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• Classfield Theory...

• Slightly refined main statements
• Recollection of quadratic example
• Recap Hilbert’s theorem 90

• Herbrand quotients: veiled homological ideas
• Recollection of topological antecedents: counting holes
• Toward Hilbert’s theorem 90 as cohomology
• Cyclic extensions of local fields
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Putting pieces of classfield theory together:

Local classfield theory asserts that the Galois groups of finite
abelian extensions K of a local field k are exactly the quotients

k×/NK
k (K×)

αL/k

≈
// Gal(K/k) . The Artin or reciprocity law

maps to Galois groups are natural, in the sense that, for finite
abelian extensions L ⊃ K ⊃ k there is a commutative diagram

k×/NL
k (L×)

αL/k //

quot

��

Gal(L/k)

quot

��
k×/NK

k (K×) αK/k

// Gal(K/k)

For an abelian extension of number fields K/k, the global
Artin/reciprocity map αK/k : J → Gal(K/k) is essentially the
product of the local ones...
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Recall: For p in ok and P|p in oK unramified in abelian K/k, the
inertia subgroup of the decomposition group Gp ⊂ Gal(K/k) is
trivial, Gp is generated by the Artin element (p,K/k).

The corresponding unramified extension of completions Kw/kv
is cyclic with Galois group generated by the local Artin element
(mv,Kw/kv) with mv the unique non-zero prime in ov. The local
Artin/reciprocity map αw/v : k×v → Gal(Kw/kv) is

αw/v(x) = (mv,Kw/kv)
ordvx (unramified Kw/kv)

Identifying the two cyclic groups Gal(Kw/kv) ≈ Gp by identifying
their corresponding Artin elements (mv,Kw/kv) ←→ (p,K/k), we
can consider the local Artin map as mapping to Gp, and

αw/v : k×v −→ Gal(Kw/kv) ≈ Gp ⊂ Gal(K/k)
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With the identification Gal(Kw/kv) ≈ Gp ⊂ Gal(K/k) at
unramified places, define the global Artin/reciprocity map
αK/k : J −→ Gal(K/k) by

αK/k(x) =
∏
v

∏
w|v

αw/v(xv) (for x = {xv} ∈ Jk)

Remark: For the moment, we seem not to know how to define
local Artin/reciprocity maps at ramified primes.

Remark: Local norms at unramified Kw/kv are surjective to
local units, so the product is finite.

The critical part of the assertion of global classfield theory is that
the global αK/k factors through the idele class group Jk/k×.

It is a local fact that αw/v : k×v → Gal(Kw/kv) factors through

k×v /N
Kw

kv
K×w and gives an isomorphism

αw/v : k×v /N
Kw

kv
K×w → Gal(Kw/kv). Thus, αK/k factors similarly.

And αK/k : Jk/k×NK
k JK −→ Gal(K/k) is an isomorphism.
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Significance of factoring through J/k× and J/k×NK
k JK

Since norms in unramified extensions of non-archimedean fields
are surjective to local units, and norms on archimedean fields are
open maps, the image NK

k JK is open in Jk. Thus, the local and
global Artin maps are continuous.

The latter open-ness/continuity reformulates part of the classical
assertion that the Artin map has a conductor. But the difficult
part is proving k×-invariance.

By Fujisaki’s Lemma, since the product of norms at archimedean
places includes the ray {(t1/N , . . . , t1/N , 1, 1, . . .) : t > 0} with
N = r1 + r2, the quotient Jk/k×NK

k JK is finite, in any case.

Recall how the fact that the quadratic norm residue symbol
factors through Jk/k× proves reciprocity for the quadratic Hilbert
symbol, and then more classical forms of quadratic reciprocity...
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For global field k with completions kv of k, for K a quadratic
extension of k, put

Kv = K ⊗k kv

The local norm residue symbol νv : k×v → {±1} is

νv(α) =

+1 (for α ∈ N(K×v ))

−1 (for α 6∈ N(K×v ))

For kv = Qp with odd p, we have proven the small local
Theorem:

[k×v : N(K×v )] =

 2 (when Kv is a field)

1 (when Kv ≈ kv × kv)

Cor: νv is a group homomorphism k×v → {±1}. ///
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We grant ourselves... Theorem: the quadratic norm-residue map
ν is k×-invariant: it factors through J/k×.

This is a reciprocity law, and we saw earlier that this entails more
classical-looking reciprocity laws. We recall the connections:

Quadratic Hilbert symbols For a, b ∈ kv the (quadratic)
Hilbert symbol is

(a, b)v =

 1 (if ax2 + by2 = z2 has non-trivial solution in kv)

−1 (otherwise)

Corollary: For a, b ∈ k×, we have Πv (a, b)v = 1.

Proof: For b a non-square in k×, (a, b)v is νv(a) for the field
extension k(

√
b), and reciprocity for the norm residue symbol gives

the result for the Hilbert symbol. ///
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Traditional-looking quadratic reciprocity laws follow from that
reciprocity for the quadratic Hilbert symbol. Define

(x
v

)
2

=


1 (for x a non-zero square mod v)

0 (for x = 0 mod v)

−1 (for x a non-square mod v)

Quadratic Reciprocity (‘main part’): For π and $ two
elements of o generating distinct odd prime ideals,($

π

)
2

( π
$

)
2

= Πv (π,$)v

where v runs over all even or infinite primes, and (, )v is the
(quadratic) Hilbert symbol.
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Proof: Claim that, since πo and $o are odd primes,

(π,$)v =



(
$
π

)
2

for v = πo(
π
$

)
2

for v = $o

1 for v odd and v 6= πo, $o

Let v = πo. Suppose that there is a solution x, y, z in kv to

πx2 +$y2 = z2

Via the ultrametric property, ordvy and ordvz are identical, and
less than ordvx, since $ is a v-unit and ordvπx

2 is odd. Multiply
through by π2n so that πny and πnz are v-units. Then $ must be
a square modulo v.
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On the other hand, when $ is a square modulo v, use Hensel’s
lemma to infer that $ is a square in kv. Then

$y2 = z2

certainly has a non-trivial solution.

For v an odd prime distinct from πo and $o, π and $ are v-
units. When $ is a square in kv, $ = z2 has a solution, so the
Hilbert symbol is 1. For unit $ not a square in kv, the quadratic
field extension kv(

√
$) has the property that the norm map is

surjective to units in kv. Thus, there are y, z ∈ kv so that

π = N(z + y
√
$) = z2 −$y2

Thus, all but even-prime and infinite-prime quadratic Hilbert
symbols are quadratic symbols. ///
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Simplest example: For two (positive) odd prime numbers p, q,
we prove that Gauss’ quadratic reciprocity(

q

p

)
2

(
p

q

)
2

= (−1)(p−1)(q−1)/4

From quadratic Hilbert reciprocity,(
q

p

)
2

(
p

q

)
2

= (p, q)2(p, q)∞

Indeed, since both p, q are positive, the equation

px2 + qy2 = z2

has non-trivial real solutions x, y, z. That is, the Q∞ Hilbert
symbol (p, q)∞ is 1.
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Therefore, only the 2-adic Hilbert symbol contributes to the right-
hand side of Gauss’ formula:(

q

p

)
2

(
p

q

)
2

= (p, q)2

Hensel’s lemma shows that the solvability of this equation, for p, q
both 2-adic units, depends only upon their residue classes mod 8.

The usual formula (−1)(p−1)(q−1)/4 is just one way of interpolating
the 2-adic Hilbert symbol by elementary-looking formulas. ///

Remark: Anticipating that general classfield theory is couched
in terms of norms, we should expect analogous recovery of other
reciprocity laws.
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Recap:

Hilbert’s Theorem 90: In a field extension K/k of degree n
with cyclic Galois group generated by σ, the elements in K of
norm 1 are exactly those of the form σα/α for α ∈ K. ///

Hilbert’s Theorem 90 gives another (the usual?) proof of

Corollary: A cyclic degree n extension K/k of k containing nth

roots of unity and characteristic not dividing n is obtained by
adjoining an nth root. ///

Additive version of Theorem 90: Let K/k be cyclic of degree
n with Galois group generated by σ. Then trKk (β) = 0 if and only
if there is α ∈ K such that β = α− ασ.

Corollary: (Artin-Schreier extensions) Let K/k be cyclic of order
p in characteristic p. Then there is K = k(α) with α satisfying an
(Artin-Schreier) equation xp − x+ a = 0 with a ∈ k. ///
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Post-1940’s reformulations: Chevalley 1940, Weil 1951,
Hochschild-Nakayama 1952, ... To ground this, recast some things
we already know, such as Hilbert’s Theorem 90, in other terms.

Herbrand quotients: veiled homological ideas

Homological algebra includes computational devices extending
linear algebra and counting procedures. Motivations also come
from (algebraic) topology, defining and counting holes.

It is easy enough to define the Herbrand quotient, although
explaining its significance, and the meaning of the Key Lemma,
requires more effort:

Let A be an abelian group, with maps f : A → A and g : A → A,
such that f ◦ g = 0 and g ◦ f = 0.

q(A) = qf,g(A) = Herbrand quotient of A, f, g =
[ker f : im g]

[ker g : im f ]

Inscrutable Key Lemma: For finite A, q(A) = 1. For f -
stable, g-stable subgroup A ⊂ B with f, g : B → B, we have
q(B) = q(A) · q(B/A), in the usual sense that if two are finite, so is
the third, and the relation holds.
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The keywords are that this Lemma is about Euler-Poincaré
characteristics of the short exact sequence of complexes

...

f

��

...

f

��

...

f

��
0 // A

g

��

// B

g

��

// B/A

g

��

// 0

0 // A

f

��

// B

f

��

// B/A

f

��

// 0

0 // A

g

��

// B

g

��

// B/A

g

��

// 0

...
...

...
What does this mean?
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First, quick definitions stripped of origins, motivation, or purpose:
A complex of abelian groups Ai is a family of homomorphisms

. . . // Ai
fi // Ai−1

fi−1 // . . .

with the composition of any two consecutive maps 0, that is, with
fi−1 ◦ fi = 0, for all i. The (co)homology, with superscript or
subscript depending on context and numbering conventions, is

Hi(the complex) = Hi(the complex) =
ker fi

im fi±1

The utility of this requires explanation. Indeed, the history of the
interaction of linear algebra and algebraic topology (as counting
holes) is tangled.


