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Example (cont’d): Function fields in one variable... as algebraic
parallels to Z and Q.

Theorem: All finite field extensions of C((X − z)) are by
adjoining solutions to Y e = X − z for e = 2, 3, 4, . . .. [Done]

Few examples of explicit parametrization of an algebraic closure of
a field are known: not Q, for sure.

Finite fields, yes: the cyclic-ness of F×q and the uniqueness of the
extension Fqd of a given degree d say that the degree-d extension

is the collection of roots of xq
d−1 = 1.

The Galois group of Fqd/Fq is cyclic of order d, generated by the
Frobenius element α→ αq. Thus, there is the decisive

Gal(Fq/Fq) = lim
d

Z/d = Ẑ ≈
∏
p

Zp
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Remarks What about Gal(Q/Q)?

In Wiles’ and Wiles-Taylor’ mid-1990s proof of Fermat’s Last
Theorem, they proved part of the Taniyama-Shimura-Weil (1950s)
conjecture: certain two-dimensional representations of Gal(Q/Q)
attached to elliptic curves defined over Q are parametrized by
holomorphic modular forms... (!?!)

A representation ρ of a group G is simply a group homomorphism

ρ : G −→ GLn(k) = {k − linear autos of kn}

Quadratic reciprocity is the simplest analogue of the Taniyama-
Shimura-Weil conjecture: a Galois-related thing (quadratic
symbol) is a harmonic-analysis thing (Dirichlet character). Those
are representations on GL1, with ±1 construed as trivial-or-not:

p −→
(√

D

p

)
2

∈ Gal(Q(
√
D)/Q) ≈ Gal(Q/Q)

Gal(Q/Q(
√
D))

The proof that this has a conductor N = 4D, that is, depends
only on p mod 4D, is the proof that the Galois-object is analytic.
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About 1980, Y. Hellegouarch and G. Frey observed that a non-
trivial rational solution of Fermat’s equation gives a non-singular
cubic curve defined over Q:

an + bn = cn −→ y2 = x(x− an)(x+ bn) (with abc 6= 0)

1985-6, Frey suggested, and Serre partly proved, that Taniyama-
Shimura-Weil would imply Fermat. 1986/90 K. Ribet proved this
implication.

(Slightly more specifically: the conductor N of the elliptic curve
is the product of distinct primes dividing abc. If the elliptic curve
is known to be modular, there is a descent argument reducing the
conductor/level (!?!), removing all odd primes from the conductor.
But the modular curve Γ0(2)\H has genus 0, that is, has no maps
to an elliptic curve. Contradiction.)

In fact, Wiles-Taylor only need a part of T-S-W, and that was
completed 1995.

The complete T-S-W theorem was proven by Diamond, B.
Conrad, Diamond-Taylor, and Breuil.
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A tangent: Why representations?

Sometimes a group G and its smallest (=irreducible)
representations, are well-understood, shedding light on large
representations arising in practice, by breaking them into atomic
pieces.

Example: the circle G = S1 = R/Z has one-dimensional
representations x → e2πinx indexed by integers n. Fourier series
express functions on the circle as sums of exponential functions.

Similarly, G = R has one-dimensional representations x → e2πinx

indexed by integers n. Fourier inversion expresses functions on
the line as integrals of exponential functions.

Fourier expansions facilitate analysis on [a, b] or R, because d/dx
commutes with the group action (by translation), so (!!) acts by a
scalar on each irreducible. (This is Schur’s lemma.)

That is, writing a Fourier expansion diagonalizes the linear
operator d/dx.

For example, constant-coefficient differential equations are
converted to algebraic equations.
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Example: Unitary groups G = U(n) = {g ∈ GLn(C) : g∗g = 1n}
have irreducibles parametrized simply by sequences of integers
m1 ≥ m2 ≥ . . .mn (theory of highest weights).

For example, G = U(2) acts by rotations on the 3-sphere
S3. Various collections of (nice...) functions on S3 thereby are
representation spaces of G, and express functions as sums of
functions belonging to irreducible subrepresentations.

The Casimir element (of the universal enveloping algebra of the
Lie algebra of G!?!) commutes with the group action, so (Schur’s
lemma!) acts by a scalar on irreducibles. The Casimir element is
manifest (!?!) as a rotation-invariant Laplacian ∆ on S3.

The important differential equation (∆ − λ)u = f on the sphere is
solved by this decomposition into irreducible representations.

Decomposition of function spaces on the two-sphere S2 was
understood by Laplace pre-1800 for purposes of celestial
mechanics. The corresponding representation-theoretic
decompositions are Fourier-Laplace expansions.
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Example: SL2(R) has irreducible unitary representations on
Hilbert spaces, nicely parametrized by k = ±2,±3,±4,±5, . . .,
by the interval ( 1

2 , 1], and by the critical line 1
2 + iR.

The discretely parametrized repns ±2,±3, . . . correspond (!?!)
to representations generated by holomorphic modular forms, for
example, entering the Taniyama-Shimura-Weil conjecture.

The continuously parametrized representations correspond (!?!) to
eigenfunctions of an invariant Laplacian on the upper half-plane
H, studied by Maaß(1949), Selberg, Roelcke, Avakumovic (all 1956
et seq), and many others since.

In both cases, the Casimir element (in the center of the enveloping
algebra) acts as a scalar (Schur’s lemma!), the scalar depending
only on the representation class.

That is, the representation theory diagonalizes Laplacian/Casimir.
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Oppositely, sometimes a group G itself is mysterious, but events
produce a stock of representations of it, from which we make
inferences.

For example, algebraic aspects of representations of Gal(Q/Q) on
cohomology of algebraic varieties (!?!) defined over Q are better
understood than Gal(Q/Q) itself.

The Taniyama-Shimura-Weil conjecture was difficult: neither the
group Gal(Q/Q) nor the analytical aspects of its more-than-one-
dimensional representations were understood.

Note: parametrization in terms of modular forms is not
elementary.

The Langlands program is an umbrella-name covering such things,
and many more...

But, back to our program:
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Newton polygons over Qp

This is the assertion for Zp[T ] corresponding to C[[X]][T ] above:
C[[X]] is replaced by Zp.

The Newton polygon of a polynomial
f(T ) = Tn + an−1T

n−1 + . . .+ ao ∈ Zp[T ]
is the (downward) convex hull of the points

(0, 0), (1, ordp an−1), (2, ordp an−2), . . . (n, ordp ao)

If we believe that ordp(p
n · ab ) = n extends to algebraic extensions

of Qp, then we would anticipate proving that the slopes of the line
segments on the Newton polygon are the ords, with multiplicities,
of the zeros.

The extreme case that ordp a0 = 1 would be Eisenstein’s criterion.

We will get to this...



Garrett 10-19-2011 9

That point at infinity

The local ring (having a single maximal ideal) inside the field
C(X) corresponding to z ∈ C, consisting of all rational functions
defined at z, is

oz = C(X) ∩ C[[X − z]]

with unique maximal ideal

mz = C(X) ∩ (X − z) · C[[X − z]]

The point at infinity can be discovered by noting a further local
ring and maximal ideal:

o∞ = C(X) ∩ C[[1/X]] m∞ = C(X) ∩ 1

X
C[[1/X]]

Note that using 1/(X + 1) achieves the same effect, because

1

X + 1
=

1

X
· 1

1 + 1
X

=
1

X
·
(

1− 1

X
+(

1

X
)2−. . .

)
∈ 1

X
·C[[1/X]]×
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On Riemann surface M of extension K of k = C(X)...

Points at infinity on M correspond to local rings in K intersecting
k in the local ring C[[1/X]].

For example, on hyperelliptic curves Y 2 = f(X), with f(X) a
monic polynomial, there are either one or two points at infinity,
depending whether deg f is odd, or even:

For n = 2m, rewrite Y 2 = Xn + . . .+ ao as

Y 2/Xn = 1 + . . .+ ap(1/X)n

replace Y by Y ·Xm, and relabel 1/X = Z, obtaining

Y 2 = 1 + . . .+ apZ
n (n even)

which has 2 solutions Y = ±1 + (h.o.t.) near Z = 0. For
n = 2m+ 1, similarly,

Y 2 = Z · (1 + . . .)

so there is a single, ramified, point-at-infinity, Y =
√
Z + (h.o.t.).
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