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The extrinsically defined O(n)-invariant Laplacian ∆ext on the sphere Sn−1 is intended to be obviously O(n)-
invariant, because the Laplacian ∆ on the ambient Rn is O(n)-invariant. One way to express this extrinsic
O(n)-invariant Laplacian is

(∆extf)(x) = ∆Rn

f
( x
|x|
)

(f defined on Sn−1, for x ∈ Sn−1)

where

∆Rn

= ∆ =
∂2

∂x21
+ . . .+

∂2

∂x2n

The trick of replacing the argument of f by f(x/|x|) extends the definition of f to Rn − 0 by making it
constant on rays from 0, thus making sense of application of ∆.

Differentiability of functions on Sn−1 should involve more than ∆ext and its iterates, just as in Rn there are
the individual partial derivatives ∂/∂xi as well as ∆.

Despite O(n)’s non-abelian-ness, it would be very convenient if ∆ext were nice enough to commute with
suitable O(n)-analogues of the constant-coefficient operators on Rn. One advantage would be that these
alleged operators would all stabilize the eigenspaces Hd of ∆ext in functions on Sn−1 (namely, homogeneous
degree-d harmonic polynomials). In that scenario, the comparison of sup-norm and L2-norm on Hd would
immediately apply to these derivatives, as well.

In contrast, for operators that smear out Hd across many other subspaces Hd′ , comparisons are difficult,
although perhaps interesting.

With a congenial collection of first-order derivatives, we can prove Sobolev inequalities on the sphere, giving
essentially sharp comparisons of Ck norms and weighted L2 norms.

The Sobolev inequalities give simple criteria for the legitimacy of differentiating Fourier-Laplace expansions
of Ck functions on Sn−1 term-by-term.

1. A doomed-but-plausible trial calculation

The idea of this subsection is elementary and natural. If it could succeed, it would be worth knowing.
However, it fails. Worse, it is not obvious from an elementary viewpoint that it should fail. Behaving
innocently, we only discover its failure at the end of an attempted execution.
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To describe first-order operators on Sn−1, we could try the same extension trick to use extrinsically-defined
operators, and define

(Dext
i f)(x) =

∂

∂xi
f
( x
|x|
)

(f defined on Sn−1, for x ∈ Sn−1)

To assess whether or not Dext
i ◦ ∆ext = ∆ext ◦ Dext

i , we must be careful: even after making a positive-
homogeneous function x → f(x/|x|) of degree 0, application of ∆ext produces a positive-homogeneous
function of degree −2, and Dext

i produces a positive-homogeneous function of degree −1. Thus, correcting
the homogeneity, what is really being asked is whether or not

|x| ∂
∂xi

(
|x|2∆f

( x
|x|

))
= |x|2∆

(
|x| ∂
∂xi

f
( x
|x|

))
(???)

To check this, it suffices to take f positive-homogeneous of degree 0, since both sides of the hypothetical
equation take f(x/|x|) as input. Thus, we are asking whether or not

∂

∂xi

(
|x|2∆f(x)

)
= |x|∆

(
|x| ∂
∂xi

f(x)
)

(??? for f positive-homogeneous of degree 0)

Letting r = |x|, and abbreviating partial derivatives as fi = ∂f/∂xi, the left-hand side is

∂

∂xi

(
|x|2∆

)
= 2xi∆f + r2

∂

∂xi
∆f = 2xi∆f + r2∆fi

while the right-hand side is

|x|∆
(
|x| ∂
∂xi

f
)

= r
∑
j

∂

∂xj

(xj
r
fi + rfij

)
= r

∑
j

(1

r
fi −

x2j
r3
fi +

2xj
r
fij + rfijj

)
= nfi − fi − 2fi + r∆fi = (n− 3)fi + r2∆fi (Euler’s identity, fi homogeneous degree −1)

Thus, we ask whether or not

2xi∆f + r2∆fi = (n− 3)fi + r2∆fi (??? f homogeneous degree 0)

The second terms agree, so we ask whether or not

2xi∆f = (n− 3)fi (??? f homogeneous degree 0)

Surely this does not hold in general. Being sick of computing by this point, we can finesse the issue. For
example, if this equality held, multiply both sides by xi and sum over i, to allegedly obtain (by Euler’s
identity)

2r2∆f = 0 (??? f homogeneous degree 0)

However, for f(x) = F (x/|x|) with F a harmonic homogeneous polynomial of degree d, our earlier ad hoc
computation found

r2∆f = ∆extF = −d(d+ n− 2) · F

This is rarely 0. The extrinsically defined first-order operators Dext
i definitely do not commute with ∆ext.

Too bad. But there seems to be no elementary way to see this without doing the computation.

[1.0.1] Remark: It is important to be able, and occasionally willing, to carry out computations which fail,
to learn of the failure. Still, it is obviously better to be able to see futility in advance.
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2. Matrix exponentiation

It turns out to be not-such-a-good-idea to try to put coordinates on spheres X = Sn−1 for n − 1 > 1. It’s
not a good idea to try to put coordinates on orthogonal groups, either. The coordinates on the ambient
Euclidean spaces are useful, but only in a limited way.

Nevertheless, no one can deny the convenience and tractability of Euclidean spaces. The appeal of Euclidean
spaces and the requirement of intrinsic-ness are manifest in the following.

The combination of two observations will allow an intrinsic description of special derivatives on Sn−1, and,
also, a non-computational proof that all these special derivatives commute with the Laplacian on the sphere.

The first observation is that the exponential map

eA = exp(A) =

∞∑
`=0

A`

`!

gives coordinates on a big enough part of G = O(n) to give a uniform description of derivatives on G itself.
The second observation is that the transitive action of G on X = Sn−1 gives analogous derivatives on X.

For example, in 2-by-2 matrices,

exp

(
0 θ
−θ 0

)
=

(
1 0
0 1

)
+

1

1!

(
0 θ
−θ 0

)
+

1

2!

(
−θ2 0

0 −θ2
)

+
1

3!

(
0 −θ3
θ3 0

)
+

1

4!

(
θ4 0
0 θ4

)
+ . . .

=

(
cos θ sin θ
− sin θ cos θ

)

A caution: for matrices x, y, usually ex+y 6= ex ey. That is, the exponential map is not a group homomorphism
from the additive group of n-by-n matrices to the multiplicative group GLn(R) of invertible n-by-n real
matrices. This is disappointing, but is reasonable because the matrix multiplication is non-abelian, while
matrix addition is abelian.

There is also a matrix logarithm

log(1n +A) = A− A2

2
+
A3

3
− . . . (only for A small)

which gives an inverse near 1n to the exponential map near 0n. The Lie algebra g of G can be defined to be

g = {real n-by-n matrices γ : exp(tγ) ∈ G for all t ∈ R}

Even though the exponential map does not generally respect addition, we do have

e(s+t)A = esA · etA (for s, t ∈ R)

3. Rotation-invariant derivatives on R2

Exponentiation θ → eiθ gives the usual way to take derivatives of functions f on the circle S1 ⊂ C ≈ R2, by

lim
θ→0

f(x · eiθ)− f(x)

θ
=

∂

∂θ

∣∣∣
θ=0

f(x · eiθ) (for x ∈ S1)
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Since we’ve written it so that the exponential map parametrizes the group acting, rather than the physical
space on which the group act, the parametrized circle acts on the whole R2, not just on the circle itself. This
action on the ambient space can be written without complex numbers as

lim
θ→0

f((x, y) · exp

(
0 θ
−θ 0

)
)− f(x, y)

θ
=

∂

∂θ

∣∣∣
θ=0

f((x, y) · exp

(
0 θ
−θ 0

)
)

=
∂

∂θ

∣∣∣
θ=0

f(x cos θ − y sin θ, x sin θ + y cos θ)

=
(
f1(x cos θ − y sin θ, x sin θ + y cos θ) · (−x sin θ − y cos θ)

+ f2(x cos θ − y sin θ, x sin θ + y cos θ) · (x cos θ − y sin θ)
)∣∣∣
θ=0

= −yf1(x, y) + xf2(x, y) (for (x, y) ∈ S1 ⊂ R2)

That is, in the ambient coordinates on R2, the natural rotation-invariant differential operator, expressed via
the exponential map, is

X = −y ∂
∂x

+ x
∂

∂y

Write ∂x = ∂/∂x and ∂y = ∂/∂y for brevity. To avoid needing to use a dummy function f to describe
operators, keep in mind that, as an operator, x is really multiplication-by-x. In that context,

∂x x = ∂x ◦ x = 1 + x∂x

since Leibniz’ rule is
∂x xf = f + x∂xf

With these conventions,

X2 = (−y∂x + x∂y) ◦ (−y∂x + x∂y) = y2∂2x − y∂y − yx∂x∂y − x∂x − xy∂y∂x + x2∂2y

= y2∂2x + x2∂2y − 2xy∂x∂y − x∂x − y∂y

In this situation, with a two-dimensional ambient space, we wish to compare a more-intrinsic version
of a rotation-invariant second-order differential operator with our earlier completely-extrinsic description.
Abbreviate

E = x∂x + y∂y (operator in Euler’s identity)

To see what second-order operators are expressible in terms of E, compute

E2 = 2xy∂x∂y + E + (x2∂2x + y2∂2y)

Use this to rearrange

X2 = y2∂2x+x2∂2y−2xy∂x∂y−x∂x−y∂y =
(
r2∆−(x2∂2x+y2∂2y)

)
−
(
E2−E−(x2∂2x+y2∂2y)

)
−E = r2∆−E2

Now return to the comparison of this more-intrinsic rotation-invariant differential operator with the
extrinsically defined ∆extf = ∆f(x/|x|) with ∆ = ∆Rn

. It suffices to compare on positive-homogeneous
functions of degree 0, restricting to the sphere after differentiation. Thus, we ask whether

∆f
( x
|x|
)∣∣∣
Sn−1

= (r2∆f − E2f)
∣∣∣
Sn−1

(??? for f positive-homogeneous degree 0)

Indeed, on positive-homogeneous degree s functions F we have EF = sF , and on the sphere r = 1, so we
have equality of the two differential operators on functions on the sphere.
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Alternatively, on homogeneous harmonic polynomials f of degree d on R2, with eigenvalue−d(d+n−2) = −d2
for ∆ext from earlier computations, indeed

∆extf = −d2 · f = 0− d2 · f = r2∆f − d2 · f = X2 f (for f ∈ Hd on R2)

Finally, obviously X commutes with X2, giving the unobvious formulaic relation(
− y∂x + x∂y

)
◦
(
r2∆− E2

)
= X ◦X2 = X2 ◦X =

(
r2∆− E2

)
◦
(
− y∂x + x∂y

)

4. Intrinsic derivatives

Similarly, the matrix exponential gives a way to take derivatives on G = O(n) and any reasonable physical
space on which G acts. This succeeds despite the non-abelian-ness of G and despite the consequent failure of
the matrix exponential to be a group homomorphism. The saving point is that directional derivatives only
depend on action along one line at a time, not on the interactions between the directions.

First, identify the Lie algebra g of G:

[4.0.1] Claim: The Lie algebra g of G = O(n) is skew-symmetric matrices:

g = so(n) = {real n-by-n matrices γ : γ> = −γ}

Proof: Transpose interacts nicely with exponentiation:

(expA)> =
( ∞∑
`=0

A`

`!

)>
=

∞∑
`=0

(A`
`!

)>
=

∞∑
`=0

(A>)`

`!
= exp(A>)

Using this, for γ skew-symmetric,

(etγ)> · etγ = (etγ
>

) · etγ = (e−tγ) · etγ = (e(−t+t)γ) = e0 = 1n

Conversely, assume
(etγ)> · etγ = 1n

Apply d/dt to both sides: the familiar scalar relation (ect)′ = cect holds here. Leibniz’ rule applies to
matrix-valued functions A,B, just keeping track of the order of multiplication:

(A ·B)′ = A′ ·B +A ·B′

Then

γ>etγ
>
· etγ + etγ

>
· γetγ =

d

dt
1n = 0n

Setting t = 0 gives
γ> + γ = 0n

as claimed. ///

For γ ∈ g the associated (right) differentiation Rγ on (differentiable) functions f on G is

(Rγf)(g) = lim
t→0

f(g · etγ)− f(g)

t
=

∂

∂t

∣∣∣
t=0

f(g etγ)

5



Paul Garrett: Harmonic analysis on spheres, II (February 27, 2011)

The same expression gives a differential operator Xγ on functions on any nice space on which G acts: writing
the action on the physical space on the right, the differential operator is written on the left, and

(Xγf)(x) = lim
t→0

f(x · etγ)− f(x)

t
=

∂

∂t

∣∣∣
t=0

f(x etγ) (for x ∈ X)

The Lie algebra g = so(n) of G = O(n) has a basis {θij : 1 ≤ i < j ≤ n} of elements

θij =



. . .

0 . . . 1
...

...
−1 . . . 0

. . .

 (all 0s except the 1 and −1)

behaving like

(
0 1
−1 0

)
in the Lie algebra so(2) of SO(2) under exponentiation:

exp tθij =



1
. . .

1
cos t . . . sin t

1
...

. . .
...

1
− sin t . . . cos t

1
. . .

1


where the diagonal is 1s except the cos t’s, and off-diagonal entries are 0s except the ± sin t’s. Right
multiplication of x = (x1, . . . , xn) ∈ Rn by exp tθij has no effect on any coordinates other than the ith

and jth, and the latter are rotated just as in the SO(2) situation:

x · exp tθij = (x1, . . . , xi−1, xi cos t− xj sin t, xi+1, . . . , xj−1, xj cos t+ xi sin t, xj+1, . . . , xn)

Let Xij be the corresponding differential operator on functions on Rn: by the chain rule, letting ∂i = ∂
∂xi

and ∂j = ∂
∂xj

, we obtain an expression completely parallel to the SO(2) situation,

Xijf(x) =
∂

∂t

∣∣∣
t=0

f(x · exp tθij) = −xj∂if + xi∂jf

That is, as an operator,
Xij = −xj∂i + xi∂j

Anticipating quasi-clairvoyantly that this is the right thing to do, define a somewhat-more-intrinsic Sn−1

Laplacian candidate by a differential operator on the ambient Rn:

∆smi =
∑
i<j

X2
ij

First, we will compare this to the extrinsic Sn−1 Laplacian from earlier. Second we will see why
∑
i<j X

2
ij

is even better than it appears: it has a completely intrinsic description, given later.
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5. Aside: invariance of the Euler operator by GLn(R)
The Euler operator in Rn is

E = x1∂1 + . . .+ xn∂n

In addition to Euler’s identity [1] Ef = s · f for positive-homogeneous degree s functions f , E is invariant
under the group GLn(R) of invertible n-by-n real matrices, as the following straightforward computation
shows. In particular, E is O(n)-invariant. The usual definition of matrix multiplication:

(xg)j =
∑
`

x`g`j (for x = (x1, . . . , xn) ∈ Rn and g ∈ GLn(R))

and the chain rule give

E(g · f)(x) =
∑
i

xi ∂if(xg) =
∑
i

xi
∑
j

fj(xg) ∂i(xg)j

=
∑
i

xi
∑
j

fj(xg) ∂i(
∑
`

x`g`j) =
∑
i

xi
∑
j

fj(xg) gij

=
∑
j

(∑
i

xi gij

)
fj(xg) =

∑
j

(xg)jfj(xg) = (Ef)(xg) =
(
g · (Ef)

)
(x)

This is the commutativity g ◦ E = E ◦ g. Equivalently, this relation can be expressed as the invariance
g ◦ E ◦ g−1 = E.

6.
∑

i<jX
2
ij in coordinates on Rn

The expression for ∆smi in coordinates x1, . . . , xn on Rn simplifies usefully. Note that

E2 =
∑
i<j

2xixj∂i∂j +
∑
i

x2i ∂
2
i + E

which gives ∑
i<j

2xixj∂i∂j = E2 − E −
∑
i

x2i ∂
2
i

Thus,

∆smi =
∑
i<j

(−xj∂i + xi∂j)
2 =

∑
i<j

(
− 2xixj∂i∂j + x2j∂

2
i + x2i ∂

2
j − xj∂j − xi∂i

)
=
∑
i<j

−2xixj∂i∂j +
∑
i

(r2 − x2i )∂2i − (n− 1)
∑
i

xi∂i

= −E2 + E +
∑
i

x2i ∂
2
i +

∑
i

(r2 − x2i )∂2i − (n− 1)E = −E2 − (n− 2)E + r2∆

with ∆ = ∆Rn

. Thus,

∆smi =
∑
i<j

X2
ij =

∑
i<j

(−xj∂i + xi∂j)
2 = −E(E + n− 2) + r2∆

[1] Recall that Euler’s identity Ef = s · f for positive-homogeneous degree s functions f is proven by considering

F (t) = f(tx) = tsf(x) for t > 0. Apply ∂/∂t and set t = 1 to obtain Euler’s identity.
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On positive-homogeneous degree-0 functions, ∆smi = r2∆, matching ∆ext. Alternatively, for f ∈ Hd on Rn,
because Ef = d · f ,

∆smif = −d(d+ n− 2)f + r2 · 0 = −d(d+ n− 2)f

as desired. That is, the somewhat-more-intrinsic ∆smi is equal to the extrinsic ∆ext.

This expression verifies that ∆smi =
∑
i<j X

2
ij is O(n)-invariant, since the Euler operator E is O(n)-invariant.

[6.0.1] Remark: However, the above gives no explanation of choice of the expression
∑
i<j X

2
ij , or how to

know in advance that it would be invariant.

7. X` commutes with
∑

i<jX
2
ij

The description of the first-order differential operators X` in terms of matrix exponentiation immediately
proves that these operators commute with any O(n)-invariant differential operator, for simple reasons. To
prove this, let R(k) be the (right) translation operator by k ∈ G, meaning(

R(k)f
)
(x) = f(xk)

For any γ ∈ g = so(n), and for any O(n)-invariant differential operator L,

Xγ ◦ L =
∂

∂t

∣∣∣
t=0

R(etγ) ◦ L =
∂

∂t

∣∣∣
t=0

L ◦R(etγ) = L ◦ ∂
∂t

∣∣∣
t=0

R(etγ) = L ◦Xγ

Thus, since the Rn-coordinate expression for ∆smi =
∑
i<j X

2
ij commutes with O(n), it commutes with each

Xγ .

[7.0.1] Remark: Below, we use the universal enveloping algebra below to see that the expression
∑
i<j X

2
ij

itself is merely an expression of an intrinsic object in coordinates. The O(n)-invariance will likewise be clear
a priori.

8. Stabilization of Hd by Xγ

Since all the operators Xγ for γ ∈ g = so(n) commute with the Laplacian ∆S on the sphere Sn−1, all
operators Xγ stabilize the eigenspaces of ∆S : for f ∈ Hd,

∆S(Xγf) = Xγ(∆Sf) = Xγ(λd · f) = λd ·Xγf (where λd = −d(d+ n− 2), f ∈ Hd)

Conveniently, the eigenvalues
λd = −d(d+ n− 2)

of the Laplacian ∆S on Sn−1 on Hd on Rn are different for different degrees d, since completing the square

d(d+ n− 2) = d2 + (n− 2)d =
(
d+

n− 1

2

)2 − (n− 1)2

4

shows that as d moves farther from (n− 1)/2 the eigenvalue strictly increases. Therefore, all the first-order
differential operators Xγ stabilize Hd.
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9. Integration by parts for Xγ

The nature of the differential operators Xγ gives an integration-by-parts principle, using only the O(n)-
invariance of the integral on S = Sn−1, as follows. Letting R(g) be right translation by g ∈ O(n), first∫

S

Xγf · g =

∫
S

∂

∂t

∣∣∣
t=0

R(etγ)f · g =
∂

∂t

∣∣∣
t=0

∫
S

R(etγ)f · g

assuming we can justify moving the differentiation through the integral. [2] And then by changing variables,
replacing x by xe−tγ ,∫

S

(
R(etγ)f

)
(x) g(x) dx =

∫
S

f(xetγ) g(x) dx =

∫
S

f(x) g(xe−tγ) dx =

∫
S

f R(e−tγ)g

Moving the differentiation back inside the integral yields the integration-by-parts relation

〈Xγf, g〉 =

∫
S

Xγf · g =

∫
S

f ·X−γg = −
∫
S

f ·Xγg = 〈f,Xγg〉

Combining this with the expression

∆S =
∑
i<j

X2
ij

gives a much-more-intrinsic proof of the integration-by-parts property for ∆S :

〈∆Sf, g〉 =

∫
S

∆Sf g =

∫
S

f ∆Sg = 〈f,∆S〉

Further, we have the non-positivity

〈X2
γf, f〉 = −〈Xγf,Xγf〉 ≤ 0

Similarly,
〈∆Sf, f〉 ≤ 0

10. Sup norms of derivatives of harmonic polynomials

Recall that

sup
f∈Hd

|f |Co

|f |L2

�
√

dimHd (implied constant depending on measure on Sn−1)

where the Co norm is the sup-norm on Sn−1. In the Co topology, limits of Co functions are again Co. The
C1 norm should have the property that C1-topology limits of C1 functions are again C1. Roughly, the C1

topology looks at sup-norms of first derivatives. But which first derivatives?

[2] Perhaps this is not the moment to worry about interchange of integration and differentiation in a parameter.

Nevertheless, in the present example, since the integral is over a compact space, standard ideas about Gelfand-Pettis

integrals, also called weak integrals, would easily dispatch the issue: the integrand is a continuous C∞(R)-valued

function (in t) of x ∈ Sn−1, and differentiation is a continuous linear map of C∞(R) to itself. Since this aspect of

the present example is not at all delicate, we will give the other aspects primary attention.
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The question which derivates? has an easy adequate answer on Rn: the partial derivatives of the partials
∂f(x)/∂xi with respect to the standard coordinates xi.

On the sphere, however, we saw earlier that naive forms of the ambient derivatives do not interact well with
the invariant Laplacian ∆S . Instead, the differential operators Xγ defined via exponentiation of the Lie
algebra are the right things, since they commute with ∆S . In particular, we may as well take the finite list
Xij with i < j, since these span g = so(n). Thus, thinking that functions on the sphere Sn−1 are defined on
some larger open set in Rn containing Sn−1, define

|f |C1(Sn−1) = |f |Co + sup
i<j

∣∣Xijf
∣∣
Co(Sn−1)

= |f |Co + sup
i<j

∣∣(−xj∂i + xi∂j)f
∣∣
Co(Sn−1)

It might seem that far more derivatives are included than necessary, but the expression of the Laplacian ∆S

using all the Xij suggests that this more-symmetrical conception is good. Since Xij commutes with ∆S ,
and, therefore, stabilizes Hd, the comparison to L2 norms gives

sup
i<j

∣∣Xijf
∣∣
Co �

√
dimHd ·

∣∣Xijf
∣∣
L2 (constant depending only on measure of Sn−1)

Integrating by parts,∣∣Xijf
∣∣2
L2 = 〈−X2

ijf, f〉 ≤
∑
i<j

〈−X2
ijf, f〉 = 〈−∆Sf, f〉 = −λd · |f |2L2

where ∆S acts on Hd by λd = −d(d+ n− 2). Taking square roots,∣∣Xijf
∣∣
L2 ≤

√
|λd| · |f |L2 (for f ∈ Hd)

Combining this with the comparison of Co and L2 norms on Hd gives∣∣Xijf
∣∣
Co ≤

√
dimHd ·

√
|λd| · |f |L2 (for f ∈ Hd)

Thus,
|f |C1 ≤

√
Hd · (1 +

√
|λd|) · |f |L2 (for f ∈ Hd)

Similarly, the Ck norm is such that Ck-limits of Ck functions are Ck. It can be defined as [3]

|f |Ck = |f |Co + sup
i<j
|Xijf |Ck−1

The same argument proves

|f |Ck ≤
√
Hd ·

(
1 +

√
|λd|

)k · |f |L2 (for f ∈ Hd)

The expression for dimHd in binomial coefficients gives dimHd � dn−2. Similarly, λd � d2 for large d.
Thus,

|f |Ck � d
n
2−1+k · |f |L2 (for f ∈ Hd on Rn, large d)

To avoid trouble at d = 0, we could write

|f |Ck � (1 + d)
n
2−1+k · |f |L2 (for f ∈ Hd on Rn)

Expression in terms of λd is also useful, using d�
√
|λd|:

|f |Ck � (1 +
√
|λd|)

n
2−1+k · |f |L2 (for f ∈ Hd on Rn)

[3] There is some work to be done to prove that the Ck norm has the intended property!
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These equivalent inequalities express a sort of pre-Sobolev inequality.

11. Termwise differentiation of Fourier-Laplace series

A Ck function f on Sn−1 has a Fourier-Laplace expansion

f =
∑
d

fd (in an L2 sense, fd ∈ Hd)

This is interesting and useful because the spectral components fd are ∆S-eigenfunctions. That is, this
expansion diagonalizes the action of ∆S . That is, if this made sense, obviously

∆Sf =
∑
d

λd · fd (???)

The issue, as with Fourier series on the circle, is the sense in which the implied limit on the right-hand side
exists at all, and is the left-hand side. For example, for f ∈ C2, if the right-hand side converges in C2, then
∆S is a continuous operator C2 → Co, and the termwise differentiation is justified.

However, even when f is Ck, its Fourier-Laplace series need not converge to it in the Ck topology, but only
in a weaker Ck

′
-topology for k′ < k. This seeming paradox already occurs with Fourier series on the circle.

The essential estimate uses the sup-norm estimates on the components fd ∈ Hd from above. The Co case
already illustrates the point: for any s ∈ R,∑

d

|fd|Co �
∑
d

(1 + d)
n
2−1|fd|L2 =

∑
d

(1 + d)
n
2−1+s|fd|L2 · 1

(1 + d)s

≤
(∑

d

(1 + d)n−2+2s|fd|2L2

)1/2
·
(∑

d

1

(1 + d)2s

)1/2

by Cauchy-Schwarz-Bunyakowsky. The elementary sum over d is finite exactly for s > 1
2 . The condition

s > 1
2 is equivalent to the condition that the exponent of 1 + d in the sum involving the components fd

satisfies

n− 2 + 2s > n− 1 = dimSn−1

That is, replacing n−2
2 + s by s,

∑
d

|fd|Co �n,s

(∑
d

(1 + d)2s|fd|2L2

)1/2
(for s > 1

2 dimSn−1)

The weighted L2-norm on the right-hand side of the latter is the sth Sobolev norm |f |2s:

sth Sobolev norm-squared = |f |2s =
∑
d

(1 + d)2s · |fd|2L2

An exactly analogous computation gives a similar result for the Ck norm:

∑
d

|fd|Ck �n,s

(∑
d

(1 + d)2s|fd|2L2

)1/2
(for s > k + 1

2 dimSn−1)

That is, the Sobolev norm | · |s dominates the Ck norm for s > k + 1
2 dimSn−1.
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In particular, this dominance gives corresponding estimates on tails of infinite sums:∑
k≤d≤`

|fd|Ck �n,s

( ∑
k≤d≤`

(1 + d)2s|fd|2L2

)1/2
(for s > k + 1

2 dimSn−1)

Thus, if the partial sums
∑
d≤` fd form a Cauchy sequence in the | · |s-topology for s > k + n−1

2 , then they

form a Cauchy sequence in the Ck-topology.

Finally, take f ∈ C2`(Sn−1). Then f , ∆Sf , (∆S)2f , . . ., (∆S)`f are in Co(Sn−1), so are certainly in
L2(Sn−1), since Sn−1 is compact. Let prd : L2(Sn−1)→ Hd be the orthogonal projection. We claim that

prd(∆
Sf) = λd · prd(f)

Indeed, for any g ∈ Hd,
〈∆Sf, g〉 = 〈f,∆Sg〉 = λd〈f, g〉

The projection can be expressed in terms of an orthonormal basis {gi} for Hd:

prd(f) =
∑
i

〈f, gi〉 · gi

Thus,

(∆S)if =
∑
d

prd(∆
Sf) =

∑
d

λid · prd(f) (in an L2 sense)

By Plancherel, ∑
d

∣∣λid · prd(f)
∣∣2 = |(∆S)if |2L2 < ∞

Thus, taking a linear combination of such inequalities for i = 0, 1, . . . , `, we have finiteness of the 2`th Sobolev
norm ∑

d

(1 + |λd|)` · prd(f)
∣∣2 < ∞

Equivalently, since d2 � λd � d2,

|f |22k =
∑
d

(1 + d)2` · prd(f)
∣∣2 < ∞

From above, the 2`th Sobolev dominates the kth for 2` > k + n−1
2 . Thus, the Fourier-Laplace series for

f ∈ C2`(Sn−1 converges to f in Ck for k < 2` − n−1
2 . That is, termwise differentiation is justified in that

range.

[11.0.1] Remark: The index shift by 1
2 dimSn−1 is an instance of a very general phenomenon.

[11.0.2] Remark: We might worry that this last result is too weak. For example, we might imagine that
termwise differentiation of Fourier-Laplace series of C2` functions is justified up through 2`th derivatives,
rather than merely 2` − n−1

2 − ε. However, a Baire category argument shows that, typically, the apparent
discrepancy indicated above is genuine.

[11.0.3] Remark: The Sobolev space Hs(Sn−1) is the completion of C∞(Sn−1) with respect to the sth

Sobolev norm. The inequalities above prove the Sobolev imbedding theorem

Hs(Sn−1) ⊂ Ck(Sn−1) (for s > k + 1
2 dimSn−1)

The nested intersection (projective limit) is therefore

H∞(Sn−1) =
⋂
s>0

Hs(Sn−1) =
⋂
k

Ck(Sn−1) = C∞(Sn−1)
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[11.0.4] Remark: Since H∞(Sn−1) = C∞(Sn−1), the space of distributions C∞(Sn−1)∗ is also a colimit

C∞(Sn−1)∗ = colims>0H
s(Sn−1)∗

Apart from possible choices of topology on them, the duals of the Hilbert spaces Hs(Sn−1) are easy to
understand: by Riesz-Fischer the duals are (conjugate-) isomorphic to themselves.
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