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• Classfield Theory...

• Herbrand quotients: veiled homological ideas
• Recollection of topological antecedents: counting holes
• Herbrand quotient as Euler-Poincaré characteristic
• Toward Hilbert’s theorem 90 as cohomology cont’d
• Cyclic extensions of local fields
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Herbrand quotients: veiled homological ideas Homological
algebra includes computational devices extending linear algebra
and counting procedures. Motivations also come from (algebraic)
topology, defining and counting holes.

Recap the definition of the Herbrand quotient, despite its
opacity: For an abelian group A with maps f : A → A and
g : A→ A, with f ◦ g = 0 and g ◦ f = 0.

q(A) = qf,g(A) = Herbrand quotient of A, f, g =
[ker f : im g]

[ker g : im f ]

Inscrutable Key Lemma: For finite A, q(A) = 1. For f -
stable, g-stable subgroup A ⊂ B with f, g : B → B, we have
q(B) = q(A) · q(B/A), in the usual sense that if two are finite, so is
the third, and the relation holds.
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More definitions stripped of origins, motivation, or purpose: A
complex of abelian groups Ai is a family of homomorphisms (with
the ± in the numbering depending on context)

. . . // Ai
fi // Ai±1

fi±1 // . . .

with the composition of any two consecutive maps = 0, that is,
with fi±1 ◦ fi = 0, for all i. The (co)homology, with superscript
or subscript depending on context and numbering conventions, is

Hi(the complex) = Hi(the complex) =
ker fi

im fi±1
The utility of this requires explanation. In any case, the Herbrand
quotient situation involves a periodic complex

. . . // A
f // A

g // A
g // A

f // . . .

and the Herbrand quotient is a ratio of orders of (co-)homology
groups.
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Basic computational device: long exact sequence

We noted that the homology of spheres Sn is best computed not
by expressing the spheres as simplicial complexes and using the
definition, but by a long exact sequence in homology, obtained
from the Mayer-Vietoris theorem.

That is, express Sn as the union of two hemispheres, each
having trivial homology (no holes!), intersecting at the equator,
isomorphic to Sn−1.

In this example, the (Mayer-Vietoris) long exact sequence has
many 0’s, giving Hi(Sn) ≈ Hi−1(Sn−1) for 2 ≤ i < n.

Induction on the dimension n of Sn essentially reduces to some
low-dimensional and edge cases.

These edge cases are nicely explained via Euler-Poincaré
characteristics, in an algebraic sense, rather than the naive
geometric sense V − E + F .
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Euler-Poincaré characteristics: The fussy edge cases in using
the long exact sequence from Mayer-Vietoris to compute homology
of spheres are

0→ H1(Sn)→ Z→ Z⊕ Z→ Z→ 0

and, at the bottom of the induction,

0→ H1(S1)→ Z⊕ Z→ Z⊕ Z→ Z→ 0

In both cases, the unknown object injects to a free Z-module, so is
free. Then the question is obviously its rank.

Claim (about Euler characteristic): In an exact sequence

0 −→ F1 −→ F2 −→ . . . −→ Fn−1 −→ Fn −→ 0

of free modules Fi, we have
∑
i(−1)i · rkFi = 0.
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Proof: For a short exact sequence 0 → A → B → C → 0 of vector
spaces over a field, the standard idea that any basis of A can be
extended to a basis of B, with the (images of the) new elements
forming a basis of C ≈ B/A, proves the assertion in this case.

The general case is by induction: an exact sequence

0 // F1
// . . . //// Fn−1 // Fn−1 // Fn // 0

with n > 3 can be broken into two smaller ones:

0 // . . . // Fn−2 //

""DDDDDDDD
Fn−1 // Fn // 0

X

<<zzzzzzzz

""EEEEEEEEE

0

<<yyyyyyyyy
0

with X the image of Fn−2 and the kernel of Fn−1 → Fn.
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Then the two equations

dimF1 − dimF2 + dimF3 − ...+ (−1)n−1 dimX = 0

dimX − dimFn−1 + dimFn = 0

give the assertion, by subtracting or adding.

Remark: The same argument applies to exact sequences of free
modules over a PID.

Remark: The same argument proves a counting result, namely,
for an exact sequence of finite abelian groups,

0 // M1
// . . . //// Mn−1 // Mn−1 // Mn

// 0∏
i |Mi|(−1)

i

= 1, or, equivalently,
∑
i(−1)i · log |Mi| = 0.

This bears on Herbrand-quotient issues.
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Toward Hilbert’s Theorem 90 as cohomology: The linear
algebra that counts holes is useful for counting other things.

To introduce cohomology as saying useful things about familiar
objects, rewrite Hilbert’s theorem 90: for G = Gal(K/k) = 〈σ〉
cyclic, letting t =

∑
g∈G g ∈ Z[G], the additive version of the

theorem asserts ker t|K
im (σ − 1)|K

= 0

Of course, the multiplicative version has the same form, once we
realize that for β ∈ K×, (σ − 1)β = σβ/β and t · β = NK

k (β).

A formation ker/im is of the desired homological form.

Homological algebra puts such quotients into a larger context.

The Artin/reciprocity map will have a natural homological sense.
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The numerators in Hilbert’s Theorem 90 are the kernels of the
norm NK

k : K× → k× and trace trKk : K → k.

k× = (K×)G and k = KG are the G-fixed submodules of K× and
K, by Galois theory.

Recall that, for a group G and Z-module A with G acting, the
fixed sub-module AG is

AG = {a ∈ A : ga = a for all g ∈ G}
This is the trivial-representation isotype in A. This is
characterized as the subobject through which all G-maps from
trivial G-modules X to A factor:

AG // A

X

∀

>>~~~~~~~~
∃!

OO�
�
�

(G acting trivially on X)
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The denominators in Theorem 90 are as follows.

The co-fixed quotient module AG of a G-module A is characterized
as the quotient through which all G-maps from A to trivial G-
modules X factor:

AG

∃!
���
�
� Aoo

∀~~}}}}}}}}
(G acting trivially on X)

X
This is A’s trivial-representation co-isotype. It is provably
constructed as

AG =
A

IG ·A
where IG is the augmentation ideal, the kernel of the augmentation
map ε : Z[G]→ Z, defined by εg = 1 for all g ∈ G. Therefore,

IG = ideal generated in Z[G] by g − 1 for g ∈ G
IG ·A appears in Hilbert’s theorem 90 for cyclic G.
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For cyclic G = 〈σ〉 of order n, with t =
∑
g∈G g

(σ − 1) · t = t · (σ − 1) = (σ − 1) · (1 + σ + σ2 + . . .+ σn−1)

= σn − 1 = 0 (in Z[G])

Thus, since the composite of any two successive maps is 0, by
definition we have a two-sided complex fitting the hypotheses of
the Herbrand quotient situation:

. . . t // A
σ−1 // A

t // A
σ−1 // A

t // . . .

(Co-)homology quotients abstracting Theorem 90 are

ker t|A
im (σ − 1)|A

ker(σ − 1)|A
im t|A
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Specifically, Theorem 90 says that for A = K or A = K× with
K/k a finite separable extension,

ker t|A
im (σ − 1)|A

= 0

In that situation, due to non-degeneracy of trace in separable
extensions,

ker(σ − 1)|K
im t|K

=
k

trKk K
= 0

and

ker(σ − 1)|K×

im t|K×
=

k×

NK
k K

× =


1 (finite fields)

Z/[K : k] (unramified local)

?? (in general)
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Theorem: (shortest long exact sequence) A commutative diagram

0

��

0

��

0

��
0 // A

f

��

// B //

f

��

C //

f

��

0

0 // A′

��

// B′ //

��

C ′ //

��

0

0 0 0
with exact rows gives a long exact sequence

0→ ker f |A → ker f |B → ker f |C →
A′

fA
→ B′

fB
→ C ′

fC
→ 0

Remark: The least obvious map is ker f |C −→ A′/fA.

Remark: The diagram is a short exact sequence of the complexes
0→ A→ A′ → 0, 0→ B → B′ → 0, and 0→ C → C ′ → 0.
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Least obvious part of the proof: The connecting homomorphism
δ : ker f |C −→ A′/fA is not obvious. Recopying the diagram,

0

��

0

��

0

��
0 // A

f

��

// B //

f

��

C //

f

��

0

0 // A′

��

// B′ //

��

C ′ //

��

0

0 0 0
Given f(c) = 0, take b → c. Then f(b) → f(c) = 0, so there is
a′ → f(b). Put δ(c) = a′. The rest of the proof is more natural.

///

Remark: The description of the connecting homomorphism is the
Snake Lemma.
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Example: Powers in Z×p , p > 2. Let f(x) = xn, and consider

0

��

0

��

0

��
0 // 1 + pZp

f

��

// Z×p //

f

��

Z/p× //

f

��

0

0 // 1 + pZp

��

// Z×p //

��

Z/p× //

��

0

0 0 0
Let µnR be nth roots of unity in R, and U = 1 + pZp. The long
exact sequence is (with multiplicative notation)

1→ µnU → µnZ×p → µnZ/p× →
U

Un
→

Z×p
(Z×p )n

→ Z/p×

(Z/p×)n
→ 1

For p6 |n, ...
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... with p6 |n and p > 2 we understand nth powers in U and
in Z/p×: on U the nth power map is an isomorphism. Thus,
(recopying)

1→ µnU → µnZ×p → µnZ/p× →
U

Un
→

Z×p
(Z×p )n

→ Z/p×

(Z/p×)n
→ 1

becomes

1→ 1→ µnZ×p → µnZ/p× → 1→
Z×p

(Z×p )n
→ Z/p×

(Z/p×)n
→ 1

Two isomorphisms: whatever nth roots of unity are in Z/p× lift to
Z×p , and x ∈ Z×p is an nth power ⇔ it is an nth power mod p.

Remark: Obtaining nth roots of unity in Zp didn’t seem to need
Hensel’s Lemma, only that x→ xn is an isomorphism on U .


