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*** Some warm-ups *¥**
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Let K/F be a finite extension of finite fields. Show that trace and norm
are onto.

For a prime p, show that 22 + 3%+ 2?2 =0 mod p always has a non-trivial
solution (i.e., with not all of z,y, z equal 0).

Show that the Galois group of 2® —x + 1 over Q is the symmetric group Ss
on 5 things. (Hint: think about decomposition groups and the Frobenius
map = — z°).

Let ¢ be the nt* cyclotomic polynomial, i.e., whose roots are the primitive
nt* roots of unity. Show that (a) If a prime p divides ¢(m) for some
integer m, then p = 1 mod n. (Hint: m is a primitive n!® root of 1

modulo p). (b) For a prime p and for any integer m, p does not divide
¢(mp). (Hint: The constant term of ¢ is £1). (c) There are infinitely-

many primes congruent to 1 modulo n. (Hint: Suppose there were only

finitely-many, say p1, ... ,pk; consider ¢p(mps ... py) for m an integer chosen
to avoid ¢(mpy ...pg) = £1).

Determine the integral closure of Z in Q(v/D) where D is a square-free
integer, directly from the definition of integral closure.

Show that a PID is integrally closed (in its fraction field). Then show that
Z[\/5] cannot be a PID because it is not integrally closed.

Definition:  Let k be a finite field not of characteristic two. For T
transcendental over k, let o = k[T] and K = k(T). A finite separable
extension E of K is a function field (in one variable) over the finite field
k.

Let E be the extension of k£(T") obtained by adjoining the square root of a
square-free monic polynomial. Determine the integral closure of k[T] in E.

Let o be the ring of integers in a number field k. Let a be a non-zero ideal
in 0. Let o/a be the quotient ring and (o/a)* its units. When it the latter
group cyclic?

*** Splitting of primes ***

Show that, with respect to the usual complex norm, the Gaussian inte-
gers Z[i] form a Euclidean ring, so is a PID.

Show that an odd prime p splits in Q(¢)/Q if and only if p=1 mod 4.

Show that an odd prime p is a sum of two square of integers if and only if
p=1 mod 4.

Let w be a primitive cube root of unity. Determine the splitting bahavior

of primes in Q(w)/Q.
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Show that, with respect to the usual complex norm, the ring Z|w] is Eu-
clidean, so is a PID.

Show that a prime p is of the form z? + zy + y* with integers z,y if and
onlyifp=1 mod 3.
Let ¢ be a primitive n'® root of unity. Granting that the ring of integers is
Z[zeta], describe the splitting of a prime in the extension Q(¢)/Q in terms
of congruence properties of p.

Suppose that a finite field £ does not contain v/—1. Determine which primes
split in the extension k(T')(i) = k(T,i) of k(T') (with base ‘integers’ k[T,
as usual).

Suppose that the finite field & does not contain a primitive n!”* root of unity

(. Determine the integral closure of k[T] in k(¢)(T') ~ k(T, (). Determine
which primes split completely in this extension.

Suppose that there is a Galois extension of global fields so that some prime
is inertial. Show that the extension is necessarily cyclic. (Hint: Think

about decomposition groups).
**% Local fields ***

Let K be a local field not of characteristic 2, with valuation ring o. Let
a € 0*. Show that « is a square in 0* if and only if it is a square in (o/p)*.

Let K be a local field not of characteristic 2. Describe the structure of the
group K* /K*2. (First treat the case that the residue characteristic is not
2, which is much easier).

Determine all quadratic extensions of ,. Which are ramified? (Hint:
Treat p = 2 separately, and certainly use the structure of Qy /Qx?).

Determine all quadratic extensions of the T-adic completion k((7")) (i.e.,
formal finite Laurent series field) of k(7).

Generalizing the previous exercise, determine all quadratic extensions of
the P-adic completion of k(T').

Determine all cyclic (Galois) cubic extensions of Q.
Determine all non-Galois cubic extensions of Q.

For alocal field K, determine the structure of K */K*™ for positive integer
m. (Hint: First treat the case that the residue characteristic does not

divide m).

Suppose that a local field contains all mt* roots of unity. Determine all
cyclic extensions of it.

Show (qualitatively) that a local field has finitely-many extensions of a
given degree.



(29)

(40)

(41)

Show that a local field has a unique unramified extension of a given de-
gree. (Hint: If an extension is unramified, then the Galois group is the

decomposition group, which is the Galois group of the residue class field
extension, which is generated by a root of unity. Use Hensel’s lemma).

Let K/k be a finite and unramified extension of local fields, with rings of
integers O, 0. Show that trace maps O surjectively to o and the norm maps
O* surjectively to o*.

In the previous situation, show that if the norm maps O* surjectively to
0* then the extension is unramified.

Let S be a symmetric n-by-n matrix over Q. When p # 2, show that there
is A € GL(n,Z,) so that ATSA is diagonal. Show that this fails if p = 2.

Redo the previous exercise over an arbitrary local field of residue charac-
teristic not 2.

*** Differents, discriminants, ramification ***

Find a Z-basis for the ring of algebraic integers in Q(), where a® = a with

a € Z square-free. Determine the ramification. You can accomplish this by
brute force.

Carefully compute the discriminant and different of Z[(] for roots of unity

C.

Find a Z-basis for the ring of algebraic integers in Q(«), where a™ = a
with a € Z square-free. Determine the ramification of some small primes.
You probably cannot accomplish this by brute force alone.

Let E = K(a) where K is a global field and o® = a with a square-free
element a € o where o is the ring of integers in K. Extending the standard
computation for K = Q, determine the ring of integers in E. (Hint: Brute

force probably will fail. Do local computations).

Do the notions of different and discriminant work the same way for function
fields as for number fields?

If the extension K/k(T) of a function field k(T') is obtained merely by
‘extending scalars’ K = k'(T) (with k' a finite extension of the finite field
k), then what are the different, discriminant, and ramification?

*** Approximation ***

Let S be a finite set of primes in Z, including the infinite prime co. Let Zg
be the ring of rational numbers which are p-integral for every finite prime
p € S. Consider the natural imbedding Zg — Hpes Qp. Show that the
image is discrete. Show that the image of Zg in HpeT Qp is dense for any
proper subset T of S.

Do the previous exercise for any global field.
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Let 1 < N € Z. Show that the natural map
SL(2,Z) — SL(2,Z/N)
is a surjection.

More generally, let k& be a global field with integers 0. Let a be a proper
ideal of 0. Show that the natural map

SL(n,0) = SL(n,o0/a)
is a surjection. Do the same for groups GL(n).

For a finite field k£ with ¢ elements, compute the cardinality of SL(n,k)
and GL(n, k).

Let o be the integers in a global field and p a non-zero prime ideal in o.
Compute the cardinality of SL(n,o/p™) and GL(n,o/p™).

Let o be the integers in a global field and a a non-zero ideal in 0. Compute
the cardinality of SL(n,o0/a) and GL(n,o/a).

*** |deal class groups ***

Determine the (absolute) ideal class group structure for the ring of al-
gebraic integers in Q(v/—D) for D = 1,2,3,5,6,7,10,11,13, 15 using the
Minkowski estimate for a representative for ideal classes. Here one can take
advantage of the fact that the only units are £1. (Hint: Use relations

coming from norms, as follows: for example, suppose that the norm from
Q(v/—=D) to Q of « is pq with distinct primes p,q. Then we can conclude
that there are primes p, ¢ lying over p,q, respectively, so that pg = ao is
principal, so is trivial in the ideal class group.)

Determine the (absolute) ideal class group structure for the ring of algebraic
integers in Q(v/D) for D = 1,2,3,5,6,7,10,11, 13, 15 using the Minkowski
estimate for a representative for ideal classes, after determining a ‘funda-
mental unit’. Use relations coming from norms.

Try the same sort of thing for Q(¢s) and Q(2'/3).

Let p1,...,pm be distinct odd primes in Z, and put D = p; ...p,,. Show
that the ideal class group of the ring of algebraic integers in Q(/p1 .. pm)
has a subgroup isomorphic to

Z/2®...Z/2 m — 1 summands
(Hint: Each p; is ramified, so becomes p?, but it is hard for products of

the various p; to be principal ideals, since the norms of algebraic integers
in the extension are ‘too large’).

Do the previous exercise for a quadratic extension of k(7)) so that the
infinite prime is inert, where k is a finite field. (Hint: The condition on

the infinite prime assures that the unit group is finite...)
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Let o be the integers in a global field & so that there is a non-principal ideal
a. Let m be the least integer so that a™ is principal, i.e., is «wo for some
algebraic integer . Suppose that k contains the m!® roots of unity. Let K
be the extension of k obtained by adjoining an m‘" root of . Show that
K /k is not ramified at any prime not dividing m.

*** Adeles and ideles ***

Show that the topology on the adeles A of a global field, restricted to the
ideles J, is strictly coarser than the idele topology.

Imbed J = A x A by a = (a,a™!). Show that the idele topology is that
given by the subspace topology on the image by this map.

Let k be a global field. Show (or recall) that the natural image of k in its
adeles is discrete. Show that for any prime p of k, the set k£ + &, is dense.

*¥** Zeta and L-functions ***

Write the zeta function of a quadratic extension of Q as a product of two
Dirichlet L-functions over Q.

Write the zeta function of Q((,,) as a product of Dirichlet L-functions over

Q



