#### • Classfield Theory...

- Slightly refined main statements
- Recollection of quadratic example
- $\bullet$  Recap Hilbert's theorem 90
- Herbrand quotients: veiled homological ideas
- Recollection of topological antecedents: counting holes
- Toward Hilbert's theorem 90 as cohomology
- Cyclic extensions of local fields

#### Putting pieces of classfield theory together:

Local classfield theory asserts that the Galois groups of finite abelian extensions K of a local field k are exactly the quotients  $k^{\times}/N_k^K(K^{\times}) \xrightarrow{\alpha_{L/k}} \operatorname{Gal}(K/k)$ . The **Artin** or **reciprocity law** maps to Galois groups are *natural*, in the sense that, for finite abelian extensions  $L \supset K \supset k$  there is a commutative diagram

For an abelian extension of number fields K/k, the global Artin/reciprocity map  $\alpha_{K/k} : \mathbb{J} \to \text{Gal}(K/k)$  is essentially the product of the local ones...

*Recall:* For  $\mathfrak{p}$  in  $\mathfrak{o}_k$  and  $\mathfrak{P}|\mathfrak{p}$  in  $\mathfrak{o}_K$  unramified in abelian K/k, the inertia subgroup of the decomposition group  $G_{\mathfrak{p}} \subset \operatorname{Gal}(K/k)$  is trivial,  $G_{\mathfrak{p}}$  is generated by the Artin element  $(\mathfrak{p}, K/k)$ .

The corresponding unramified extension of completions  $K_w/k_v$ is *cyclic* with Galois group generated by the local Artin element  $(\mathfrak{m}_v, K_w/k_v)$  with  $\mathfrak{m}_v$  the unique non-zero prime in  $\mathfrak{o}_v$ . The local Artin/reciprocity map  $\alpha_{w/v}: k_v^{\times} \to \operatorname{Gal}(K_w/k_v)$  is

$$\alpha_{w/v}(x) = (\mathfrak{m}_v, K_w/k_v)^{\operatorname{ord}_v x} \qquad (\text{unramified } K_w/k_v)$$

Identifying the two cyclic groups  $\operatorname{Gal}(K_w/k_v) \approx G_{\mathfrak{p}}$  by identifying their corresponding Artin elements  $(\mathfrak{m}_v, K_w/k_v) \longleftrightarrow (\mathfrak{p}, K/k)$ , we can consider the local Artin map as mapping to  $G_{\mathfrak{p}}$ , and

$$\alpha_{w/v} : k_v^{\times} \longrightarrow \operatorname{Gal}(K_w/k_v) \approx G_{\mathfrak{p}} \subset \operatorname{Gal}(K/k)$$

With the identification  $\operatorname{Gal}(K_w/k_v) \approx G_{\mathfrak{p}} \subset \operatorname{Gal}(K/k)$  at unramified places, define the global Artin/reciprocity map  $\alpha_{K/k} : \mathbb{J} \longrightarrow \operatorname{Gal}(K/k)$  by

$$\alpha_{K/k}(x) = \prod_{v} \prod_{w|v} \alpha_{w/v}(x_v) \qquad \text{(for } x = \{x_v\} \in \mathbb{J}_k)$$

**Remark:** For the moment, we seem not to know how to define local Artin/reciprocity maps at *ramified* primes.

**Remark:** Local norms at unramified  $K_w/k_v$  are surjective to local units, so the product is *finite*.

The *critical* part of the assertion of global classfield theory is that the global  $\alpha_{K/k}$  factors through the idele class group  $\mathbb{J}_k/k^{\times}$ .

It is a *local* fact that  $\alpha_{w/v} : k_v^{\times} \to \operatorname{Gal}(K_w/k_v)$  factors through  $k_v^{\times}/N_{k_v}^{K_w}K_w^{\times}$  and gives an *isomorphism*  $\alpha_{w/v} : k_v^{\times}/N_{k_v}^{K_w}K_w^{\times} \to \operatorname{Gal}(K_w/k_v)$ . Thus,  $\alpha_{K/k}$  factors similarly. And  $\alpha_{K/k} : \mathbb{J}_k/k^{\times}N_k^K\mathbb{J}_K \longrightarrow \operatorname{Gal}(K/k)$  is an *isomorphism*.

## Significance of factoring through $\mathbb{J}/k^{\times}$ and $\mathbb{J}/k^{\times}N_k^K\mathbb{J}_K$

Since norms in unramified extensions of non-archimedean fields are *surjective* to local units, and norms on archimedean fields are open maps, the image  $N_k^K \mathbb{J}_K$  is *open* in  $\mathbb{J}_k$ . Thus, the local and global Artin maps are *continuous*.

The latter open-ness/continuity reformulates *part* of the classical assertion that the Artin map **has a conductor**. But the difficult part is proving  $k^{\times}$ -invariance.

By Fujisaki's Lemma, since the product of norms at archimedean places includes the ray  $\{(t^{1/N}, \ldots, t^{1/N}, 1, 1, \ldots) : t > 0\}$  with  $N = r_1 + r_2$ , the quotient  $\mathbb{J}_k/k^{\times}N_k^K\mathbb{J}_K$  is finite, in any case.

**Recall** how the fact that the quadratic *norm residue* symbol factors through  $\mathbb{J}_k/k^{\times}$  proves reciprocity for the quadratic Hilbert symbol, and then more classical forms of quadratic reciprocity...

For global field k with completions  $k_v$  of k, for K a quadratic extension of k, put

$$K_v = K \otimes_k k_v$$

The local norm residue symbol  $\nu_v: k_v^{\times} \to \{\pm 1\}$  is

$$\nu_{v}(\alpha) = \begin{cases} +1 & (\text{for } \alpha \in N(K_{v}^{\times})) \\ \\ -1 & (\text{for } \alpha \notin N(K_{v}^{\times})) \end{cases}$$

For  $k_v = \mathbb{Q}_p$  with odd p, we have proven the small *local* **Theorem:** 

$$[k_v^{\times} : N(K_v^{\times})] = \begin{cases} 2 & \text{(when } K_v \text{ is a field)} \\ \\ 1 & \text{(when } K_v \approx k_v \times k_v) \end{cases}$$

**Cor:**  $\nu_v$  is a group homomorphism  $k_v^{\times} \to \{\pm 1\}$ . ///

We grant ourselves... **Theorem:** the quadratic norm-residue map  $\nu$  is  $k^{\times}$ -invariant: it factors through  $\mathbb{J}/k^{\times}$ .

This is a *reciprocity law*, and we saw earlier that this entails more classical-looking reciprocity laws. We recall the connections:

**Quadratic Hilbert symbols** For  $a, b \in k_v$  the (quadratic) Hilbert symbol is

$$(a,b)_v = \begin{cases} 1 & (\text{if } ax^2 + by^2 = z^2 \text{ has non-trivial solution in } k_v) \\ -1 & (\text{otherwise}) \end{cases}$$

**Corollary:** For  $a, b \in k^{\times}$ , we have  $\Pi_v (a, b)_v = 1$ .

*Proof:* For b a non-square in  $k^{\times}$ ,  $(a, b)_v$  is  $\nu_v(a)$  for the field extension  $k(\sqrt{b})$ , and reciprocity for the norm residue symbol gives the result for the Hilbert symbol. ///

Traditional-looking quadratic reciprocity laws follow from that reciprocity for the quadratic Hilbert symbol. Define

$$\left(\frac{x}{v}\right)_2 = \begin{cases} 1 & (\text{for } x \text{ a non-zero square mod } v) \\ 0 & (\text{for } x = 0 \mod v) \\ -1 & (\text{for } x \text{ a non-square mod } v) \end{cases}$$

Quadratic Reciprocity ('main part'): For  $\pi$  and  $\varpi$  two elements of  $\mathfrak{o}$  generating distinct odd prime ideals,

$$\left(\frac{\varpi}{\pi}\right)_2 \left(\frac{\pi}{\varpi}\right)_2 = \Pi_v (\pi, \varpi)_v$$

where v runs over all even or infinite primes, and  $(,)_v$  is the (quadratic) Hilbert symbol.

*Proof:* Claim that, since  $\pi o$  and  $\varpi o$  are odd primes,

$$(\pi, \varpi)_{v} = \begin{cases} \left(\frac{\varpi}{\pi}\right)_{2} & \text{for } v = \pi \mathfrak{o} \\ \left(\frac{\pi}{\varpi}\right)_{2} & \text{for } v = \varpi \mathfrak{o} \\ 1 & \text{for } v \text{ odd and } v \neq \pi \mathfrak{o}, \varpi \mathfrak{o} \end{cases}$$

Let  $v = \pi \mathfrak{o}$ . Suppose that there is a solution x, y, z in  $k_v$  to

$$\pi x^2 + \varpi y^2 = z^2$$

Via the ultrametric property,  $\operatorname{ord}_v y$  and  $\operatorname{ord}_v z$  are identical, and less than  $\operatorname{ord}_v x$ , since  $\varpi$  is a *v*-unit and  $\operatorname{ord}_v \pi x^2$  is *odd*. Multiply through by  $\pi^{2n}$  so that  $\pi^n y$  and  $\pi^n z$  are *v*-units. Then  $\varpi$  must be a square modulo *v*.

///

On the other hand, when  $\varpi$  is a square modulo v, use Hensel's lemma to infer that  $\varpi$  is a square in  $k_v$ . Then

$$\varpi y^2 = z^2$$

certainly has a non-trivial solution.

For v an odd prime distinct from  $\pi \mathfrak{o}$  and  $\varpi \mathfrak{o}$ ,  $\pi$  and  $\varpi$  are vunits. When  $\varpi$  is a square in  $k_v$ ,  $\varpi = z^2$  has a solution, so the Hilbert symbol is 1. For unit  $\varpi$  not a square in  $k_v$ , the quadratic field extension  $k_v(\sqrt{\varpi})$  has the property that the norm map is *surjective* to units in  $k_v$ . Thus, there are  $y, z \in k_v$  so that

$$\pi = N(z + y\sqrt{\varpi}) = z^2 - \varpi y^2$$

Thus, all but even-prime and infinite-prime quadratic Hilbert symbols are quadratic symbols.

Simplest example: For two (positive) odd prime numbers p, q, we prove that Gauss' quadratic reciprocity

$$\left(\frac{q}{p}\right)_2 \left(\frac{p}{q}\right)_2 = (-1)^{(p-1)(q-1)/4}$$

From quadratic Hilbert reciprocity,

$$\left(\frac{q}{p}\right)_2 \left(\frac{p}{q}\right)_2 = (p,q)_2 (p,q)_\infty$$

Indeed, since both p, q are positive, the equation

$$px^2 + qy^2 = z^2$$

has non-trivial *real* solutions x, y, z. That is, the  $\mathbb{Q}_{\infty}$  Hilbert symbol  $(p, q)_{\infty}$  is 1.

Therefore, only the 2-adic Hilbert symbol contributes to the righthand side of Gauss' formula:

$$\left(\frac{q}{p}\right)_2 \left(\frac{p}{q}\right)_2 = (p,q)_2$$

Hensel's lemma shows that the solvability of this equation, for p, q both 2-adic units, depends only upon their residue classes mod 8.

The usual formula  $(-1)^{(p-1)(q-1)/4}$  is just one way of interpolating the 2-adic Hilbert symbol by elementary-looking formulas. ///

**Remark:** Anticipating that general classfield theory is couched in terms of *norms*, we should expect analogous recovery of other reciprocity laws.

# Recap:

**Hilbert's Theorem 90:** In a field extension K/k of degree n with cyclic Galois group generated by  $\sigma$ , the elements in K of norm 1 are exactly those of the form  $\sigma \alpha / \alpha$  for  $\alpha \in K$ . ///

Hilbert's Theorem 90 gives another (the usual?) proof of

**Corollary:** A cyclic degree n extension K/k of k containing  $n^{th}$  roots of unity and characteristic not dividing n is obtained by adjoining an  $n^{th}$  root.

Additive version of Theorem 90: Let K/k be cyclic of degree n with Galois group generated by  $\sigma$ . Then  $\operatorname{tr}_k^K(\beta) = 0$  if and only if there is  $\alpha \in K$  such that  $\beta = \alpha - \alpha^{\sigma}$ .

**Corollary:** (Artin-Schreier extensions) Let K/k be cyclic of order p in characteristic p. Then there is  $K = k(\alpha)$  with  $\alpha$  satisfying an (Artin-Schreier) equation  $x^p - x + a = 0$  with  $a \in k$ . ///

Post-1940's reformulations: Chevalley 1940, Weil 1951,

Hochschild-Nakayama 1952, ... To ground this, recast some things we already know, such as *Hilbert's Theorem 90*, in other terms.

### Herbrand quotients: veiled homological ideas

Homological algebra includes computational devices extending linear algebra and counting procedures. Motivations also come from (algebraic) topology, defining and counting *holes*.

It is easy enough to *define* the **Herbrand quotient**, although explaining its significance, and the meaning of the Key Lemma, requires more effort:

Let A be an abelian group, with maps  $f : A \to A$  and  $g : A \to A$ , such that  $f \circ g = 0$  and  $g \circ f = 0$ .

 $q(A) = q_{f,g}(A) =$  Herbrand quotient of  $A, f, g = \frac{[\ker f : \operatorname{im} g]}{[\ker g : \operatorname{im} f]}$ 

**Inscrutable Key Lemma:** For finite A, q(A) = 1. For f-stable, g-stable subgroup  $A \subset B$  with  $f, g : B \to B$ , we have  $q(B) = q(A) \cdot q(B/A)$ , in the usual sense that if two are finite, so is the third, and the relation holds.

The keywords are that this Lemma is about Euler-Poincaré characteristics of the short exact sequence of complexes



What does this mean?

First, quick definitions stripped of origins, motivation, or purpose: A *complex* of abelian groups  $A_i$  is a family of homomorphisms

 $\cdots \longrightarrow A_i \xrightarrow{f_i} A_{i-1} \xrightarrow{f_{i-1}} \cdots$ 

with the composition of any two consecutive maps 0, that is, with  $f_{i-1} \circ f_i = 0$ , for all *i*. The **(co)homology**, with superscript or subscript depending on context and numbering conventions, is

$$H_i$$
(the complex) =  $H^i$ (the complex) =  $\frac{\ker f_i}{\operatorname{im} f_{i\pm 1}}$ 

The utility of this requires explanation. Indeed, the history of the interaction of linear algebra and algebraic topology (as *counting holes*) is tangled.