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• Intrinsic-ness of SO(n,R)-invariant Laplacian ∆S

Calculus on spheres is the simplest non-Euclidean example.

Euclidean calculus on products of circles and lines, and the
corresponding harmonic analysis, is the archimedean part of much
basic number theory.

Calculus on non-Euclidean spaces is even more useful, but requires
more preparation.

The spherical-geometry case is significantly easier than hyperbolic-
geometry examples, and simpler than more general situations.

Hecke’s identity on Fourier transforms of harmonic-polynomial
multiples of Gaussians is a good excuse to introduce a bit of
representation theory, especially of compact groups.

What remains is giving an intrinsic meaning to ∆S .
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Let G be a subgroup of the group GLn(R) of multiplicatively-
invertible n-by-n real matrices.

We are only concerned with very nice subgroups G, probably
requiring that G is defined by polynomial conditions on the entries
of the matrices.

For example, the rotation group (special orthogonal group)
SO(n,R) is defined by the collection of quadratic equations arising
from the defining condition g>g = 1n.

Another example is SLn(R) = {g ∈ GLn(R) : det g = 1}.
These conditions are topologically closed, so such groups are
closed subgroups of GLn(R).

The rotation group SO(n,R) is compact.
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For non-abelian groups, the distinction between position and
direction that can be overlooked in Rn becomes enormous.
Specifically, specifying direction (and directional derivatives)
requires more, as follows.

The matrix exponential is given by the expected series

eA = exp(A) =
∑
i≥0

Ai

i!
(for n-by-n matrix A)

The n-by-n real or complex matrices form a finite-dimensional
vector space over R or C, so have a unique (reasonable) topology,
although the topology can be described by several different norms.
The exponential series converges absolutely for any such norm.

When AB = BA, we do have eA+B = eA · eB by the usual
argument, but when A and B do not commute this identity fails.
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For a nice G ⊂ GLn(R), the Lie algebra of G will give directional
derivatives (=tangent vectors) on G. One definition is

Lie G = g = {n-by-n A : etA ∈ G for all t ∈ R}

Claim:

gln(R) = Lie GLn(R) = {all n-by-n A}

sln(R) = Lie SLn(R) = {n-by-n A with trA = 0}

so(n,R) = Lie SO(n,R) = {A+A> = 0 and trA = 0}

Proof: Using Jordan form, det eA = etrA. Thus, det eA 6= 0, so
is invertible for all A. For trA = 0, det eA = e0 = 1. For the
orthogonal group, ...
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... first observe that (eA)> = eA
>

. Thus, the condition
(etA)>etA = 1n is

(1n + tA> + . . .) · (1n + tA+ . . .) = 1n

The linear-in-t term is A> +A = 0n, so this condition is necessary.

With A> = −A,

(etA)>etA = etA
>
· etA = e−tA · etA = e0 = 1n

proving sufficiency. ///

The derivative XAf of a smooth function f on G in direction
A ∈ g is

(XAf)(g) =
∂

∂t

∣∣∣
t=0

f(getA)
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These differential operators do not commute: the commutator
turns out to be

[XA, XB ] = XA ◦XB −XB ◦XA = XAB−BA = X[A,B]

for A,B ∈ g. Always [A,B] ∈ g for A,B ∈ g. This is suggested by

etAetBe−tAe−tB = (1 + tA+
t2A2

2
+ . . .)(1 + tB +

t2B2

2
+ . . .)

×(1− tA+
t2A2

2
+ . . .)(1− tB +

t2B2

2
+ . . .)

= 1 + t2(AB −BA) + . . .

While commutators [XA, XB ] do arise from [A,B] ∈ g, simple
compositions XA ◦ XB do not come from anything in g. This
awkwardness is remedied as follows.
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We want an associative C-algebra Ug and a [, ]-preserving map
i : g → Ug such that, for all [, ]-preserving maps f : g → Θ to an
associative C-algebra Θ, there is a unique associative algebra map
Ug→ Θ through which f factors. That is, we have

Ug

∃!F

  A
A

A
A

g

i

OO

∀ f
// Θ

This characterizes i : g → Ug uniquely up to unique isomorphism,
if it exists. In other words, the functor U that creates Ug from g
is adjoint to the (forgetful) functor Lie that creates [x, y] = xy−yx
on an associative algebra A:

Homassoc(Ug, A) ≈ HomLie(g,LieA)
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For existence, in fact, Ug is a quotient of the universal associative
algebra Ag attached to the vector space g, forgetting the [, ]
structure, and requiring that all vector space maps g → V factor
through an associative algebra map Ag→ V .

The universal associative algebra is often constructed as

Ag =
⊗•

g = C⊕
⊕
n≥1

(⊗n
g
)

which has the boring/universal multiplication

(x1 ⊗ . . .⊗ xm) · (y1 ⊗ . . .⊗ yn) = x1 ⊗ . . .⊗ xm ⊗ y1 ⊗ . . .⊗ yn

The lack of interesting or special features here is exactly the
universality. The enveloping algebra Ug is the quotient by the
ideal generated by all x ⊗ y − y ⊗ x − [x, y]. The map g → Ug

is induced from g→
⊗1

g ⊂
⊗•

g.

The image of the tensor x1 ⊗ . . . ⊗ xm in Ug is simply written
without the tensor symbols, namely, x1 . . . xm.
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Whenever the action of G on a representation space π is
differentiable, the Lie algebra g acts by

Av =
∂

∂t

∣∣∣
t=0

π(etA)(v) (for A ∈ g and v ∈ π)

This map g → EndC(π) preserves brackets (!), so gives a unique
corresponding associative-algebra map Ug→ EndC(π).

All these actions are compatible with the action of G, since they
are induced by it. For example,(

π(g) ◦A ◦ π(g)−1
)

(v) = (gAg−1)(v)

Here, gAg−1 is simply matrix conjugation, but/and it has an
abstract sense in general, and is called the Adjoint action of G on
g, denoted Ad g(A). The lower-case adjoint action of g on itself is
by adx(y) = [x, y]. The Adjoint action of G on g gives rise to a
natural action on

⊗•
g and Ug.
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There is a possibly-unexpected advantage to considering the
universal enveloping algebra, namely, that the G-fixed subalgebra
z = (Ug)G is quite non-trivial!!!

The simplest non-scalar element in z is the Casimir element Ω,
described as follows. The trace form is 〈A,B〉 = tr(AB). This
is a non-degenerate, symmetric, AdG-invariant pairing on the Lie
algebras sln(R), so(n,R), and many others.

Up to a normalizing constant, 〈, 〉 is the Killing form, not because
it kills anything, but because of pioneering work by Wilhelm
Killing.

For so(n,R), the trace form is positive definite, as is clear from
noting the orthogonal basis θij = eij − eji for i < j, where eij has
non-zero entry only at the ijth location, with a 1 there.

The non-degenerate pairing on g gives a natural identification of g
with its dual g∗, by λA(B) = 〈A,B〉.
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Consider the natural, G-equivariant maps

EndC(g) ≈ g⊗ g∗ ≈ g⊗ g ⊂
⊗•

g −→ Ug

At the left end, the identity endomorphism 1g certainly commutes
with AdG. With a choice of basis xi for g and dual basis x∗i , the
image of 1g in g ⊗ g∗ is

∑
i xi ⊗ x∗i . Of course, noting that this is

the image of 1g, it is a-fortiori G-invariant.

Let Ω be the image of 1g in Ug. By design, Ω ∈ (Ug)G, but it is
not entirely clear that it is not accidentally 0.

For any choice of basis xi and dual basis x∗i , Ω =
∑
i xix

∗
i .

Remark: Some sources perversely define Ω by the formula
in terms of a basis and dual basis, and then prove that the
expression is invariant under change-of-basis. It is obviously better
to give an intrinsic definition that does not refer to a basis.
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Non-Euclidean geometries attached to G often have Laplacian
given by the corresponding Casimir element.

By design, the action of Ω on a representation space is intrinsic,
depending only on the isomorphism class. Since Ω commutes with
G, by Schur’s Lemma it acts by a scalar on an irreducible.

For G = SO(n,R), let’s compute the effect of Ω on Hd, using
the orthogonal basis θij = eij − eji. All these are length

√
2, so

Ω = 1
2

∑
i<j(eij − eji)2 ∈ z ⊂ Ug.

Of course, exp

(
0 t
−t 0

)
=

(
cos t sin t
− sin t cos t

)
, so

exp tθij =


1

cos t sin t
1

− sin t cos t
1


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With G = SO(n,R) acting on functions f on Sn−1 by g · f(x) =
f(xg), the summand θijθij acts by

∂2

∂t2

∣∣∣
t=0

f(x · etθij )

=
∂2

∂t2

∣∣∣
t=0

f(. . . , xi cos t− xj sin t, . . . , xi sin t+ xj cos t, . . .)

with something non-trivial only at ith and jth arguments. This is

∂

∂t

∣∣∣
t=0

(
(−xi sin t− xj cos t)fi + (xi cos t− xj sin t)fj

)
= −xifi + x2jfii + x2i fjj − xjfj − 2xixjfij

For homogeneous f of total degree d, Euler’s
∑
i xifi = d · f , and∑

ij xixjfij = d(d− 1)f help simplify:
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for f homogeneous of total degree d,

(Ωf)(x) =
∑
i<j

(
− xifi + x2jfii + x2i fjj − xjfj − 2xixjfij

)

= −(n− 1)d · f +
∑
i<j

(
x2jfii + x2i fjj − 2xixjfij

)
= −(n− 1)d · f + 1

2

∑
i6=j

(
x2jfii + x2i fjj − 2xixjfij

)
= −(n−1)d ·f + r2∆f − d(d−1) ·f = −d(d+n−2) ·f + r2∆f

Seemingly-miraculously, for harmonic f of total degree d, this
recovers the eigenvalue for the extrinsic ∆S , essentially giving
Ωf = ∆Sf .

That is, those eigenvalues are not mere artifacts! They are
intrinsic, so depend only on the isomorphism class of the
representation, and our argument for Hecke’s identity is complete.

///


