Harmonic analysis, on \mathbb{R} , \mathbb{R}/\mathbb{Z} , \mathbb{Q}_p , \mathbb{A} , and \mathbb{A}_k/k , key ingredients in Iwasawa-Tate:

Characters and Fourier transforms on \mathbb{R} , \mathbb{Q}_p , \mathbb{A} , and for completions and adeles of number fields.

Fourier inversion expresses nice functions as *superpositions* (integrals) of characters.

Schwartz spaces $\mathscr{S}(\mathbb{R})$, $\mathscr{S}(\mathbb{Q}_p)$, $\mathscr{S}(\mathbb{A})$ of very-nice functions on \mathbb{R} , \mathbb{Q}_p , \mathbb{A} , and k_v , \mathbb{A}_k for number fields k.

Adelic Poisson summation

$$\sum_{x \in k} f(x) = \sum_{x \in k} \widehat{f}(x) \qquad (\text{for } f \in \mathscr{S}\mathbb{A}_k)$$

Recap:

Corollary: Given *non-trivial* $\psi \in k_v^{\vee}$, every other element of k_v^{\vee} is of the form $x \to \psi(\xi \cdot x)$ for some $\xi \in k_v$. Similarly, given *non-trivial* $\psi \in \mathbb{A}_k^{\vee}$, every other element of \mathbb{A}_k^{\vee} is of the form $x \to \psi(\xi \cdot x)$ for some $\xi \in \mathbb{A}_k$.

The standard character ψ_1 on \mathbb{Q}_p is as follows: given $x \in \mathbb{Q}_p$, there is $x' \in p^{-k}\mathbb{Z}$ for some $k \in \mathbb{Z}$, such that $x - x' \in \mathbb{Z}_p$, and $\psi_1(x) = e^{-2\pi i x'}$ (sign choice for later)

For $\xi \in \mathbb{Q}_p$, let

$$\psi_{\xi}(x) = \psi_1(\xi \cdot x) \quad (\text{for } x, \xi \in \mathbb{Q}_p)$$

For a finite extension k_v of \mathbb{Q}_p , the standard character is

$$\psi_{\xi}(x) = \psi_1\left(\operatorname{tr}_{\mathbb{Q}_p}^{k_v}(\xi \cdot x)\right) \qquad (\text{for } x, \xi \in k_v)$$

Proposition (later): the compact-open topology makes \widehat{G} an abelian (locally-compact, Hausdorf) topological group.

Theorem: Unitary dual of a *compact* abelian group is *discrete*, unitary dual of a *discrete* abelian group is *compact*. ///

Fourier transforms, Fourier inversion, Schwartz spaces of functions, adelic Poisson summation Unsurprisingly, the Fourier transform on k_v is

$$\mathscr{F}f(\xi) = \widehat{f}(\xi) = \int_{k_v} \overline{\psi}_{\xi}(x) f(x) dx$$

where, given the characters ψ_{ξ} (for example, the standard ones), the Haar measures are normalized so that *Fourier inversion* holds exactly:

$$f(x) = \int_{k_v} \psi_{\xi}(x) \,\widehat{f}(\xi) \, d\xi \qquad \text{(for nice functions } f)$$

Why does Fourier inversion hold at all?

The usual space $\mathscr{S}(\mathbb{R})$ of *Schwartz functions* on \mathbb{R} consists of infinitely-differentiable functions all of whose derivatives are of *rapid decay*, decaying more rapidly at $\pm \infty$ than every $1/|x|^N$. Its topology is given by semi-norms

$$\nu_{k,N}(f) = \sup_{0 \le i \le k} \sup_{x \in \mathbb{R}} \left((1+|x|)^N \cdot |f^{(i)}(x)| \right)$$

for $0 \leq k \in \mathbb{Z}$ and $0 \leq N \in \mathbb{Z}$.

There are countably-many associated (pseudo-) metrics $d_{k,N}(f,g) = \nu_{k,N}(f-g)$, so $\mathscr{S}(\mathbb{R})$ is naturally *metrizable*.

The usual two-or-three-epsilon arguments show that $\mathscr{S}(\mathbb{R})$ is *complete* metrizable.

Theorem: \mathscr{F} is a topological isomorphism $\mathscr{S}(\mathbb{R}) \to \mathscr{S}(\mathbb{R})$.

Before describing the Schwartz space $\mathscr{S}(\mathbb{Q}_p)$ and proving Fourier inversion, sample computations of Fourier transforms are useful.

We need a simply-described function on \mathbb{Q}_p which is its own Fourier transform, to play a role analogous to that of the Gaussian in the archimedean case.

Claim: With Fourier transform on \mathbb{Q}_p defined via the standard character $\psi_1(x) = e^{-2\pi i x'}$ (where $x' \in p^{-\infty} \mathbb{Z}_p$ and $x - x' \in \mathbb{Z}_p$), the characteristic function of \mathbb{Z}_p is its own Fourier transform.

Proof: Let f be the characteristic function of \mathbb{Z}_p . Then

$$\widehat{f}(\xi) = \int_{\mathbb{Q}_p} \overline{\psi}_{\xi}(x) f(x) \, dx = \int_{\mathbb{Z}_p} \overline{\psi}_1(\xi \cdot x) \, dx = \int_{\mathbb{Z}_p} \psi_1(-\xi \cdot x) \, dx$$

Recall a form of the *cancellation lemma*: (a tiny case of *Schur orthogonality*...)

Lemma: Let $\psi: K \to \mathbb{C}^{\times}$ be a continuous group homomorphism on a compact group K. Then

$$\int_{K} \psi(x) \, dx = \begin{cases} \max(K) & (\text{for } \psi = 1) \\ 0 & (\text{for } \psi \neq 1) \end{cases}$$

Proof of Lemma: Yes, of course, the measure is a Haar measure on K. Since K is *compact*, it is *unimodular*.

For ψ trivial, of course the integral is the total measure of K.

For ψ non-trivial, there is $y \in K$ such that $\psi(y) \neq 1$. Using the invariance of the measure, change variables by replacing x by xy:

$$\int_{K} \psi(x) \, dx = \int_{K} \psi(xy) \, d(xy) = \int_{K} \psi(x) \, \psi(y) \, dx = \psi(y) \int_{K} \psi(x) \, dx$$

Since $\psi(y) \neq 1$, the integral is 0.

///

Apply the lemma to the integrals computing the Fourier transform of the characteristic function f of \mathbb{Z}_p . Giving the compact group \mathbb{Z}_p measure 1,

$$\widehat{f}(\xi) = \int_{\mathbb{Z}_p} \psi_1(-\xi \cdot x) \, dx = \begin{cases} 1 & (\psi_1(-\xi x) = 1 \text{ for } x \in \mathbb{Z}_p) \\ 0 & (\text{otherwise}) \end{cases}$$

On one hand, for $\xi \in \mathbb{Z}_p$, certainly $\psi_1(\xi x) = 1$ for $x \in \mathbb{Z}_p$. On the other hand, for $\xi \notin \mathbb{Z}_p$, there is $x \in \mathbb{Z}_p$ such that, for example, $\xi \cdot x = 1/p$. Then

$$\psi_1(-\xi \cdot x) = \psi_1(\frac{-1}{p}) = e^{+2\pi i \cdot \frac{1}{p}} \neq 1$$

Thus, ψ_{ξ} is not trivial on \mathbb{Z}_p , so the integral is 0. Thus, the characteristic function of \mathbb{Z}_p is its own Fourier transform. /// **Claim:** With standard Fourier transform on \mathbb{Q}_p , the Fourier transform of the characteristic function of $p^k \mathbb{Z}_p$ is p^{-k} times the characteristic function of $p^{-k} \mathbb{Z}_p$.

Proof: Let f be the characteristic function of $p^k \mathbb{Z}_p$, so

$$\widehat{f}(\xi) = \int_{\mathbb{Q}_p} \overline{\psi}_{\xi}(x) f(x) \, dx = \int_{p^k \mathbb{Z}_p} \overline{\psi}_1(\xi \cdot x) \, dx$$
$$= |p^k|_p \cdot \int_{\mathbb{Z}_p} \psi_1(-\xi \cdot x/p^k) \, dx = p^{-k} \cdot \int_{\mathbb{Z}_p} \psi_1(-\xi \cdot x/p^k) \, dx$$

This reduces to the previous computation: by *cancellation*, for $\xi/p^k \notin \mathbb{Z}_p$ the character $x \to \psi_1(-\xi x/p^k)$ is non-trivial, so the integral is 0. Otherwise, the integral is 1. ///

Claim: With standard Fourier transform on \mathbb{Q}_p , the Fourier transform of the characteristic function of $\mathbb{Z}_p + y$ is ψ_y times the characteristic function of \mathbb{Z}_p .

Proof: Let f be the characteristic function of $\mathbb{Z}_p + y$, so

$$\widehat{f}(\xi) = \int_{\mathbb{Q}_p} \overline{\psi}_{\xi}(x) f(x) \, dx = \int_{\mathbb{Z}_p+y} \overline{\psi}_1(\xi \cdot x) \, dx$$
$$= \int_{\mathbb{Z}_p} \psi_1(-\xi \cdot (x+y)) \, dx = \psi_1(-\xi \cdot y) \, dx \int_{\mathbb{Z}_p} \psi_1(-\xi \cdot x) \, dx$$
$$= \psi_1(-\xi \cdot y) \cdot f(\xi)$$

by the previous computation.

///

Combining the two computations above,

$$\mathscr{F}\left(\operatorname{char} \operatorname{fcn} p^{k}\mathbb{Z}_{p} + y\right) = \psi_{y} \cdot p^{-k} \cdot \left(\operatorname{char} \operatorname{fcn} p^{-k}\mathbb{Z}_{p}\right)$$

Conveniently, products $\psi_y \cdot (\text{char fcn } p^{-k} \mathbb{Z}_p)$ are in the same class of functions, since ψ_y has a kernel which is an open (and compact) neighborhood of 0, so we this class of functions is mapped to itself under Fourier transform.

Recall the earlier lemma proving that these *special* simple functions consisting of finite linear combinations of characteristic functions of sets $p^k \mathbb{Z}_p + y$ are *dense* in $C_c^o(\mathbb{Q}_p)$.

The space of **Schwartz functions** $\mathscr{S}(\mathbb{Q}_p)$ on \mathbb{Q}_p is the vector space of these special simple functions, that is, finite linear combinations of characteristic functions of sets $p^k \mathbb{Z}_p + y$.

Yes, unlike the archimedean case, *p*-adic Schwartz functions are *compactly supported*.

p-adic Fourier inversion is the claim that

$$f(x) = \int_{\mathbb{Q}_p} \psi_{\xi}(x) \ \widehat{f}(\xi) \ d\xi \qquad (\text{for } f \in \mathscr{S}(\mathbb{Q}_p))$$

Proof: We have essentially proven this in the computations above, if we keep track, as follows. Let f^o be the characteristic function of \mathbb{Z}_p . We computed $\widehat{f}^o = f$. Let δ_t be the dilation operator $\delta_t f(x) = f(t \cdot x)$ for $t \in \mathbb{Q}_p^{\times}$. We computed, by changing variables in the integral defining the Fourier transform, that

$$\mathscr{F}(\delta_t f) \;=\; \frac{1}{|t|_p} \cdot \delta_{1/t}(\mathscr{F} f)$$

Let τ_y be the translation operator $\tau_y f(x) = f(x+y)$. By changing variables,

$$\mathscr{F}(\tau_y f) = \psi_y \cdot (\mathscr{F} f)$$

It is convenient to also compute that

$$\mathscr{F}(\psi_y \cdot f)(\xi) = \int_{\mathbb{Q}_p} \overline{\psi}_{\xi}(x) \cdot \psi_y(x) f(x) \, dx$$
$$= \int_{\mathbb{Q}_p} \overline{\psi}_{\xi-y}(x) f(x) \, dx = \widehat{f}(\xi-y) = \tau_{-y}(\mathscr{F}f)$$

Let \mathscr{F}^* be the integral for Fourier inversion, namely,

$$\mathscr{F}^*f(x) = \int_{\mathbb{Q}_p} \psi_{\xi}(x) f(\xi) d\xi$$

Similar computations give

$$\mathscr{F}^{*}(\delta_{t}f) = \frac{1}{|t|_{p}} \delta_{1/t}(\mathscr{F}^{*}f) \qquad \mathscr{F}^{*}(\tau_{y}f) = \psi_{-y}(\mathscr{F}^{*}f)$$
$$\mathscr{F}^{*}(\psi_{y}f) = \tau_{y}(\mathscr{F}^{*}f)$$

and

Since every element of $\mathscr{S}(\mathbb{Q}_p)$ is a linear combination of images of f^o under dilation and translation, it suffices to give a sort of inductive proof of Fourier inversion:

$$\mathscr{F}^*\mathscr{F}(\tau_y f) = \mathscr{F}^*\psi_y \mathscr{F}f = \tau_y \mathscr{F}^* \mathscr{F}f$$
$$\mathscr{F}^*\mathscr{F}(\delta_t f) = \mathscr{F}^* \frac{1}{|t|_p} \delta_{1/t} \mathscr{F}f = \frac{1}{|t|_p} \frac{1}{|1/t|_p} \delta_t \mathscr{F}^* \mathscr{F}f = \delta_t \mathscr{F}^* \mathscr{F}f$$
Similarly for multiplication by ψ_m . Since $\mathscr{F}^* \mathscr{F}f^o = \mathscr{F}^* f^o = f^o$.

Similarly for multiplication by ψ_y . Since $\mathscr{F}^*\mathscr{F}f^o = \mathscr{F}^*f^o = f^o$, we have Fourier inversion on $\mathscr{S}(\mathbb{Q}_p)$. ///

Remark: *p*-adic Fourier inversion is much easier than on \mathbb{R} .

The space $\mathscr{S}(\mathbb{A})$ of Schwartz functions on the adeles is finite linear combinations of *monomial* functions

$$\left(\bigotimes_{v\leq\infty}f_v\right)(\{x_v\}) = \prod_v f_v(x_v)$$

with $f_v \in \mathscr{S}(\mathbb{Q}_v)$, and where for all but finitely-many v the local function f_v is the characteristic function of \mathbb{Z}_v .

Fourier transform on $\mathscr{S}(\mathbb{A})$ is the product of all the local Fourier transforms, and Fourier inversion follows for $\mathscr{S}(\mathbb{A})$ because it holds for each $\mathscr{S}(\mathbb{Q}_v)$.

Remark: We do not directly need it, but one might reflect on what the natural topology is on $\mathscr{S}(\mathbb{Q}_p)$, especially to have it be *complete*.

Fourier series on \mathbb{A}/k : For a unimodular topological group G, let $L^2(G)$ be the *completion* of $C_c^o(G)$ with respect to the usual L^2 -norm given by

$$|f|^2 = \int_G |f(g)|^2 dg$$
 (for $f \in C_c^o(G)$)

Remark: The measurable-function $L^2(G)$ contains this completion, and is provably equal, but we only need integrals of continuous compactly-supported functions.

Theorem: For a compact abelian group G, with total measure 1, the continuous group homomorphisms (*characters*) $\psi : G \to \mathbb{C}^{\times}$ form an orthonormal *Hilbert-space basis* for $L^2(G)$. That is,

$$L^2(G) = \text{completion of} \bigoplus_{\psi \in G^{\vee}} \mathbb{C} \cdot \psi$$

Remark: A *Hilbert-space basis* of a Hilbert space V is not a *vector-space* basis for V, but only for a dense subspace.