Harmonic analysis, on \mathbb{R} , \mathbb{R}/\mathbb{Z} , \mathbb{Q}_p , \mathbb{A} , and \mathbb{A}_k/k , key ingredients in Iwasawa-Tate.

Need the abelian topological group analogue of *characters* $x \to e^{2\pi i x \xi}$ for $\xi \in \mathbb{R}, x \in \mathbb{R}$, and *Fourier transforms*

$$\widehat{f}(\xi) = \mathscr{F}f(\xi) = \int_{\mathbb{R}} e^{-2\pi i x\xi} f(x) dx$$

and Fourier inversion

$$f(x) = \mathscr{F}^{-1}\widehat{f}(x) = \int_{\mathbb{R}} e^{2\pi i\xi x} \widehat{f}(\xi) d\xi$$

for nice functions f on \mathbb{Q}_p and \mathbb{A} . Similarly for all completions k_v and adeles \mathbb{A}_k of number fields. And *adelic Poisson summation*

$$\sum_{x \in k} f(x) = \sum_{x \in k} \widehat{f}(x) \qquad \text{(for suitable } f \text{ on } \mathbb{A}_k)$$

///

Recap:

No small subgroups: The circle S^1 has no small subgroups: there is a neighborhood U of the identity $1 \in S^1$ such that the only subgroup inside U is $\{1\}$. ///

Unitary duals of abelian topological groups: The unitary dual G^{\vee} of an abelian topological group G is all continuous group homs $G \to S^1$. For example, $\mathbb{R}^{\vee} \approx \mathbb{R}$, by $\xi \to (x \to e^{i\xi x})$.

Theorem: $\mathbb{Q}_p^{\vee} \approx \mathbb{Q}_p$ and $\mathbb{A}^{\vee} \approx \mathbb{A}$.

Remark: \mathbb{Z}_p as *limit* and \mathbb{Q}_p as *colimit*, and \mathfrak{o}_v and k_v similarly in general, are admirably adapted to determine these duals.

Remark: Since our model of the topological group \mathbb{Q}_p implicitly specifies more information, namely, the subroup \mathbb{Z}_p , the isomorphisms *are* canonical. If we only gave the *isomorphism class* without specifying a compact-open subgroup, the isomorphism would *not* be canonical, just as the dual vector space to a finitedimensional vector space V has the same dimension as V, but is not *canonically* isomorphic to V. **Corollary:** Given *non-trivial* $\psi \in \mathbb{Q}_p^{\vee}$, every other element of \mathbb{Q}_p^{\vee} is of the form $x \to \psi(\xi \cdot x)$ for some $\xi \in \mathbb{Q}_p$. Similarly, given *non-trivial* $\psi \in \mathbb{A}^{\vee}$, every other element of \mathbb{A}^{\vee} is of the form $x \to \psi(\xi \cdot x)$ for some $\xi \in \mathbb{A}$.

Remark: This sort of result is already familiar from the analogue for \mathbb{R} , that $x \to e^{i\xi x}$ for $\xi \in \mathbb{R}$ are all the unitary characters of \mathbb{R} .

Proof: On one hand, it is clear that, for given continuous group hom $\psi : \mathbb{Q}_p \to S^1$ and $\xi \in \mathbb{Q}_p$, the character $x \to \psi(\xi \cdot x)$ is another. Thus, the dual is a \mathbb{Q}_p -vectorspace.

On the other hand, in the proof that $\mathbb{Q}_p^{\vee} \approx \mathbb{Q}_p$, we *chose* the pairing $\mathbb{Q}_p \times \mathbb{Q}_p^{\vee} \to \mathbb{C}^{\times}$, which would determine the isomorphism. Indeed, given $x \in \mathbb{Q}_p$, there is $x' \in p^{-k}\mathbb{Z}$ for some $k \in \mathbb{Z}$, such that $x - x' \in \mathbb{Z}_p$, the **standard character** is

 $\psi_1(x) = e^{-2\pi i x'}$ (sign choice for later purposes)

The character ψ_1 is trivial on \mathbb{Z}_p . For $\xi \in \mathbb{Q}_p$, let

$$\psi_{\xi}(x) = \psi_1(\xi \cdot x) \qquad (\text{for } x, \xi \in \mathbb{Q}_p)$$

For a finite extension k_v of \mathbb{Q}_p (whether or not we know how k_v arises as a completion of a number field), the **standard character** is described as

$$\psi_{\xi}(x) = \psi_1\left(\operatorname{tr}_{\mathbb{Q}_p}^{k_v}(\xi \cdot x)\right) \qquad (\text{for } x, \xi \in k_v)$$

Since $\operatorname{tr}(\mathfrak{o}_v) \subset \mathbb{Z}_p$, certainly $\ker \psi_{\xi} \supset \xi^{-1}\mathfrak{o}_v$.

Occasionally, the kernel of ψ_{ξ} can be slightly larger than $\xi^{-1}\mathfrak{o}_v$.

5

Compact-discrete duality

For abelian topological groups G, pointwise multiplication makes \widehat{G} an abelian group. A reasonable topology on \widehat{G} is the *compact-open* topology, with a sub-basis

$$U = U_{C,E} = \{ f \in \widehat{G} : f(C) \subset E \}$$

for compact $C \subset G$, open $E \subset S^1$.

Remark: The reasonable-ness of this topology is utilitarian. For a compact topological space X, $C^o(X)$ with the *sup-norm* is a *Banach space*. The compact-open topology is the analogue for $C^o(X, Y)$ when X, Y are topological groups. More aspects of this will become clear later. Granting for now that the compact-open topology makes \widehat{G} an abelian (locally-compact, Hausdorf) topological group,

Theorem: The unitary dual of a *compact* abelian group is *discrete*. The unitary dual of a *discrete* abelian group is *compact*.

Proof: Let G be compact. Let E be a small-enough open in S^1 so that E contains no non-trivial subgroups of G. Using the compactness of G itself, let $U \subset \hat{G}$ be the open

$$U = \{ f \in \widehat{G} : f(G) \subset E \}$$

Since E is small, $f(G) = \{1\}$. That is, f is the trivial homomorphism. This proves discreteness of \widehat{G} for compact G.

For G discrete, *every* group homomorphism to S^1 is continuous. The space of *all* functions $G \to S^1$ is the cartesian product of copies of S^1 indexed by G. By Tychonoff's theorem, this product is *compact*. For *discrete* X, the compact-open topology on the space $C^o(X, Y)$ of continuous functions from $X \to Y$ is the product topology on copies of Y indexed by X.

The set of functions f satisfying the group homomorphism condition

$$f(gh) = f(g) \cdot f(h)$$
 (for $g, h \in G$)

is closed, since the group multiplication $f(g) \times f(h) \to f(g) \cdot f(h)$ in S^1 is continuous. Since the product is also Hausdorff, \widehat{G} is also compact. /// **Theorem:** $(\mathbb{A}/k)^{\widehat{}} \approx k$. In particular, given any non-trivial character ψ on \mathbb{A}/k , all characters on \mathbb{A}/k are of the form $x \to \psi(\alpha \cdot x)$ for some $\alpha \in k$.

Proof: For a (discretely topologized) number field k with adeles \mathbb{A} , \mathbb{A}/k is *compact*, and \mathbb{A} is *self-dual*.

Because \mathbb{A}/k is compact, $(\mathbb{A}/k)^{\widehat{}}$ is *discrete*. Since multiplication by elements of k respects cosets x + k in \mathbb{A}/k , the unitary dual has a k-vectorspace structure given by

$$(\alpha \cdot \psi)(x) = \psi(\alpha \cdot x)$$
 (for $\alpha \in k, x \in \mathbb{A}/k$)

There is no topological issue in this k-vectorspace structure, because $(\mathbb{A}/k)^{\widehat{}}$ is discrete. The quotient map $\mathbb{A} \to \mathbb{A}/k$ gives a natural *injection* $(\mathbb{A}/k)^{\widehat{}} \to \widehat{\mathbb{A}}$. Given non-trivial $\psi \in (\mathbb{A}/k)^{\widehat{}}$, the k-vectorspace $k \cdot \psi$ inside $(\mathbb{A}/k)^{\widehat{}}$ injects to a copy of $k \cdot \psi$ inside $\widehat{\mathbb{A}} \approx \mathbb{A}$. Assuming for a moment that the image in \mathbb{A} is essentially the same as the diagonal copy of k, $(\mathbb{A}/k)^{\widehat{}}/k$ injects to \mathbb{A}/k . The topology of $(\mathbb{A}/k)^{\widehat{}}$ is discrete, and the quotient $(\mathbb{A}/k)^{\widehat{}}/k$ is still discrete. These maps are continuous group homs, so the image of $(\mathbb{A}/k)^{\widehat{}}/k$ in \mathbb{A}/k is a discrete subgroup of a compact group, so is finite. Since $(\mathbb{A}/k)^{\widehat{}}$ is a k-vectorspace, $(\mathbb{A}/k)^{\widehat{}}/k$ is a singleton. Thus, $(\mathbb{A}/k)^{\widehat{}} \approx k$, if the image of $k \cdot \psi$ in $\mathbb{A} \approx \widehat{\mathbb{A}}$ is the usual diagonal copy.

To see how $k \cdot \psi$ is imbedded in $\mathbb{A} \approx \widehat{\mathbb{A}}$, fix non-trivial ψ on \mathbb{A}/k , and let ψ be the corresponding character on \mathbb{A} . The self-duality of \mathbb{A} is that the action of \mathbb{A} on $\widehat{\mathbb{A}}$ by $(x \cdot \psi)(y) = \psi(xy)$ gives an *isomorphism*. The subgroup $x \cdot \psi$ with $x \in k$ is certainly the usual diagonal copy. ///

Next: Fourier transforms, Fourier inversion, Schwartz spaces of functions, adelic Poisson summation.