I((s + 1)/2) = n22Y5T(s). These, together
with (127), give us

(DZN(TX)) 2 _ x(@Vv(y ‘/TB) \/N(fx). (128)

A

Since the right hand side is independenspive see by setting = 1/2, that

T = N )x(a)v(y Vd). Since the right-hand side of (128) is 1, we see again
by settings = 3/2 in (128), thatD?N(f,) = |Al. But we know thaD?N(J) =

|Al. This means thail(%) = N(f,) and sincéd, divides:, we obtain incidentally
thatf, = ¢. Thus we have

T = VN@)x(a)v(y VD).
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But

9 _a_a® ()
(YVB)—E—E—W—@
wherex = #y VD. Moreover, since, is a real characte(i?) = 1. Hence
x(a) = x(ai®) = x(V(K) = x()V(By VD) = V(y VD)x(x). ThusT = VN@)x(x).

As a result, from (126), we obtain

HRw

hrw —A0A

= x(6y VD) D X(B)G(B). (129)
B

We may summarise the above in

Proposition 17. Let F = Q(VD, V#d) be an imaginary quadratic extension of
K = Q(VD), D > 0, with an integral ideaf in K for its “conductor”, 6 being a
totally negative number in K. Then with our earlier notatjtime class number
H of F is given by

H = hi- ] (6y VD) ;)-AB)G(B),

where B runs over all the ray classes modiiio K, G(B) is given by(121)and 148
x is the non-principal ray class character moddl@associated with F.

Remark. We know thaiG(B) are rational numbers with at most fLewhere f
is the smallest positive rational integer divisiblefhy= f = ) in the denomi-
. RwH. . .
nator, it follows that 12— — — is a rational integer.
r wh

Let » andu be respectively the fundamental unitsirandQ( VD). Then
R = 2logly| andr = log|u|. Now eitheru = n or u = +5. In the former case
R = 2r; in the latter case- may be generated ov€¥( VD) by adjoining the
square root ofru (whichever is totally negative) tQ( VD) and in this case,
we haveR = r. Thus, in any case, sineedividesW, we see that 2&H/h) is
a rational integer.

If h is coprime ta24f, we obtain the interesting result that h divides H.

Let us now assume th&tis an unramified imaginary quadratic extension
of Q(VD). Thend = (1) and hence the ray class group moduilds just
the narrow class group d@(VD) and y is a genus character. It is known
that all totally complex unramified quadratic extension€¢fVD) are of the
form Q( VD1, VD,) whereD; andD, are coprime negative discriminants (of
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guadratic fields ove®) which satisfyD,D, = D. HenceF is obtained from
Q(VD) by adjoining eithervD; or VD,, for such a decomposition @ as
product of two coprime negative discriminants.

On the other hand, sinde = Q( VD1, VD) is an abelian extension 6J
with galois group of order 4, we have the decomposition

{(s,F) = Z(9Lp,(9)Lp,(9Lp(9),

whereLp, (), Lp,(S) andLp(s) are the Dirichlet_-series inQ associated with

the Legendre-Jacobi-Kronecker symbéanl), (%) and (%) respectively.
Moreover
{o(9) = ¢(9Lo(9)
and hence 149
L(s x) = Lo, (9)Lpb,(9),

a result due to Kronecker, which we have met alregdy Chapter I1)y being
a genus character @( VD). Therefore
L(L,x) = Lo,(1)Lp,(2).

On the other hand, iy andh; are the class numbers @ VD1) andQ(VD,)
respectively andv; andw, the respective number of roots of unity@( vD:)

andQ( VD), then

2rh 2rh
Lp,(1)= ——. Lp,(1)= —=.
Wy VIDq] W V|Do
Hence ) 2 1
4
H_A = I—(l’)() = _ il
VD WiW> V|D1| V|Do

and as a consequence, we have

Proposition 18. If D1 < 0, D, < 0, D = D, D, are discriminants of quadratic
fields overQ and if hy, h, are the class numbers of and wv, the number of
roots of unity inQ( VD1), Q(VD>) respectively, then we have

4h:h,
W1W2

= A=) YBG®). (130)
B

(In (130), y is the genus character iQ( VD) corresponding to the decomposi-
tion D = D1D; and B runs over all the narrow ideal classesQ@g VD)).
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Remark. Formula (130) is interesting in that it gives another arigtical sig-
nificance forA. Besides, it is the analogue of Kronecker's solution of 'Bell
equation which we referred to §3, Chapter Il earlier. It has not appeared in
literature so far.

From (129) and (130), we have

H = 4hh1h2WL

. 131
wiwow R (131)

If we exclude the special cases wheh< D;, D, < 0, thenw; =w, =2 =w. 150
Moreover,r/Ris 1 ori, as we have seen earlier. Further if we exclédeom
being the cyclotomic fields of the 8th or 10th or 12th rootsmifyior the fields
Q(VD, V-1) orQ(VD, Vv-3), thenW = 2. Thus barring these special cases,
we have for the class numbklrof F the formula

r
H= hﬁA
and from (131) ;
H= ﬁhhlhz. (132)
In generalR/r = 2 and hence we have, except for some special cases,
H
2— = A = hih,.
h 1112

For D; = -4, formula (131) was obtained by Dirichlet and in the gen-
eral case, this was discovered by Hilbert. A generalizatib(132) has been
considered by Herglotz. One breaksbas the product af(> 2) mutually co-
prime discriminants. The field = Q(VDy, ..., VD;) is an unramified abelian
extension ofQ( VD) and for the Dedekind zeta function Bf we have the de-
composition as a product afseries for the corresponding genus-characters in
Q( VD). One then proceeds as above to obtain the required geragiadi of
(132), involving the class numbets, ...h, of Q(VD,),...Q(VD;) respec-
tively.

6 Some Examples

This section is devoted to giving a few interesting examplesgaining to the
determination of the class number of totally complex bigatid extensions of
Q with particular reference to Proposition 17 and 18.

Examples 1-6 deal with the case wHeiis a totally complex number field 151
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which is an unramified imaginary quadratic extensiorQ¢fVD), D > O(f =
(1)). In fact, therF = Q(VD3, VD,) whereD = D;D, is a decomposition of
D as product of coprime negative discriminaits D,. Formula (129) gives
the class numbet of F, on computingR, r, h, w, W andG(B). Incidentally
we also check (130), by findingy, hy, wi, ws.

On the other hand we know that for any algebraic number figlkel ctass
number can be found directly, as follows. Since, in evergsiaf ideals, there
exists an integral ideal of norm not exceedig\| (A being the absolute dis-
criminant), it sufices to test for mutual equivalence, the integral ideals ahno
not exceedingy]A| and obtain a maximal set of inequivalent ideals from among
these. This will give us the class number.

Our notation here will be the same as in the last section.

The following remark is to #ect a simplification of the computation, in the
case of Examples 1-6. The ray classes modi{#a(1)) in Q( VD) are just the
narrow ideal classes. Looking at the definition@&(B), we see that for two
narrow classe8; andB; lying in the same wide clas§(B;) = —G(B,) and
further y(B;) = —x(B2) so thaty(B1)G(B1) = x(B2)G(B,). Thus

A =2 ¥(B)G(B) = 2A*(say)
A

whereA runs over the wide classes@( VD) andB is a narrow class contained
in A. From (129), we have

r W
H=2h-—.—. A*
R w
Further, formula (130) becomes
. 2hhp
B W1W2.

As beforee(> 1) is the generator of the growip in Q( VD).
Example 1.D =12,D; =-3,D, = -4
h=1, since (2)= (1+ V3)(1- V3),(3) = (V3%

Similarly h; = 1, h, = 1. Furthew; = 6,w, =4,w=2,e =2+ V3> 0, 152

2
+ V3
1o ),r/R:l.

W =12. Sinceg:i(1
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Sinceh = 1, A* = G(B,), B; being the principal narrow class @( V12).
We takebg, = (1);bg, = [1, V3], 1= 1,82 = V3,v(81) = 1.

@+ x@)(‘f):(i g)(‘f’) a=2b=3c=1d=2

1 242 11

Thus

Further
2mh, 211 i A
Wi W» - 6.4 B 12 B ’

Example 2.D = 24,D; = -3,D, = -8,h=h; =h, =1,w=2,w; =6,
W, =2,W=6,e=5+2v6>0.

Since—e = (V=3 + V=202, r/R = 1. AlsoA* = G(B,), B; being the
principal narrow class itQ(V24); bg, = (1) = [1, V6], 81 = 1,82 = V6,

v(B1) = 1.
(- A a-svorae-zo-s

N=CB)=1 5 376

2h, 211
W1 W5 B 6.2

I
>

EXampIe 3.D = 140, Dl = —4, D2 = _35, hl = 1, Wy, = 4’ h2 = 2,W2 — 2, 153
h=2w=2¢e=6+V35>0,W=4,r/R=1/2. We takep; = (1),

p2 = (2,1 + V35) as representatives of the two wide classe®(rV/35) and
denote the ray classes containing themBpyB, respectively. Sinceg = (2),
N(pz) = 2 andX(Bz) = (_735) — _1.

For By, bg, = p1, 81 = 2,82 = V35,v(B1) = 1,a=6,b=35,c=1,d =6,
G(By) = 1/12- (6 + 6)/1 - 1/4 = 3/4.
ForBy, bg, = p2, f1= 2,62 = 1+ V35,v(31) = 1,w = (1 + V35)/2,

€e=2w+5ew=Tw+17a=7,b=17,c=2,d =5,
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14 1
H=22.Z.-. =2
2 2277

2uhy _ 212 .

W1 W5 B 4.2

Example 4.D = 140,D; = -7,D, = =20, h; = 1,w; = 2, h, = 2, W, = 2,
h=2w=2W=2r/R=1€e=6+ V35> 0. Letpy, p, By, B, have

the same significance as in Example 3. Thémnp) = (_—7) =1,G(By) = 3/4,

2
G(By) =1/4,A* =3/4+1/4 =1,

H =2.2~%-1.1=2,
by 212 _ .
W1 W> 2.2

Example 5.D =21,D; =-3,D,=-7,hy =1,w; =6,h, =1,w, =2, h=1,
w=2,W=6,e=(5+ V21)/2> 0;r/R= 1, since—e = (V=3 + V=7)/2)%.

For the principal narrow clasB; in Q(V21), we takebg, = (1) with inte-
gralbasis [le]; B1 = 1,82 =€, w =€, ew =5w-1,a=5b=-1,c=1,
d=0.

. 1 5 1 1
AN=CB)=331"37%
6 1
H=211---Z=1,
2 6
by _ 211
W1 W> 6.2

We might show thaH = 1, directly. The discriminant of is (21 and we
have therefore to examine the splitting of (2), (3), (5), (), (13), (17), (19)
in F. The ideals (2), (5), (11) and (17) stay primeQfV3) and (3), (13), (19)
stay prime inQ( V=7). Further (7)= (V7)? in Q(V=7). The further splitting
in F is seen to be as follows:

(=25,

154
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(3) = (V=374
(5) = (2V=3+ V=7)(2V=3 - V=7),
- ety i - 2T

(1) = 2+ V=71)(2- V=7),
(13)= (1 +2V=3)(1-2V-3),
(17):(5\/—_3+ \/—_7J[5«/—_3— «/—_7)

2 2
(19) = (4 + V=3)(4— V-3).

Thus all prime ideals of norrg 21 are principal irfF and hencéd = 1.
Example 6.D = 2021,D; = -43,D, = -47,hy = 1,w; = 2.
. -47 .
To findh,, we observe tha(t?) = -1 and so (5) stays prime @( V-47),
while (2) = p2p5, (3) = p3p; where

D2=(2,1+—\/T47], p3=(3, 1+ \/4_7)

2 2

The integral ideals of norra V|47] in Q( VA7) arep,, v, ps, P4, V3, p'3, Paps,
PoP3, PPy, Pop5. Now

1+ vV-47 2,
N (T] =12 = p3p'5paps.
Let p3 be so chosen that 155
5, (1 * \/—47)
G I
Thenp§ ~ p3 (equivalent in the wide sense). Let now
K [(X+yv-47
Py = T s

k being the order of the wide class containigndyx, y being rational integers.
Thenx? + 47y? = 22 and certainlyy # 0, for then we would have = p’s
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i.e.p2 = p), which is not true. But now the smallet> O for which the
diophantine equatiom® + 47y? = 242 js solvable withy # 0 isk = 5 (in
9+ V-47
2
'3 ~ Py, P2P3 ~ PS ~ P3 ~ Py, PhP3 ~ P2, Pabh ~ Py, PyP5 ~ P3, We see that
(1), p2, v5, p3, p; form a complete set of mutually inequivalent integral ideal
of norm< /47 and thush, = 5.
To find h, we have to consider integral ideals of nogmy2021 (i.e.< 44).
Since

fact, & + 47 = 128). Hencep3 = [ ]andp‘z‘ + (1). Sincep3 ~ ps,

(&le) =-1 for p=2,3,7,11,13,23,29,31, 37,41,

these rational primes stay prime alsadv2021). We need to consider there-
fore only the decomposition of (5), (17), (19) and (43¥J6v2021). Now

(43+ ;/2_021)(43— \/M).

(2021) =0 and (43)x=

43
2021) _(2021) _(2021) _,
5 ) \17 ) \ 19 )
and so (5)= ps - g, (17) = p17- pj (19) = p19- p}4 (SAY). Actually

( 1+ \/2021)
p5 = 5’ - A5 .

2

Further

2

Now, 156
2 39- 2021 3 39- V2021
Ps = T,—ZS and p; = — |

Hencepg ~ (1) but pé + (1), for this would meams ~ (1) which is not true,
since=5 is not the norm of any integer @(v2021). Now

(44 + V2021)(44- V2021)= (5)(17)

and

(46+ V2021)(46- V2021)= (5)(19)

and by properly choosing,7, p19, We can suppose thatp;,— ~ (1) and
psPyg ~ (1). But 1,ps, pZ are inequivalent ang7 ~ ps ~ pag, P}, ~ Phg ~ P2
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Henceh = 3. Furtherw = 2, ¢ = %(45+ v2021);w, = W = 2. Moreover,

r/R =1 since

Then

1+ v2021 1+ v2021
B; = (1)’ﬁl = 1’ﬁ2 = T’wl = ﬁ2 =5

_,3_1_ >
V(ﬁ]_)zl,
6w1=23(4)1+50
a=23b=505c=1d=22
€=wy+22
1+ v2021
B=D5,ﬁl=5,ﬁz=T,V(ﬂl)=
B2 1+\/2021
“2Tp T 10
6w2=23L02+101
a=23b=10Lc=5d=22
€ = 5wy + 22

1
bg, = p.f1 = 539~ V2021) 8, = —25,v(81) = -1,

B 50 19+ w
B1 39- 2021 5 7
EW3 = 420_)3 +2

5
a=42b=25c=5d=3
€=5w3+3

X(B1) = 1,x(B2) = x(ps) = (13) = —1,x(Bs) = x(v2) =

5
Thus

. 123+22 1
A —1{1—2T‘z}

R Sl 3

Let By, By, Bs be the narrow classes @(V2021) containing (1)ps, pg.

157
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B2 5 () (2)-2)

k=1

Since 2, (%k) 321( ) we see easily that* = 5/2,

25
H=231.-.--=15
2 2
2hy _ 215 _
W1 Wo 2.2

The following two examples deal with the case wheis ramified (with
relative discriminant # (1)) overQ( VD), (cf. Proposition 17). Now the num-
bersy andug, vg corresponding to the ray classBsin Q( VD) have to be
reckoned with.

Example 7.D = 5, F = Q(V5, V6) whered = (V5 - 5)/2 and—6 > 0,

h=1,w =2, W = 10. The fundamental units i andQ(V5) are the same,

viz. w = (1+ V5)/2 and sor/R = 1/2. ltis easy to verify thap = V5w’, 158
-VBw =6 w? N(w) = —1.

If we setp = (VO-w)/2, thenp™! = —(Vb+w)/2 = —p—wand sp+p ! =
—w. Thereforgp? + p?2 =w?-2=w-1,s0thap® +p 2 +p+pt+1=0.
Actually, since Rep < 0 and Imp > 0, we havep = /5, As a basis of the
integers inF over Q(V5), we have [1p] and the relative discriminaritof F
overQ(V5) is ) = (&) = (V5). Now(f) = 4 andw?, —w, w, w? serve
as prime residue class representatives moditoQ( V5). In fact, w* = 1,
—w =2, w = 3,w? = 4( modf). Fore, we takew* = (7 + 3v5)/2 and then
e > 0asalsax = 1( modf). We note that(f) = 0

We takey = 1/5 so that )i = (1)/(V5) has exact denominatérand
q = (1). Furtheny(q)v(y V5) = 1x -1 = —1.

In the notation of§ 5 (Chapter Il), the sefdx} consists just of 1, anly}
consists of 1, @. Therefore, sinch = 1, we may take as ray class representa-
tives modulaf, the idealsp; = (1) andp, = (2) and denote the corresponding
ray classes b, andBs;.

FOI‘B]_,X(BJ_) = 1,ﬂ1 = 1,,82 = (,(),V(ﬂ]_) =1,a=5>b=3,c=3,d =2,
ug, = S(y) = 2/5, vg, = S(wy) = 1/5.

For By, x(B2) = -1, necessarilys; = 2,82 = 2w,Vv(B1) =1,a=5,b=3,
c=3,d=2,ug, = S(2y) = 4/5, s, = S(2wy) = 2/5;

A:{(%Z—(%M1&2)5;32_;:%(k+32/5)%(5(k+32/5)_%)}_
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_{((4/5)2—(4/5)+i)5+2_i%(k+4/5)%(5(k+4/5)_g)}

2 12) 3 — 3 3 5
= -2/5;
r w 1 10 2
H—hﬁwx(—/\)—].é?g—l

We shall now show thatl = 1, directly. Since the absolute discriminant afs9
F is 5 - N(f) = 125, we need only to examine the splittingFnof the ideals

(2), (3), (5), (7) and (12). Sinc(a%) = -1 for p = 2,3,7 the ideals (2), (3),

(7) are prime iQ(V5). Further,(%) = —1forp = (2), (3), (V) and hence, by
(125), these stay prime A too. Again,
(11)= (4+ VB)(4- VB) = (1 - VO)(1 + VO)(1 - w VO)(1 + w V)
(5) = (V5) = (Vo)".

Thus, all prime ideals of norg 11 in F are principal and, as a consequence,
H=1.

We might show thaH = 1, also by using the following decomposition, due
to Kummer, of the Dedekind zeta-functidgts, F), viz.

{(s,F) = £(9Ls(9)P(5)Q(s),
where, foro- > 1,

Ls(s) = i (g) n-s,

n=1

P9 = > u(n™,
n=1

Q9 = > w(mn™,
n=1

andy(n) is defined by

0, n=0( modb5)
i, n=2( mod>5)
y(n) =4{-1, =-1( mod 5)
-, =-2( mod 5)
1, n=1( modb)
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Since(s F) = £(s Q(VB))L(sx) and (s Q(VE)) = {(9)Ls(s), we have
L(sx) = P(9Q(s). Hence

A 2r?
P(1)Q(1)=L(Lx) = ~ 5 T 25 (*)
But it is easy to see that 160

o

1 i
P(l)znz (5n+1+5n—+2)’

=—00

= g(cotn/S + i cot 2t/5),

_ 7_T(—i(p+pl) +p2+p2)

5\ p-pt  p2-p2)
Similarly _ . , ,
R
Therefore

m?(p?+p?+2 ptep P42
PR = _2_5(;02 w22 phapi- 2)
n? p2+p_2+2+p+p_1+2

pPtp2-2 ptpt-2

25
7? (aP(a —2) + (@ + 2)(@® - 4)
) _2_5( (@2~ A)a-2)
1o 2w
25 5 25°

)(a=p+p‘l=—w)

which confirms {) above.

Example 8.D = 17,F = Q(V17, V6) whereg = (V17-5)/2,-6>0,h =1,
w=2W=2;p=4+ V17(= 20 + 9) is the fundamental unit iQ( V17) as
also inF and sor/R = 1/2.

[1,(1+ V6)/¢'] is a basis of the integers iR over Q(V17). The relative
discriminant of F overQ(v17) is ¢3); N(f) = 8 andv(f) = 0. Furthery(f) = 4
and as representatives of th prime residue classes mpuu@( V17), we take
1, -1, 3,-3. Itis easy to verify thap = -3,p%> = 1, —p = 3, —p? = —1(
mod ) and so, in every prime residue class moduliere is a unit. Also, itis 161
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clear thate = p? = 33+ 8 V17 is the generator df:. We takey = 1/(¢° V17);

then ¢)(V17) = 1. Soq = (1) and moreovei(y V17) > 0.

In the notation of 5 (Chapter Il) againfyi} consists of the single element
1 while {u;} consists of the numbers 43p, 50, —7p%. Furtherh = 1 and there
are just 4 ray classes modylahich we denote by, B3, Bs andB; (say) and
the corresponding representatives, bg,, bg,, bg, may be chosen to be (1),
(3), (5), (7) respectively. The numbeug, vg corresponding to the ray classes
B:, Bs, Bs, B; may be denoted by, vi, U, V3, Us, Vs, Uz, V7 respectively.

If 2 = £1( modf), theny((1)) = =1 according adN(1) = 0 and hence
x(B1) = 1,x(Bs) = x((=30)) = —=1,x(Bs) = x((50)) = -1, x(B7) = x((-7p?)) =

1. We note incidentally that, fay = 1,3,5,7, x(Bg) = (g)

For By,
23
be, = (Df1= 1= 0,1 =S() = -5,
1
vi = S(0y) = Z( mod 1)
For B,
69
be, = (3).1=3.52=30.Us = S(3y) = -5,
vz = S(30y) = ?1( mod 1)
For Bs,
115
bgs = (5).81 = 5,82 = 56, Us = S(5y) = ¢~
Vs = S(50y) = —v3( mod 1)
For Bz,
161
be, = (7).f1= 7.2 = 70,u7 = S(Ty) = -~
vz = S(76y) = —vi( mod 1)
For all the 4 classes = -7,b = -32,c = 16,d = 73. 162

From (129), we now obtain

2H = (WM V17) D" X(Bo)G(By)

0=1357
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ie.
2 33 e k+u kK+u
2H = (-) X {%(uq)— + ,@1(—‘“) Py (7- — vq)}.
It may be verified that
2 66
frac338 (—) PoH(Ug) = —=;
q=§5,7 q 128
15
k+u; K+ u
()52 )
é 16 16
& K+ Uy +ly 6256
" L %( 16 )'@1(7 16 7) T 128’
15
k+ U3 K+ U3 _
é ‘@1( 16 %(7 16 V3)
15
K+ us K+ us 5904
= 7 =
;0‘%( 16 )‘%( 16 5) 128
Thus 66 6256+ 5904
+
2H = ES + 2—1282 =2
ie.H=1

We shall now show thatl = 1 directly. Since the absolute discriminant of
F is 172 x 8 = 2312k 49), we have to examine for mutual equivalence all
integral ideals of (absolute) norm49 inF.

To this end, we first remark that the ideals (3), (5), (7), (123), (29), (31), 163
(37) and (41) are prime iQ(V17). Further we have i@(V17) the following
decomposition of other ideals, viz.

) = (0)(¢), (13) = (1 + 40')(L + 49), (17) = (5 + 20)(5 + 26),
(19) = (11 + 20)(11+ 29), (43) = (1 + 66)(1 + 6¢),
(47) = (3- 26)(3 - 20).

Now, if p is a prime ideal irQ( V17), then

0 +1, ifp=B1BrinF, B + B,
x(p) = (5) ={-1, if pisprimeinF
0, if p=%B2inF.
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Further, if A and . are integers irQ(V17) such thatl = u( modf), then

x(() = ((%) =+ (%) according aiN(4u) = 0.

Forp = (3), (5), (11), (29), (37) irQ( \/1_7),(3) = -1 and so these prime
ideals stay prime also iR.
@- 00 - o722 157

Now 1+4¢ = 3( modf) and 1+46 = 1( modf) so thaty((1+49")) = -1,
while y((1 + 49)) = +1. So (1+ 4¢’) stays prime irF while (1 + 49) splits in
F. This gives

(13)= (L+49)1+ 6+ Vo)1 + 60— Vo).

Again 5+ 26 = 1( modf), 5+ 2¢' = -1( modf) and soy((5 + 26)) =
x((5+ 29)) = -1. Hence the ideal (17) does not decompose furthér.in
In view of the fact that 1% 2¢’ = —3( modf), x((11 + 2¢")) = -1 and
so (11+ 2¢') stays prime inF whereas (1} 20) splits inF. We have inF
therefore the decomposition
(19) = (11+ 26')(1 + (5+ 6) VO)(1 - (5 + 6) V).

164
From 1+ 60’ = -1( modf), 1+ 66 = —3( modf) we know that (1+ 66)
stays prime irF while (1+ 6¢’) splits and we obtain the splitting of (43)
as
(43)= (1L+60)(5+ 0+ Vo(4+06))(5+6— Vo4 +0)).

Both the ideals (3- 20) and (3— 2¢’) splitin F and we have
(47)= (1+ VOB +6))(L- VOB +6)(3+6+ Vo(4+6))x
x (3+ 60— Vo(4 + 0)).
The prime ideals (7) and (41) @(V17) splitinF as
(7)= (0 +3+ VO)(6+3- Vo),
(41) = (3+ 20+ 2VO(5 + 0))(3 + 20 — 2VO(5 + 9)).

Finally, from the decompositions

8+30 Vo (8+36) +6(6 - \/5)/2)
i " > O+ V@)( 7 ,

(23)¢) = [
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Lo -15)

(62)(1+ 40) = (—10— 79+ — + -10-70+ —

we can deduce that the ideals (23) and (31) split into twargisprincipal
prime ideals each if, if we use the decomposition of (149) and (2) inF.
Thus all prime ideals of norm 49 in F are principal and we havd = 1.
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Chapter 3

Modular Functions and
Algebraic Number Theory

1 Abelian functions and complex multiplications

167
In this section, we shall see how the complex multiplicagiohabelian func-

tions lead in a natural fashion to the study of the Hilbert mladgroup.
Letz,..., Z, benindependent complex variables and let

Z
Zn
Let C" be then-dimensional complex euclidean space &)ch domain inC".

A complex-valued functiorf(2) defined onG (except, perhaps, for a lower-
dimensional subset &) is meromorphidn G, if there exists a correspondence

a

. Pa(2)
a= . cG) » =—=
97 g0
wherep,(2) andqga(2) are convergent power-serieszan— ay, . . . z, — a, with a
common domain of convergenbg arounda such that foz € K, f(2) = gag
a

whenever eithega(2) # 0 or if ga(2) = 0, thepa(2) # O.

149
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P1
Let f(2) be a meromorphic function afin C". A complex columm = ( : ]
Pn

0
is aperiodof f(2), if f(z+ p) = f(2) for all ze C"; for example, 0= () isa

0
period of f(2). The periods of (z) form an additive abelian group; if we regardes

C" as a &-dimensional real vector space, then the group of perigds fact,

a closed vector group over the field of real numbers. Eithierniéctor group
is discrete or it contains at least one limit pointGA. In the latter casef (2

is said to balegeneratgthis is equivalent to the fact thdi{z) has infinitesimal
periods and by a suitable linear transformation of the ez, . . ., z, with
complex cofficients, the functiorf(2) can be brought to depend on strictly less
thann complex variables. In the former caddz) is said to benon-degenerate
and its period-group is a discrete vector-group i.e. ackatin C". We shall
consider only the case when the period-lattice hageherators linearly inde-
pendent over the field of real numbers. It is easy to consanaxample of
a non-degenerate abelian function withiddependent periods. For example,
let Z(w) be the Weierstrass’ elliptic function with independentipés w1,
w>. Then the functiorf(2) = Z(z) ... #(z,) furnishes the required example,
since it has exactlyr2independent periods

w1) (w2 0 0 0 0
. w1l |wo . .
0 0 . . 0 0
0 0 0 0 w1 w2

Let, then, for a givenf(z) meromorphic inC", py,..., pn be 2 periods
linearly independent over the field of real numbers such dhgtperiodp of
f(2) is of the formzizjlmpi with rational integersny. The n-rowed matrix
P = (p1,..., P2n) is called aperiod-matrix of f(2). It is uniquely determined
upto multiplication on the right by arerowed unimodular matrix. We shall
denote the period-lattice generatedfay. . ., po, in C" by £.

A meromorphic functiorf (2) defined inC" and admitting as periods all the
elements of is called arabelian function for the lattice £. The abelian func-
tions for £ constitute a field¥e. In ¢ there exists at least one functidiz)
having ¢ exactly as its period-lattice. Moreover, #, there exisn functions
f1,..., fo which are analytically independent and hence algebrgicadlepen-
dent over the field of complex numbers. Also, every abeliaction satisfies a 169
polynomial equation of bounded degree with rational fuorgdiof f1, ..., f, as
codficients. As a consequence, it can be shownghas an algebraic function
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field of n variables and one can find+ 1 functions,fy, f1,..., f, in e such
that every function irfye is a rational function offy, fy,..., f, with complex
codficients.

Let P be a complex matrix oh rows and & columns such that then2
columns are linearly independent over the field of real nusibEhe problem
arises as to wheR is a period-matrix of a non-degenerate abelian function or,
in other words, &iemann matrix. It is well known that in order tha® might
be a Riemann matrix, it is necessary anffisient that there exists a rational
2n-rowed alternate (skew-symmetric) matfsuch that

(i) PAP =0,

, 1= : iy iy (133)

(i) H = i"tPAP > 0 (i.e. positive hermitian).
These are known as thperiod relations. If E is then-rowed identity matrix
andAis the Zrrowed alternate matrik & ), then conditions (i) and (ii) were
given by Riemann as precisely the conditions to be satisfiegddperiods of a
normalised complete system of abelian integrals of thekiingt on a Riemann
surface of genus.

. P " . .
SettingB = (I_D) the two conditions above may be written in the form

0 -iH

BAB =(iH 0 ) H > 0. (134)

Forn = 1, the conditions (133) reduce to the sole condition thBt#f (wiwy),
thenwiw,* should not be real. To establish the necessity arficgncy of
these conditions fan > 1, one has to make considerable use of theta-functions.

The problem as to when a givdhis a Riemann matrix was apparently
considered independently also by Weierstrass and he wishpibve to this
end that every abelian function can be written as the quiotétwo theta-
functions. He could not, however, complete the proof of ths statement—it 170
was Appell who gave a complete proof of the samerfet 2, and Poincag,
for generah.

A period matrixP which satisfies the period-relations with respect to an
alternate matriA is said to bepolarized with respect to AThe alternate ma-
trix A is not unique; but, in generad is uniquely determined upto a positive
rational scalar factor. Moreover, i is polarized with respect t8, then from
(134), sinceH > 0, we conclude thgt\ # 0, |B| # O.

Let P be a Riemann matrix and, the associated lattice @". Let £, be
a sublattice of¢, again of rank 8 over the field of real numbers and It
be a period matrix of;. ThenP; = PR, for a nonsingular rational integral
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matrix R;. The associated function fie@l, is an algebraic function field of
n variables, containings.. Sinced. itself is an algebraic function field of
variables, we see th@t, is an algebraic extension &f.

Conversely, lesq, be a field of abelian function®; an associated Rie-
mann matrix and}; the corresponding period-lattice @Y. Further, lety be a
subfield ofF¢, such thatye, is algebraic ovefe. Then is again a field of
abelian functions containing at least one non-degenelstiaa function and
has a period-lattic& containing®;. This means that iP is a period-matrix
associated witfy, thenP; = PR, for a nonsingular rational integral matti .
We now prove

Proposition 19. Let P, and B, be two Riemann matrices any and £, the
associated period lattices in"C A necessary and gicient condition that the
elements ofye, depend algebraically on those &, and vice versa, is that
P, = PM for a nonsingular rational matrix M.

Proof. Let fo, ..., f, be generators df., over the field of complex numbers
and let elements df¢, depend algebraically on those ®§{,. This means that
eachf; satisfies an irreducible polynomial equation

"+ agi)fl fi"‘_l 4o ag) =0,

Whereaﬂq), m=0,1...,n — 1 belong tog¢,. Moreover, it is easy to see
thatal) form=0,1....n—1andi = 0, 1...,nlie in Fg,. Then the field

e generated b){'aﬂ])} over the field of complex numbers is a field of abeliatv1
functions contained in botfe, andFe, and hence admitting for periods, all
the elements of; and¥,. Sincefy, is algebraic ovefe, Fe is an algebraic
function field ofn variables and henc®g, is also algebraic oveFe. Let P be

a period matrix of¥¢ andg, the associated lattice ®". Theng contains both

21 and®,. HenceP; = PR, andP, = PR, for nonsingular rational integral
matricesR; andR,. ThusP; = P,M for a nonsingular rational matridd. o

Conversely, ifP; = P,M for a nonsingular rational matrik, then there
exists a Riemann matriR such that?; = PR, andP, = PR, for nonsingular
rational integral matriceR; andR; respectively. If¢ is the period-lattice ilC"
associated withe, the fieldF, of abelian functions fog, is contained in both
&e, andFe,. Moreovergq, ande, are algebraic ovefq. Thus the condition
is also sifficient.

Two lattices®, and £, in C", of rank 2 over the field of real numbers
and havingP; andP, for period-matrices respectively are said todoenmen-
surableif there is another lattic& of rank Zh containing both¢; and £, or
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equivalently P, = P,M for a nonsingular rational matriki. Thus in Propo-
sition 19, the necessary andfiscient condition may also be stated that the
lattices®, and 2, associated witlP; andP, are commensurable.

Let f(2) be a non-degenerate abelian function with period marand
period lattice¢ and letm be a scalar. The functioh(m2 has period matrix
m1P. If mis rational, then the period lattice associated wititP is clearly
commensurable witk and henced (m2 depends algebraically on the figld,
in view of Proposition 19. This is the analogue of the welblkm multiplica-
tion theoremfor elliptic functions. We now ask for all scalams such that if
f(2 € e, f(M2 is algebraic ovefye. Let us first consider the case= 1.

Let p1, p2 be two independent periods of an elliptic functibz) such that
every other periog of f(2) is of the formrp; + sp, with rational integrak
ands. In order thatf(m2 be algebraic over the field of elliptic functions with
periodsp; andp,, it is necessary and ficient that

m(pip) = (upa) (2 g)

with rationala, b, ¢, d. This means tham is the root of a quadratic equatiorn.72
with rational codficients. More preciselyn should be an imaginary quadratic
irrationality lying in the fieIdQ(pzpil) whereQ is the field of rational num-
bers. If we require that(m2 should again be an elliptic funciton wighy, and

p2 as periods, then, b, ¢, d should be rational integers. This was trénci-

ple of complex multiplication for elliptic functions formulated by Abel in his
work, “Recharches sur les fonctions elliptiques”. The idéaomplex multi-
plication in its simplest form, however, appears to be doethimplicitly in

the work of Fagnano, concerning the doubling of an arc of dmenliscate of
Bernoulli.

If f(2) is a non-degenerate abelian function with period ma&ad period
lattice € andQ is ann-rowed complex non-singular matrix, théQ12) is a
non-degenerate abelian function with period ma@iR. We formerly wished
to find all complex numbens such that for every (2) € §e, f(m32 is algebraic
over §q. We now ask, more generally, for altrowed complex non-singular
matricesQ such that for evenf(2) € ¥, f(Q 12 is algebraic ovefy,. By
Proposition 19, a necessary andfient condition to be satisfied g is that

QP=PM (135)

for some rational non-singulamzZowed matrixM. The matrixM is called
a multiplier of P and Q, a complex multiplication of P.Trivial examples of
multipliers arelE, whered € Q andE = E@V is the D-rowed identity matrix.
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From QP = PM, it follows thatQP = PM, sinceM is rational. Hence
(135) is equivalent to the condition

Q 0/p_
[U Q]B_BM.

SinceB is non-singular, we observe that for givieh Q is uniquely determined
by
Q O
0 Q
and vice versa. The problem of determining all the complekiplicationsQ 173
of a given Riemann matrif reduces to that of finding allri2rowed rational
non-singular matrice® such thaBMB™ breaks up as in (136) for sonme
rowed complex non-singulap.

We now drop the condition th&ll be non-singular and calll, a multiplier
still, if the matrix BMB! breaks up as in (136) or equivalenfyM = QP for
someQ. We may denote bR, the set of all multiplieravl of P. We see first
that®R is a ring containing identity. For, 11, M, € R, then for someQ; and
Q>, we haveQ;P = PM; andQ,P = PM,. Hence

P(M1 + M) = (Q1 + Q2)P,
PMiM; = Q:PM; = Q;Q:P

BMB! = (136)

and thusM; + My, M1 M, € R. Further the B-rowed identity matrixE lies in
R and serves as the identity 9 Since forM € ® anda € Q, AM also lies in
R, we see thak is an algebra ove® and in fact, of finite rank ove®.

We now remark that iM € %, M* = AM’A! also lies inR. This is simple

to verify. Let us seG = BAB, T = (8 %); then

TG - HOA' o
0 HQH?)

Further, sinceBT’ = M'B’ andB’ = AlB!G, we haveA B IGT" =
M’A1B1G i.e. GT'G B = B(AM’A™1). This proves thaM* € R. The
mappingM — M* has the following properties, viz. M;, M, € R, then
(M1 + Mp)* = A(M} + Mp)A™ = Mj + M3,
(M1Mp)* = AMyM; AL = AMLATTAMI AT = MM,
(M) = (AMA™)" = M.
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Thus the mappindd — M* is an involution ofR and is usually called the
Rosati involution. Further, if the matrixQ corresponds to the multipliem e

R, then toM* corresponds the complex multiplicati@t = HOH .

Thus9 is an involutorial algebra of finite rank ov&. Such algebras have174
been extensively studied by A. A. Albert who has also deteeahithe invo-
lutorial algebras which can be realized as the rings of mpligtis of Riemann
matrices. We shall not go into the general theory of suchbalge We are
interested only in involutorial algebras which can be mali as the ring of
multipliers of a Riemann matri¥ and which, in addition, are commutative
rings free from divisors of zero. Such a ring of multipli&tss necessarily a
field and in fact an algebraic number fididbf degreem say, overQ. SoR
gives a faithful representation kinto 9t,,(Q), the full matrix algebra of order
2n overQ. Before we proceed further, we need to study this representaf
k by R more closely.

First, we have the so-calleggular representatiorof k with respect to a
basisws, ..., wm of koverQ. Namely, let fory e k, ¥, i = 1,2,..., mdenote
the conjugates of overQ. Then we have fokr=1,2,...,m

yor =) Wy, (137)

=1

wherecy € Q. If we denote byC the matrix €q), 1 < g, | < mwith g
and| respectively as the row index and column index, then the ingpp —
C € Mn(Q) is an isomorphism and gives the regular representatidwth
respect to the basis;, ..., wm Of k over Q. If we change the basis, we get
an equivalent representation. Hereafter, we shall alwefey to the regular
representation df with respect to dixedbasisws, . .., wn of k overQ.

Now, from (??), we have

m
Yo = Z wPcy,j=1,2,...,m (137)
g=1
Let [y] denote them-rowed diagonal matrixy%, ..., y™], with y®, ... 5™

as diagonal elements. Further, let us denot€&bthe m-rowed square matrix
(wi(‘)) wherei and j are respectively the column index and row index. Now
(137) reads as

[v]Q = QC.

Or, sinceQ is non-singular, 175

[y] = Qcao™. (138)
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Conversely, ilG = [y1,..., ym] is a diagonal matrix with diagonal elements
Y1, ..., ¥Ym Such thatQ"'GQ is a rational matrixC, then necessarily; = @,
i=12,...,m forsomey € k. In fact,

G=0Col=0CcQ) .

Now, the matrixQ’'Q = (S(wkw)) is rational and hence, also, the matrix
C(YQ)™ = (ry) is rational. thus

m
K K
Yk = Z w%)l’pqwg)
p.g=1

withrpge Q,fork=1,2,...,m. If we set

m
Y= Z Wplpglq
p.a=1

then we see that = y® fori = 1,2,..., m. We shall make use of this remark
later.

Inthe sequel, i€, ..., C, are square matrices the@y. . ., C,] shall stand
for the direct sum o€, ...,C;,.

We shall now prove a theorem concerning an arbitrary faitfefpresenta-
tion of k into Nizn(Q).

Theorem 14. Let k be an arbitrary algebraic number field of degree m d@er
and lety : y — G € My (Q) be faithful representation of k, of ord@n. Then

(i) 2n = gm, for a rational integer @ 1 and

(i) there exists &n-rowed non-singular rational matrix T independentyof
such that
T6T=]C,....C],
C being the image of under the regular representation of k.
m .
Proof. Let y € k generatek overQ and letf(x) = > gX(am = 1) be the 176
i=0
irreducible polynomial ofy overQ. If y/(y) = G, we can find a complex non-
singular matrixW such thatWw-'GW is in the normal form, namely

vi 1 0 0

0Oy 1 - - 0

WIGW =[Gy,...,Gi].G; = .. . .0
1

0 - - - 0 v
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andy, ..., yn are eigenvalues @. Using the fact thatoE@Y + ¥ a,G' = 0,
we see that; are conjugates of overQ. Again, fromapE@V+3 " aW-1G'W =
0, we conclude tha?v-*GW is necessarily in the diagonal form. For, oth-
erwise, even if on&; is of the form with the elements just above the main
diagonal equal to 1, then we obta.rﬁn‘,l1 ja,—y{’l = 0 contradicting the fact that
J:
v has an irreducible polynomial of degree ThusW'GW = [y1,...,v2n]
whereys, ..., yo, are conjugates of overQ. Moreover, since the characteris-
tic polynomial|xE — G| of G has rational co@cients and has for its zeros only
those of f(x), it follows that|xE — G| = (f(x))? for some rational integeu,.
Thus 2 = mg, which proves (i). Moreoveyy, y», ..., yan are just the numbers
Y@, ..., y™M repeated) times. We may therefore suppose that

WGW = [[3],.... 4]l
where ] = [y®, ...,y™]. But from (138), we have
wiGw=V[C,...,C]V Y, (139)

whereV = [Q,...,Q].
Now, since 1y,...,y™* form a basis ok over Q, we have, in order to
prove (i), only to find a rational matriX such that

TGT=[C,...,C].

From (139), we see that there exists a non-singular comp&rx = (u;), 177
1<, j < 2nsuch that
GU =UI[C,...,C]. (140)

The matrix equation (140) may be regarded as a system of letpations in
u;; with rational codficients. Since there exists a solution in complex numbers
for this system of linear equations, we know from the thedtinear equations
that there exists at least one non-trivial solution for thystem, in rational
numbers. The rational solutions of this system form a niwiatrvector space
of finite dimension oveR. LetU,,..., U, be the matrices corresponding to
a set of generators of this vector space. From the theoryneéti equations
again, we see that all complex solutidaf (140) are necessarily of the form
zU;y + - -+ + z U, with arbitrary complex, . .., z. Now, we know that there
exists at least one complex solutionof (140) for which|U| # 0. This means
that the polynomialz;U; + - -- + zU;| in z, ..., z does not vanish identically.
Hence we can findy, ..., A4, € Q such thati,U; +--- + A, U,| # 0. If we set
T=A4Us+ -+ U, then[T| # 0 and

GT=T[C,....C],
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i.e.
TGT=[C,...,Cl =V [yl,....,/]IV.

Our theorem is therefore proved. O

The theorem above gives us the exact form of the multiplidrsmthe ring
of multipliers is an algebraic number field. With this preilmary investigation
regarding the ring of multipliers, we may now proceed to defire generalized
half planes and the general modular group.

Let A be a 2-rowed non-singular rational alternate matrix. We dengte b
Ba, the set of all period matrice® which are polarized with respect fa If
P € B,, itis clear that, fon-rowed complex non-singuld, QP € Ba.

Now, if A; andA, are two such alternate matrices, then we can find a raties
nal non-singular matris such thatA; = SAS'. Itis easy to verify thaB3,,
consists precisely of the period matrices of the fd?@, for P € B,,. Thus
there is no loss of generality in confining ourselves to a fkedowed rational
alternate matriA with |Al # 0; we might take foiA the matrix( o '5) where
E is then-rowed identity matrix.

Denoting byR, the group ofn-rowed complex non-singular matrices, we
know that if P € B4, then for everyQ € R, QP € Ba. Now, we introduce an
equivalence relation ifB5; namely, two matrice®;, P, € B areequivalent
if P1 = QP,, for Q € R. The resulting seR\ B, of equivalence classes is
denoted by)a and is called ayeneralized half-plane.It may be verified that
Ha can be identified with the space pfrowed complex symmetric matrices
Z=X+iYwithY >0.

LetT'a be the group of 8-rowed unimodular matrices such that) AU’ =
A. If P € Ba, then forU e T'a, PU € Ba. On B,, the groupla acts in the
homogeneous manner; namelyPit= (FG) € 8 andU = (£ §) € ['a where
A, B, C, D, F, G aren-rowed square matrices, thet = (FA+GB FC+GD).
On $a, ['a acts in the inhom