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Product formula, approximation, ... [cont’d]

For function fields k = Fq(x), for p-adic v associated to non-
zero prime p = $Fq[x], the same sort of definition of norm is
appropriate:

|f |v = Np−ordpf = q− deg $·ordpf

The infinite norm | ∗ |∞ corresponding to the prime ideal q
generated by 1/x in o∞ = Fq[1/x], is

|f |v = q+ deg f = |o∞/q|−ordqf

since anx
n + . . .+ ao = ( 1

x )−n(an + . . .+ ao( 1
x )n)
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Theorem: (Product formula for number fields)∏
places w of k

|x|w =
∏

places v of Q

∏
w|v

|Nkw

Qv
(x)|v = 1 (for x ∈ k×)

because, for K/k an extension of number fields, the global norm is
the product of the local norms:∏

w|v

NKw

kv
(x) = NK

k (x) (for x ∈ K, abs value v of k)

Corollaries of proof: The global degree is the sum of the local
degrees: ∑

w|v

[Kw : kv] = [K : k]

The global trace is the sum of the local traces:

trK
k (x) = trKw

kv
(x) (for x ∈ K)
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Classification of completions (often attributed to Ostrowski) :
The topologically inequivalent (non-discrete) norms on Q are the
usual R norm and the p-adic Qp’s.

Proof: Let | ∗ | be a norm on Q. It turns out (intelligibly, if we
guess the answer) that the watershed is whether | ∗ | is bounded or
unbounded on Z. That is, the statement of the theorem could be
sharpened to say: norms on Q bounded on Z are topologically
equivalent to p-adic norms, and norms unbounded on Z are
topologically equivalent to the norm from R.

For | ∗ | bounded on Z, in fact |x| ≤ 1 for x ∈ Z, since otherwise
|xn| = |x|n → +∞ as n→ +∞.

To say that | ∗ | is bounded on Z, but not discrete, implies |x| < 1
for some x ∈ Z, since otherwise d(x, y) = |x − y| = 1 for x 6= y,
giving the discrete topology.
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Then, by unique factorization, |p| < 1 for some prime number p. If
there were a second prime q with |q| < 1, with a, b ∈ Z such that
apm + bqn = 1 for positive integers m,n, then

1 = |1| = |apm + bqn| ≤ |a| · |p|m + |b| · |q|n ≤ |p|m + |q|n

This is impossible if both |p| < 1 and |q| < 1, by taking m,n large.
Thus, for | ∗ | bounded on Z, there is a unique prime p such that
|p| < 1. Up to normalization, such a norm is the p-adic norm.

Next, claim that if |a| ≤ 1 for some 1 < a ∈ Z, then | ∗ | is bounded
on Z. Given 1 < b ∈ Z, write bn in an a-ary expansion

bn = co + c1a+ c2a
2 + . . .+ c`a

` (with 0 ≤ ci < a)

and apply the triangle inequality,

|b|n ≤ (`+ 1) · (1 + . . .+ 1)︸ ︷︷ ︸
a

≤ (n loga b+ 1) · a

Taking nth roots and letting n → +∞ gives |b| ≤ 1, and | ∗ | is
bounded on Z.
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The remaining scenario is |a| ≥ 1 for a ∈ Z. For a > 1, b > 1, the
a-ary expansion

bn = co + c1a+ c2a
2 + . . .+ c`a

` (with 0 ≤ ci < a)

with |a| ≥ 1 gives

|b|n ≤ (`+ 1) · (1 + . . .+ 1)︸ ︷︷ ︸
a

·|a|` ≤ (n loga b+ 1) · a · |a|n loga b+1

Taking nth roots and letting n → +∞ gives |b| ≤ |a|loga b.
Similarly, |a| ≤ |b|logb a. Since | ∗ | is not bounded on Z, there
is C > 1 such that |a| = C log |a| for all 0 6= a ∈ Z. Up to
normalization, this is the usual absolute value for R. ///

Remark: A similar argument classifies non-discrete norms on
Fq(x) up to topological equivalence.
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Corollary: Up to topological equivalence, every norm on a
number field is either p-adic or arises from R and C. ///

Remark: Note that the product-formula norms Kw on an
extension K of k are not the extensions of the norm kv with w|v.
This is visible on the bottom completion kv:

|x|w = |NKw

kv
(x)|v = |x[K:k]|v = |x|[K:k]

v (for x ∈ kv)

Indeed, on other occasions, the extension is the appropriate
object, instead of composing with Galois norm.

Context should clarify what norm is appropriate. Typically,
multiplicative computations/discussions use the product-formula
norm, while genuine metric computations/discussions use the
extension.
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Additive (Weak) Approximation: (Artin-Whaples, Lang) Let
v1, . . . , vn index pairwise topologically inequivalent norms on a
field k. Given x1, . . . , xn ∈ k and ε > 0, there exists x ∈ k such
that

|x− xj |vj < ε (for j = 1, . . . , n)

Remark: When the norms are p-adic, arising from prime ideals
in a Dedekind ring o inside k, this is Sun-Ze’s theorem.

Proof: First, we need to refine the notion of topological
inequivalence, to exclude the possibility that the | ∗ |1 topology τ1
is strictly finer than the |∗|2-topology τ2. This uses the same proof
mechanism as the earlier result showing that with two norms
giving the same topology, each is a power of the other.
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Suppose that the identity (k, τ1) → (k, τ2) is continuous. Then
|x|1 < 1 implies xn → 0 in the | ∗ |1 topology. Thus, xn → 0 in the
| ∗ |2 topology, so |x|2 < 1. Similarly, if |x|1 > 1, then |x−1|1 < 1,
so |x|2 > 1.

Fix y with |y|1 > 1. Given |x|1 ≥ 1, there is t ∈ R such that
|x|1 = |y|t1. For rational a/b > t, |x|1 < |y|a/b

1 , so |xb/ya|1 < 1.
Then |xb/ya|2 < 1, and |x|2 < |y|a/b

2 .

Similarly, |x|2 > |y|a/b
2 for a/b < t. Thus, |x|2 = |y|t2, and

|x|2 = |y|t2 =
(
|y|

log |y|2
log |y|1
1

)t =
(
|y|t1
) log |y|2

log |y|1 = |x|
log |y|2
log |y|1
1 ///

Thus, as a corollary, for | ∗ |1 and | ∗ |2 topologically inequivalent,
there exists x ∈ k with |x|1 ≥ 1 and |x|2 < 1.
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Similarly, let |y|1 < 1 and |y|2 ≥ 1. Then z = y/x has |z|1 < 1 and
|z|2 > 1.

Inductively, much as in Sun-Ze’s theorem, suppose |z|1 > 1 and
|z|j < 1 for 2 ≤ j ≤ n, and find z′ such that |z′|1 > 1 and |z′|j < 1
for 2 ≤ j ≤ n + 1. Let |w|1 > 1 and |w|n+1 < 1. There are two
cases: for |z|n+1 ≤ 1, then z′ = w · z` is as desired, for large `. For
|z|n+1 > 1, z′ = w · z`/(1 + z`) is as desired, for large `.

So there exist z1, . . . , zn with |zj | > 1 while |zj |j′ ≤ 1 for j′ 6= j.
Then z`

j/(1+z`
j) goes to 1 at |∗|j , and to 0 in the other topologies.

Thus, for large-enough `,

x1 ·
z`

1

1 + z`
1

+ . . .+ xn ·
z`
n

1 + z`
n

−→ xj (in the jth topology)

This proves the (weak) approximation theorem. ///



Garrett 12-02-2011 10

Recall that the ring of adeles A = Ak of k is

A = Ak = colimS

(∏
v∈S

kv ×
∏
v 6∈S

ov

)
Claim: Imbedding k diagonally in Ak, by

α −→ (. . . , α, . . .) ∈ Ak

the image of k is discrete, and the quotient A/k is compact.

Proof: Recall that a topological group is a group with a locally-
compact Hausdorff topology in which the group operation
and inverse are continuous. (Perhaps counter-intuitively, this
disqualifies infinite-dimensional topological vectorspaces!) Usually
a topological group will have a countable basis.

For abelian topological group G and (topologically) closed
subgroup H, the quotient G/H is a topological group. If H were
not closed, the quotient would fail to be Hausdorff.
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In topological groups G (as in topological vector spaces),
to describe a topology it suffices to give a local basis of
neighborhoods at the identity e ∈ G: for all g ∈ G, the map
h → gh is continuous (by definition), and has continuous inverse
h → g−1h, so is a homeomorphism. Thus, for basis {Nj} of
neighborhoods of e, {gNj} is a basis of neighborhoods at g.

A subset Y of a topological space X is discrete when every point
y ∈ Y has a neighborhood N in X such that N ∩ Y = {y}.
Claim: A subgroup Γ of a topological group G is discrete as a
subset if and only if the identity e has a neighborhood N in G
such that N ∩ Γ = {e}.
Proof of Claim: Discreteness certainly implies that e has such a
neighborhood. For any other γ ∈ Γ,

γN ∩ Γ = γ · (N ∩ γ−1Γ) = γ · (N ∩ Γ) = γ · {e} = {γ}
Thus, every point of Γ is isolated when e is. ///
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Claim: A discrete subgroup Γ of G is closed.

Note: A discrete subset need not be closed: { 1
n : 1 ≤ n ∈ Z} is

discrete in R but is not closed.

Proof of claim: Let N be a neighborhood of e in G meeting Γ
just at e. By continuity of the group operation and inversion
in G, there is a neighborhood U of e such that U−1 · U ⊂ N .
Suppose g 6∈ Γ were in the closure of Γ in G. Then gU contains
two distinct elements γ, δ of Γ. But

γ−1 · δ ∈ (gU)−1 · (gU) = N−1 ·N ⊂ N

contradiction. Thus, Γ is closed in G. ///

Returning to proving k is discrete in A = Ak, it suffices to find a
neighborhood N of 0 ∈ A meeting k just at 0.
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To begin, let

Nfin =
∏
v|∞

kv ×
∏

v<∞
ov = open neighborhood of 0 in A

Nfin ∩ k = o, since requiring local integrality everywhere implies
global integrality (o is Dedekind). Then it suffices to show that
the projection of o to

∏
v|∞ kv = k ⊗Q R is discrete there.

We showed that o is a free Z-module of rank [k : Q], and that a
Z-basis {e1, . . . , en} is a Q-basis of k. Because extending scalars
preserves free-ness, {e1, . . . , en} is an R-basis of k ⊗Q R.

This reduces the question to a more classical one: given an R-
basis {e1, . . . , en} of an R vector space V , show that the lattice
Λ =

⊕
j Zej is discrete in V .

Conveniently, by now we know that a finite-dimensional R-
vectorspace has a unique (appropriate) topology, so, by changing
coordinates, we can suppose the ej are the standard basis of Rn,
so Λ = Zn, and Rn is given the usual metric topology. Any ball of
radius < 1 at 0 meets Zn just at 0, proving discreteness.
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To show compactness of A/k, in a similar fashion: first, show
that, given α ∈ A, there is x ∈ k such that α − x ∈

∏
v|∞ kv ×∏

v<∞ ov. Let 0 6= ` ∈ Z such that `α ∈ ov at all v < ∞. With
`o =

∏
j p

ej

j with 0 < ej ∈ Z. By Sun-Ze, there is y ∈ o such that
y− `αpj

∈ p
ej

j · opj
for all j. Then `−1y−α is locally integral at all

finite places, so x = `−1y ∈ k is the desired element.

That is, A/k has representatives in
∏

v|∞ kv ×
∏

v<∞ ov. By
Tychonoff, the latter is compact.

Again, a Z-basis {e1, . . . , en} of o is an R-basis of the real vector
space k∞ =

∏
v|∞ kv. Every element of k∞ has a representative∑

j cjej with 0 ≤ cj ≤ 1. The collection of such elements is a
continuous image (by scalar multiplication and vector addition) of
the compact set [0, 1]n, so is compact. ///

Remark: Recall that Ak/k is also the solenoid lima k∞/a, the
limit taken over non-zero ideals a of o. This gives another proof of
the compactness, again by Tychonoff.


