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• Classfield Theory In brief, global classfield theory classifies
abelian extensions of number fields, while local classfield theory
does the analogous things for local fields, finite extensions of Qp.

The details subsume all known (abelian) reciprocity laws.

Main Theorem of Global Classfield Theory
(classical form): The abelian (Galois) extensions K of a number
field k are in bijection with generalized ideal class groups, which
are quotients of ray class groups of conductor (a non-zero ideal) f

I(f)/P+
f

||

fractional ideals prime to f

principal ideals with totally positive generators 1 mod f

Further, the bijection sends a given generalized ideal class
group to the (abelian) Galois group of the extension, via the
Artin/Frobenius map/symbols p→ (p,K/k) [see below].
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Main Theorem of Local Classfield Theory: The abelian
(Galois) extensions K of a local field k are in bijection with the
open, finite-index subgroups of k×, by

K/k ←→ k×/NK
k K

×

This bijection is given by an isomorphism of the Galois group with
k×/NK

k K
× via Artin/Frobenius.

Cyclic local-global principle for norms: In a cyclic extension
K/k of number fields, an element of k is a global norm if and only
if it is a local norm everywhere. That is, for α ∈ k,

α ∈ NK
k (K×) ⇐⇒ α ∈ NKw

kv
(K×w ) for all v, w

The most intelligible proof uses zeta functions of simple algebras.
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To approach classfield theory, it is useful to progress from simple
situations to complicated: finite fields, local fields, number fields.

Indeed, the simplest part of the Galois theory of local fields is
described by the Galois theory of their residue fields. The same
is true of number fields.

As a diagnostic, if we can’t understand finite extensions of finite
fields, most likely we’ll not understand finite extensions of local
fields and number fields.

Further, as below, all finite finite-field extensions are generated by
roots of unity. Thus, extensions of local fields and number fields
generated by roots of unity (cyclotomic extensions) are the first
and canonical examples of abelian extensions. Extensions k( n

√
a)

for k containing nth roots of unity (Kummer extensions) are next.

In fact, over Q itself, classfield theory is provably the study of
cyclotomic extensions (Kronecker-Weber theorem).
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Finite fields: Recall the classification of finite algebraic field
extensions of Fp:

Claim: inside a fixed algebraic closure Fp of Fp, for each integer
n there is a unique field extension K of degree n over Fp. It is the
collection of roots of xp

n − x = 0 in the fixed algebraic closure.

Proof: On one hand, a finite multiplicative subgroup of a field
is cyclic, else there’d be too many roots of unity of some order.
A field extension of Fp of degree n is an n-dimensional Fp-
vectorspace, so has pn elements. The non-zero elements form a
cyclic group of order pn − 1. These, together with 0, are roots of
xp

n − x = 0.

On the other hand, inside the algebraic closure there is a splitting
field of xp

n − x. ///

Remark: The same proof works over arbitrary finite fields.
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Galois group of Fpn/Fp: is cyclic, generated by the Frobenius
element α→ αp.

Proof: The Frobenius element stabilizes Fpn , since αpn

= α
implies

(αp)p
n

= αpn+1

= (αpn

)p = αp

On the other hand, the fixed points of the Frobenius in Fpn are
roots of xp − x = 0, giving exactly Fp. Similarly, the action of
Frobenius on Fpn really is of order n. Thus, by Galois theory,
the Galois group of Fpn over Fp is cyclic order n generated by
Frobenius. ///

Remark: The same proof works over arbitrary finite fields.
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Surjectivity of norms on finite fields: The Galois norm
N : Fpn → Fp is surjective:

Proof: The norm is

Nα = α · αp · . . . · αpn−1

= α1+p+p2+...+pn−1

= α
pn−1
p−1

Note that the exponent divides pn − 1. In a finite cyclic group of
order `, for every divisor k of `, the map g → gk surjects to the
unique subgroup of order `/k. Here, the Galois norm surjects to
F×p . ///

Remark: A similar result holds for extensions of arbitrary finite
fields.
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Surjectivity of traces on finite fields: The Galois trace tr :
Fpn → Fp is surjective:

Proof: The trace is

trα = α+ αp + . . .+ αpn−1

This is a linear combination (all coefficients 1) of field
homomorphisms Fpn

→ Fpn . The desired assertion is a very
special case of

Linear independence of characters: Let χj : k → Ω be
distinct field maps. For cj ∈ Ω,

∑
j cjχj = 0 as a map k → Ω

only for cj all 0.

Proof: Let
∑

j cjχj = 0 be a shortest non-trivial relation,
renumbering as convenient...
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Divide through by c1, so

χ1 + c2χ2 + . . . = 0 (with c2 6= 0)

Let 0 6= x ∈ k such that χ1(x) 6= χ2(x). Then

0 = χ1(xy)+c2χ2(xy)+. . . = χ1(x)·
(
χ1(y)+c2

χ2(x)

χ1(x)
χ2(y)+. . .

)
Dividing by χ1(x) and subtracting gives a shorter relation,
contradiction. ///

The Galois maps of Fpn over Fp are linearly independent, are Fp-
linear, so trace is a not-identically-zero Fp-linear map Fpn → Fp.
Since Fp is one-dimensional over itself, this is surjective. ///

Remark: A similar result holds for extensions of arbitrary finite
fields.
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Unramified extensions of Qp: Inside a fixed algebraic closure
of Qp, for each positive integer n there is a unique unramified
extension k of Qp of degree n over Qp. It is generated by a
primitive pn − 1 root of unity.

Proof: Recall that the local ramification degree e and residue class
field extension degree f satisfy ef = n. The unramified-ness is
e = 1, so f = n. There is a primitive pn − 1 root of unity in Fpn .

Let Φ be the (pn − 1)th cyclotomic polynomial. It has no repeated
roots mod p. We do not claim that Φ is irreducible over Qp. (It
probably isn’t.) Let ζ1 ∈ ok reduce to a primitive pn − 1 root mod
p, so Φ(ζ1) = 0 mod p and Φ′(ζ1) 6= 0 mod p. Hensel. ///

Remark: The same proof works over arbitrary local fields.
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Frobenius elements in Galois groups over Qp

In k/Qp, unramified or ramified, there is certainly a unique prime
p over p. Thus, the decomposition group
Gp = {g ∈ Gal(k/Qp) : gp = p} is the whole Galois group
Gal(k/Qp). Recall that Gp surjects to the residue field Galois
group, which is cyclic order n, generated by Frobenius.

In general, the kernel of the map of Gp to the residue field Galois
group is the inertia subgroup. Here, there cannot be a non-trivial
kernel, since the residue field extension degree is equal to that of
the local field extension degree.

Thus, Gal(k/Qp) = Gp is cyclic order n, with canonical generator
also called Frobenius, characterized by reducing mod p to the
finite-field Frobenius.

Remark: The same proof works for unramified extensions of
arbitrary local fields.
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Norm map in unramified extensions k/Qp

Claim: The Galois norm N : k → Qp gives a surjection o×k → Z×p .

Proof: Surjectivity of finite-field norm and trace, and
completeness. Frobenius ϕ ∈ Gal(k/Qp) satisfies
ϕ(α) = αp mod po, so, mod po

Nα = ααp . . . αpn−1

= α1+p+p2+...+pn−1

= α
pn−1
p−1 (mod po)

This reduces the question to proving surjectivity to 1 + pZp. By
surjectivity of trace on finite fields, trkQp

ok = Zp. Thus, given

1 + pα with α ∈ Zp, there is β ∈ o with tr(β) = α. Thus,
N(1 + pβ) = 1 + pα mod p2. This reduces the question to proving
surjectivity to 1 + p2Zp. Continuing, using completeness, the
sequence of cumulative adjustments converges. ///

Remark: The same proof works for unramified extensions of
arbitrary local fields.
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A very special sub-case:

Unramified local classfield theory:

(Mock) Theorem: The unramified extensions k of Qp are in
bijection with finite-index subgroups of Q×p containing Z×p , by

finite-index subgroup H ⊃ Z×p ←→ Nk
Qp

(k×)

The Galois group is Gal(k/Qp) ≈ Q×p /Nk
Qp

(k×), via the map to

Artin/Frobenius: (
Frobenius x→ xp

)
←− p

Remark: The analogous result holds for all local fields.
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Proof: We have shown that an unramified extension k of Qp

of degree n is cyclic Galois, obtained by adjoining a primitive
(pn − 1)th root of unity ω, and the map from Gal(k/Qp) to
the Galois group of residue fields is an isomorphism. Thus, the
Frobenius generates Gal(k/Qp), and is order n.

Since the norm Nk
Qp

is surjective o×k → Z×p , Nk
Qp

(k×) is open.

Also, Nk
Qp

(p) = pn. Thus, Q×p /Nk
Qp

(k×) ≈ pZ/pnZ, which gives the

Galois group, by the map to Frobenius.

On the other hand, for H ⊃ Z×p of finite index n, since

Q×p /Z×p ≈ pZ, necessarily H = pnZ · Z×p . Adjoining a primitive

(pn − 1)th root of unity produces an unramified degree n extension
k such that Nk

Qp
(k×) = H. ///


