A Hodge-podge of Exercises archaic version

©1995, Paul Garrett, garrett@math.umn.edu

- Finite fields and other warm-ups
- Dedekind domains
- Factorization and splitting of primes
- $\bullet~$ Local fields
- Differents and discriminants
- Approximation
- Ideal class groups
- Adeles and ideles
- Zeta and L-functions

*** Some warm-ups ***

- (1) Let K/F be a finite extension of finite fields. Show that trace and norm are onto.
- (2) For a prime p, show that $x^2 + y^2 + z^2 = 0 \mod p$ always has a non-trivial solution (i.e., with not all of x, y, z equal 0).
- (3) Show that the Galois group of x⁵ − x + 1 over Q is the symmetric group S₅ on 5 things. (Hint: think about decomposition groups and the Frobenius map x → x⁵).

(4) Let φ be the nth cyclotomic polynomial, i.e., whose roots are the primitive nth roots of unity. Show that (a) If a prime p divides φ(m) for some integer m, then p ≡ 1 mod n. (Hint: m is a primitive nth root of 1 modulo p). (b) For a prime p and for any integer m, p does not divide φ(mp). (Hint: The constant term of φ is ±1). (c) There are infinitely-many primes congruent to 1 modulo n. (Hint: Suppose there were only finitely-many, say p₁,..., p_k; consider φ(mp₁...p_k) for m an integer chosen to avoid φ(mp₁...p_k) = ±1).

- (5) Determine the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{D})$ where D is a square-free integer, directly from the definition of integral closure.
- (6) Show that a PID is integrally closed (in its fraction field). Then show that $\mathbb{Z}[\sqrt{5}]$ cannot be a PID because it is not integrally closed.

Definition: Let k be a finite field not of characteristic two. For T transcendental over k, let o = k[T] and K = k(T). A finite separable extension E of K is a **function field** (in one variable) over the finite field k.

- (7) Let E be the extension of k(T) obtained by adjoining the square root of a square-free monic polynomial. Determine the integral closure of k[T] in E.
- (8) Let o be the ring of integers in a number field k. Let a be a non-zero ideal in o. Let o/a be the quotient ring and (o/a)[×] its units. When it the latter group cyclic?

*** Splitting of primes ***

- (9) Show that, with respect to the usual complex norm, the Gaussian integers Z[i] form a Euclidean ring, so is a PID.
- (10) Show that an odd prime p splits in $\mathbb{Q}(i)/\mathbb{Q}$ if and only if $p \equiv 1 \mod 4$.
- (11) Show that an odd prime p is a sum of two square of integers if and only if $p \equiv 1 \mod 4$.
- (12) Let ω be a primitive cube root of unity. Determine the splitting bahavior of primes in $\mathbb{Q}(\omega)/\mathbb{Q}$.

- (13) Show that, with respect to the usual complex norm, the ring $\mathbb{Z}[\omega]$ is Euclidean, so is a PID.
- (14) Show that a prime p is of the form $x^2 + xy + y^2$ with integers x, y if and only if $p \equiv 1 \mod 3$.
- (15) Let ζ be a primitive n^{th} root of unity. Granting that the ring of integers is $\mathbb{Z}[zeta]$, describe the splitting of a prime in the extension $\mathbb{Q}(\zeta)/\mathbb{Q}$ in terms of congruence properties of p.
- (16) Suppose that a finite field k does not contain $\sqrt{-1}$. Determine which primes split in the extension k(T)(i) = k(T, i) of k(T) (with base 'integers' k[T], as usual).
- (17) Suppose that the finite field k does not contain a primitive n^{th} root of unity ζ . Determine the integral closure of k[T] in $k(\zeta)(T) \approx k(T, \zeta)$. Determine which primes split completely in this extension.
- (18) Suppose that there is a Galois extension of global fields so that some prime is *inertial*. Show that the extension is necessarily *cyclic*. (**Hint:** Think

about decomposition groups).

*** Local fields ***

- (19) Let K be a local field not of characteristic 2, with valuation ring o. Let $\alpha \in o^{\times}$. Show that α is a square in o^{\times} if and only if it is a square in $(o/p)^{\times}$.
- (20) Let K be a local field not of characteristic 2. Describe the structure of the group $K^{\times}/K^{\times 2}$. (First treat the case that the *residue* characteristic is not 2, which is much easier).
- (21) Determine all quadratic extensions of \mathbb{Q}_p . Which are ramified? (Hint:

Treat p = 2 separately, and certainly use the structure of $\mathbb{Q}_p^{\times}/\mathbb{Q}_p^{\times 2}$).

- (22) Determine all quadratic extensions of the *T*-adic completion k((T)) (i.e., formal finite Laurent series field) of k(T).
- (23) Generalizing the previous exercise, determine all quadratic extensions of the *P*-adic completion of k(T).
- (24) Determine all cyclic (Galois) cubic extensions of \mathbb{Q}_7 .
- (25) Determine all non-Galois cubic extensions of \mathbb{Q}_7 .
- (26) For a local field K, determine the structure of K[×]/K^{×m} for positive integer m. (Hint: First treat the case that the residue characteristic does not divide m).
- (27) Suppose that a local field contains all m^{th} roots of unity. Determine all cyclic extensions of it.
- (28) Show (qualitatively) that a local field has finitely-many extensions of a given degree.

(29) Show that a local field has a unique unramified extension of a given degree. (**Hint:** If an extension is unramified, then the Galois group is the

decomposition group, which is the Galois group of the residue class field extension, which is generated by a root of unity. Use Hensel's lemma).

- (30) Let K/k be a finite and unramified extension of local fields, with rings of integers O, o. Show that trace maps O surjectively to o and the norm maps O^{\times} surjectively to o^{\times} .
- (31) In the previous situation, show that if the norm maps O^{\times} surjectively to o^{\times} then the extension is unramified.
- (32) Let S be a symmetric n-by-n matrix over \mathbb{Q}_p . When $p \neq 2$, show that there is $A \in GL(n, \mathbb{Z}_p)$ so that $A^{\top}SA$ is diagonal. Show that this fails if p = 2.
- (33) Redo the previous exercise over an arbitrary local field of residue characteristic not 2.

*** Differents, discriminants, ramification ***

- (34) Find a \mathbb{Z} -basis for the ring of algebraic integers in $\mathbb{Q}(\alpha)$, where $\alpha^3 = a$ with $a \in \mathbb{Z}$ square-free. Determine the ramification. You can accomplish this by brute force.
- (35) Carefully compute the discriminant and different of $\mathbb{Z}[\zeta]$ for roots of unity ζ .
- (36) Find a \mathbb{Z} -basis for the ring of algebraic integers in $\mathbb{Q}(\alpha)$, where $\alpha^n = a$ with $a \in \mathbb{Z}$ square-free. Determine the ramification of some small primes. You probably *cannot* accomplish this by brute force alone.
- (37) Let $E = K(\alpha)$ where K is a global field and $\alpha^2 = a$ with a square-free element $a \in o$ where o is the ring of integers in K. Extending the standard computation for $K = \mathbb{Q}$, determine the ring of integers in E. (Hint: Brute

force probably will fail. Do *local* computations).

- (38) Do the notions of different and discriminant work the same way for function fields as for number fields?
- (39) If the extension K/k(T) of a function field k(T) is obtained merely by 'extending scalars' K = k'(T) (with k' a finite extension of the finite field k), then what are the different, discriminant, and ramification?

*** Approximation ***

- (40) Let S be a finite set of primes in \mathbb{Z} , including the infinite prime ∞ . Let \mathbb{Z}_S be the ring of rational numbers which are p-integral for every finite prime $p \notin S$. Consider the natural imbedding $\mathbb{Z}_S \to \prod_{p \in S} \mathbb{Q}_p$. Show that the image is discrete. Show that the image of \mathbb{Z}_S in $\prod_{p \in T} \mathbb{Q}_p$ is dense for any proper subset T of S.
- (41) Do the previous exercise for any global field.

(42) Let $1 < N \in \mathbb{Z}$. Show that the natural map

$$SL(2,\mathbb{Z}) \to SL(2,\mathbb{Z}/N)$$

is a surjection.

(43) More generally, let k be a global field with integers o. Let a be a proper ideal of o. Show that the natural map

$$SL(n,o) \rightarrow SL(n,o/a)$$

is a surjection. Do the same for groups GL(n).

- (44) For a finite field k with q elements, compute the cardinality of SL(n,k) and GL(n,k).
- (45) Let *o* be the integers in a global field and *p* a non-zero prime ideal in *o*. Compute the cardinality of $SL(n, o/p^m)$ and $GL(n, o/p^m)$.
- (46) Let *o* be the integers in a global field and *a* a non-zero ideal in *o*. Compute the cardinality of SL(n, o/a) and GL(n, o/a).

*** Ideal class groups ***

(47) Determine the (absolute) ideal class group structure for the ring of algebraic integers in $\mathbb{Q}(\sqrt{-D})$ for D = 1, 2, 3, 5, 6, 7, 10, 11, 13, 15 using the Minkowski estimate for a representative for ideal classes. Here one can take advantage of the fact that the only units are ± 1 . (**Hint:** Use relations

coming from norms, as follows: for example, suppose that the norm from $\mathbb{Q}(\sqrt{-D})$ to \mathbb{Q} of α is pq with distinct primes p, q. Then we can conclude that there are primes p, q lying over p, q, respectively, so that $pq = \alpha o$ is principal, so is trivial in the ideal class group.)

- (48) Determine the (absolute) ideal class group structure for the ring of algebraic integers in $\mathbb{Q}(\sqrt{D})$ for D = 1, 2, 3, 5, 6, 7, 10, 11, 13, 15 using the Minkowski estimate for a representative for ideal classes, after determining a 'fundamental unit'. Use relations coming from norms.
- (49) Try the same sort of thing for $\mathbb{Q}(\zeta_5)$ and $\mathbb{Q}(2^{1/3})$.
- (50) Let p_1, \ldots, p_m be distinct odd primes in \mathbb{Z} , and put $D = p_1 \ldots p_m$. Show that the ideal class group of the ring of algebraic integers in $\mathbb{Q}(\sqrt{p_1 \ldots p_m})$ has a subgroup isomorphic to

$$\mathbb{Z}/2 \oplus \ldots \mathbb{Z}/2 \qquad m-1 \text{ summands}$$

(**Hint:** Each p_i is ramified, so becomes p_i^2 , but it is hard for products of

the various p_i to be principal ideals, since the norms of algebraic integers in the extension are 'too large').

(51) Do the previous exercise for a quadratic extension of k(T) so that the infinite prime is inert, where k is a finite field. (Hint: The condition on

the infinite prime assures that the unit group is finite...)

(52) Let o be the integers in a global field k so that there is a non-principal ideal a. Let m be the least integer so that a^m is principal, i.e., is αo for some algebraic integer α . Suppose that k contains the m^{th} roots of unity. Let K be the extension of k obtained by adjoining an m^{th} root of α . Show that K/k is not ramified at any prime not dividing m.

*** Adeles and ideles ***

- (53) Show that the topology on the adeles A of a global field, restricted to the ideles J, is strictly coarser than the idele topology.
- (54) Imbed $\mathbb{J} \to \mathbb{A} \times \mathbb{A}$ by $\alpha \to (\alpha, \alpha^{-1})$. Show that the idele topology is that given by the subspace topology on the image by this map.
- (55) Let k be a global field. Show (or recall) that the natural image of k in its adeles is discrete. Show that for any prime p of k, the set $k + k_p$ is dense.

*** Zeta and L-functions ***

- (56) Write the zeta function of a quadratic extension of \mathbb{Q} as a product of two Dirichlet L-functions over \mathbb{Q} .
- (57) Write the zeta function of $\mathbb{Q}(\zeta_n)$ as a product of Dirichlet L-functions over \mathbb{Q} .