Garrett 12-02-2011

Product formula, approximation, ... [cont’d/

For function fields k¥ = I (z), for p-adic v associated to non-
zero prime p = wlF,[z], the same sort of definition of norm is
appropriate:

|f‘v — Np—ordpf — q— deg w-ordy f

The infinite norm | * |o, corresponding to the prime ideal q
generated by 1/z in 0, = IF,[1/2], is

[flo = ¢t = oo /q| 7o/

since ana™ + ... 4 ao = (£) 7 (an + ...+ ao(3)")
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Theorem: (Product formula for number fields)

I =l = ]] []INE: ()] =1 (for = € kX)

places w of k places v of Q w|v

because, for K/k an extension of number fields, the global norm is
the product of the local norms:

HN,fi“’ (z) = Nf(x) (for x € K, abs value v of k)
w]|v
Corollaries of proof: The global degree is the sum of the local
degrees:

D (K k) = [K : K]
w]|v

The global trace is the sum of the local traces:

trit () = trfvw (x) (for x € K)
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Classification of completions (often attributed to Ostrowski) :
The topologically inequivalent (non-discrete) norms on @ are the
usual R norm and the p-adic Q,’s.

Proof: Let | x | be a norm on Q. It turns out (intelligibly, if we
guess the answer) that the watershed is whether | x| is bounded or
unbounded on Z. That is, the statement of the theorem could be
sharpened to say: norms on @Q bounded on 7Z are topologically
equivalent to p-adic norms, and norms unbounded on 7Z are
topologically equivalent to the norm from R.

For | * | bounded on Z, in fact |z| < 1 for z € Z, since otherwise
|x™| = |x|" — 400 as n — Fo0.

To say that | *x | is bounded on Z, but not discrete, implies |z| < 1
for some x € 7, since otherwise d(z,y) = |x — y| = 1 for x # v,
giving the discrete topology.
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Then, by unique factorization, |p| < 1 for some prime number p. If
there were a second prime ¢ with |q| < 1, with a,b € Z such that
ap™ + bg™ = 1 for positive integers m,n, then

1 = [1] = |ap™ +bq"| < la|-[p|™ +|b] - |q|™ < [p|™ + |q|"

This is impossible if both |p| < 1 and |q| < 1, by taking m,n large.
Thus, for | * | bounded on 7Z, there is a unique prime p such that
Ip] < 1. Up to normalization, such a norm is the p-adic norm.

Next, claim that if |a| < 1 for some 1 < a € Z, then | * | is bounded
on Z. Given 1 < b € Z, write b™ in an a-ary expansion

bn:CO+Cla—|—C2a2+...+CECL£ (with 0 < ¢; < a)
and apply the triangle inequality,

" < 4+1)-(1+...41) < (nlog,b+1)-a

Taking n'” roots and letting n — o0 gives [b| < 1, and | | is
bounded on Z.
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The remaining scenario is |a| > 1 for @ € Z. For a > 1, b > 1, the
a-ary expansion

V" = ¢, +cra+ cea® + ... + cpat (with 0 < ¢; < a)
with |a| > 1 gives

" < (L+1)-(14...4+1)|a]* < (nlog,b+1)- a-]|a|"18 0T

4

'
a

Taking n'" roots and letting n — +oo gives |b] < |a|'°8a®.
Similarly, |a| < |b['8%. Since | * | is not bounded on Z, there

is C > 1such that |a| = C™8l%l for all0 # a € Z. Up to
normalization, this is the usual absolute value for R. ///

Remark: A similar argument classifies non-discrete norms on
F,(x) up to topological equivalence.



Garrett 12-02-2011 6

Corollary: Up to topological equivalence, every norm on a
number field is either p-adic or arises from R and C. ///

Remark: Note that the product-formula norms K,, on an
extension K of k are not the extensions of the norm k, with w|v.
This is visible on the bottom completion k,,:

2l = NS ()], = |2FH], = |z (for x € ky)

v

Indeed, on other occasions, the extension is the appropriate
object, instead of composing with Galois norm.

Context should clarify what norm is appropriate. Typically,
multiplicative computations/discussions use the product-formula
norm, while genuine metric computations/discussions use the
exrtension.
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Additive (Weak) Approximation: (Artin-Whaples, Lang) Let

v1,...,V, index pairwise topologically inequivalent norms on a
field k. Given x1,...,x, € k and € > 0, there exists € k such
that

T — 4]y, < € (for j=1,...,n)

Remark: When the norms are p-adic, arising from prime ideals
in a Dedekind ring o inside k, this is Sun-Ze’s theorem.

Proof: First, we need to refine the notion of topological
inequivalence, to exclude the possibility that the | x |1 topology 7
is strictly finer than the |*|s-topology 7. This uses the same proof
mechanism as the earlier result showing that with two norms
giving the same topology, each is a power of the other.
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Suppose that the identity (k,7) — (k,72) is continuous. Then
|z|1 < 1 implies ™ — 0 in the | * |; topology. Thus, " — 0 in the
| % |2 topology, so |z|s < 1. Similarly, if |z|; > 1, then |27 < 1,
so |x|a > 1.

Fix y with |y|; > 1. Given |z|; > 1, there is ¢t € R such that
x|y = |y|}. For rational a/b > t, |z|; < \y[cf/b, so 2% /y?|1 < 1.
Then |2°/y%|2 < 1, and |z]2 < \y|;/b.

Similarly, |z|s > |y|g/b for a/b < t. Thus, |z|2 = |y|5, and
log |yl2 log |y|o log |yl2

5 t log [yl o
z|y = |yls = <|yHg|y|1) _ <|ymlog|y|1 = ||y

Thus, as a corollary, for | * |; and | * |2 topologically inequivalent,
there exists z € k with |z|; > 1 and |z]2 < 1.
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Similarly, let |y|; < 1 and |y|e > 1. Then z = y/x has |z|; < 1 and
’Z|2 > 1.

Inductively, much as in Sun-Ze’s theorem, suppose |z|; > 1 and
1z|; < 1for 2 <j <n,and find 2’ such that |2/|; > 1 and |?'|; < 1
for 2 < j <n+1. Let|w); > 1and |w|,+1 < 1. There are two
cases: for |z|,41 < 1, then 2’ = w - 2% is as desired, for large £. For
Zlna1 > 1, 2/ = w- 2% /(1 + 2%) is as desired, for large .

So there exist 21, ..., z, with |z;| > 1 while |z;|;; < 1 for j' # j.
Then zf/(l—l—zf) goes to 1 at |*|;, and to 0 in the other topologies.
Thus, for large-enough /,

¢ ¢
21 2z, ) th
€T - + ... +x, - €T in the topology
1 1 Z{ n 1 Z,ﬁ J ( J p g )

This proves the (weak) approximation theorem. ///
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Recall that the ring of adeles A = Ay of k is

A = A, = Colim5<H k, X H Ov)
veS vE€S
Claim: Imbedding k diagonally in Ag, by

a— (...,a,...) € Ayg
the image of k is discrete, and the quotient A /k is compact.

Proof: Recall that a topological group is a group with a locally-
compact Hausdorft topology in which the group operation

and inverse are continuous. (Perhaps counter-intuitively, this
disqualifies infinite-dimensional topological vectorspaces!) Usually
a topological group will have a countable basis.

For abelian topological group G and (topologically) closed
subgroup H, the quotient G/H is a topological group. If H were
not closed, the quotient would fail to be Hausdorff.
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In topological groups G (as in topological vector spaces),

to describe a topology it suffices to give a local basis of
neighborhoods at the identity e € G: for all ¢ € G, the map

h — gh is continuous (by definition), and has continuous inverse
h — g 'h, so is a homeomorphism. Thus, for basis {N;} of
neighborhoods of e, {gN;} is a basis of neighborhoods at g.

A subset Y of a topological space X is discrete when every point
y € Y has a neighborhood N in X such that NNY = {y}.

Claim: A subgroup I' of a topological group G is discrete as a
subset if and only if the identity e has a neighborhood N in G
such that N NT" = {e}.

Proof of Claim: Discreteness certainly implies that e has such a
neighborhood. For any other v € T',

YNNI = fy-(Nﬂv_lF) = v-(NNT) = v-{e} = {7}
Thus, every point of I' is isolated when e is. ///
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Claim: A discrete subgroup I' of G is closed.

Note: A discrete subset need not be closed: {+ : 1 < n € Z} is
discrete in R but is not closed.

Proof of claim: Let N be a neighborhood of e in G meeting I'
just at e. By continuity of the group operation and inversion

in G, there is a neighborhood U of e such that U=! - U C N.
Suppose g € I' were in the closure of I' in G. Then gU contains
two distinct elements v, of I'. But

v 1.6 € (gU)t-(gU) = NV-N C N

contradiction. Thus, I' is closed in G. ///

Returning to proving k is discrete in A = Ay, it suffices to find a
neighborhood N of 0 € A meeting k just at 0.
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To begin, let
Ngn, = H k, % H 0, = open neighborhood of 0 in A

v|oo V<00
Ngn Nk = o, since requiring local integrality everywhere implies
global integrality (o is Dedekind). Then it suffices to show that
the projection of o to [[,,., kv = k ®g R is discrete there.

v|oo

We showed that o is a free Z-module of rank [k : Q], and that a
Z-basis {e1,...,e,} is a Q-basis of k. Because extending scalars
preserves free-ness, {ei,..., ey} is an R-basis of k ®¢q R.

This reduces the question to a more classical one: given an IR-

basis {e1,...,e,} of an R vector space V', show that the lattice
A =D, Zej is discretein V.

Conveniently, by now we know that a finite-dimensional R-
vectorspace has a unique (appropriate) topology, so, by changing
coordinates, we can suppose the e; are the standard basis of R",
so A =7", and R" is given the usual metric topology. Any ball of
radius < 1 at 0 meets Z" just at 0, proving discreteness.
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To show compactness of A/k, in a similar fashion: first, show

that, given o € A, there is ¢ € k such that o« — z € Hvyoo k, X
[[,co0 00 Let 0 # £ € Z such that fo € o, at all v < co. With
lo = Hj pjj with 0 < e; € Z. By Sun-Ze, there is y € o such that
y—ALay, € p;j -0p, for all j. Then ¢~y — o is locally integral at all
finite places, so © = £~ 1y € k is the desired element.

That is, A/k has representatives in [, ko X ][], .o 00 By
Tychonoff, the latter is compact.

Again, a Z-basis {e1,...,e,} of 0 is an R-basis of the real vector
space koo = H,U|OO k,. Every element of k., has a representative
>_;¢iej with 0 < ¢; < 1. The collection of such elements is a
continuous image (by scalar multiplication and vector addition) of
the compact set [0, 1], so is compact. ///

Remark: Recall that Ay /k is also the solenoid lim, k. /a, the
limit taken over non-zero ideals a of 0. This gives another proof of
the compactness, again by Tychonoff.




