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[05.1] Show that every vector subspace of Rn and/or Cn is (topologically) closed.

Discussion: Let v1, . . . , vm be an orthonormal basis for the given vector subspace W . For a Cauchy sequence
{wn} in W , we claim that for each j the sequence 〈wn, vj〉 is Cauchy: by Cauchy-Schwarz-Bunyakowsky,

|〈wn, vj〉 − 〈wn′ , vj〉| = |〈wn − wn′ , vj〉| ≤ |wn − wn′ | · |vj | = |wn − wn′ |

Thus, by completeness of R and/or C, that sequence has a limit cj . As expected, we claim that
limn wn =

∑m
j=1 cj · vj . Indeed, using the orthonormality of the vj ’s,

∣∣∣wn − m∑
j=1

cj · vj
∣∣∣2 =

∣∣∣wn − m∑
j=1

lim
i
〈wi, vj〉 · vj

∣∣∣2 =
∣∣∣ m∑
j=1

lim
i
〈wn − wi, vj〉 · vj

∣∣∣2

≤
m∑
j=1

| lim
i
〈wn − wi, vj〉|2 = lim

i

m∑
j=1

|〈wn − wi, vj〉|2 ≤ lim
i

m∑
j=1

|wn − wi|2 · |vj |2 = lim
i
m · |wn − wi|2

Take no large enough so that |wn − wi| < ε for i, n ≥ no. Then the latter expression is at most m · ε. This
holds for all ε > 0, so the limit is 0. ///

[05.2] For a subspace W of a Hilbert space V , show that (W⊥)⊥ is the closure of the subspace W in V .

Discussion: Let λx(v) = 〈v, x〉 for x, v ∈ V . Then W⊥ =
⋂
w∈W kerλw. Similarly, (W⊥)⊥ =

⋂
x∈W⊥ kerλx.

From the discussion in the Riesz-Fréchet theorem, or directly via Cauchy-Schwarz-Bunyakowsky, each λx is
continuous, so kerλx = λ−1x ({0}) is closed, since {0} is closed. (One might check that the kernel of a linear
map is a vector subspace.) An arbitrary intersection of closed sets is closed, so (W⊥)⊥ is closed.

Certainly (W⊥)⊥ ⊃ W , because for each w ∈ W , 〈x,w〉 = 0 for all x ∈ W⊥. Thus, (W⊥)⊥ is a closed
subspace, containing W . Being a closed subspace of a Hilbert space, (W⊥)⊥ is a Hilbert space itself. If
(W⊥)⊥ were strictly larger than the topological closure W of W , then there would be 0 6= y ∈ (W⊥)⊥

orthogonal to W . Then y would be orthogonal to W itself, so 0 6= y ∈ W⊥, contradicting 0 6= y ∈ (W⊥)⊥.
///

[05.3] Let T : `2 → `2 be the right shift: T (z1, z2, z3, . . .) = (0, z1, z2, z3, . . .). Determine the adjoint T ∗.

Discussion: The adjoint characterization is 〈Tv,w〉 = 〈v, T ∗w〉. That means that, for (w1, w2, . . .) in `2,
we want

〈(z1, z2, . . .), T ∗(w1, w2, . . .)〉 = 〈T (z1, z2, . . .), (w1, w2, . . .)〉 = 〈(0, z1, z2, . . .), (w1, w2, . . .)〉

= z1w2 + z2w3 + z3w4 + . . . = 〈(z1, z2, . . .), (w2, w3, . . .)〉

Thus, we see that T ∗(w1, w2, w3, . . .) = (w2, w3, . . .). That is, it is the left shift (yes, that loses the w1-
coordinate. ///

[05.4] Show that for 0 < x < 1 ∑
n≥1

sin 2πnx

n
= π( 1

2 − x)
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Discussion: The Fourier series of the right-hand side is computed to be that given on the left-hand side.
By the Fourier-Dirichlet result on pointwise convergence, since π( 1

2 −x) is finitely-piecewise Co, and has left
and right derivatives in (0, 1), its Fourier series converges to it pointwise there. ///

[05.5] Prove that every f ∈ Coc (R) can be uniformly approximated (in sup norm) arbitrarily well as
superpositions of Gaussians: given ε > 0, there is ϕ ∈ Coc (R) and sufficiently large n such that

sup
x∈R

∣∣∣f(x)−
∫
R
ϕ(ξ) · ne−πn

2(ξ−x)2 dξ
∣∣∣ < ε

Discussion: This is an instance of an approximate identity and the basic property of such. Namely, for an
approximate identity {ϕn} on R and f ∈ Coc (R), we have

sup
x∈R

∣∣∣f(x)−
∫
R
ϕ(ξ) · f(x+ ξ) dξ

∣∣∣ −→ 0 (as n→ +∞)

By replacing ξ by ξ − x in the integral, we have

sup
x∈R

∣∣∣f(x)−
∫
R
f(ξ) · ϕ(ξ − x) dξ

∣∣∣ −→ 0 (as n→ +∞)

Rather than reproving this general assertion in the example at hand, we simply clarify the interpretation in
terms of approximate identities. That is, with ϕ1(x) = e−πx

2

, we that the sequence ϕn(x) = n · ϕ1(nx) is
an approximate identity. More generally, we prove

[0.0.1] Claim: Let ϕ ∈ Co(R) be a non-negative R-valued function, with
∫
R ϕ = 1. Then ϕn(x) = n ·ϕ(n ·x)

is an approximate identity.

Proof: The non-negative real-valued-ness is of course immediate. The integral of ϕn is∫
R
ϕn(x) dx =

∫
R
n · ϕ(n · x) dx =

∫
R
n · ϕ(x)

dx

n
=

∫
R
ϕ(x) dx = 1

by replacing x by x/n in the integral. Finally, to see that the masses of the ϕn bunch up near 0: Since ϕ ≥ 0
and

lim
n

∫ √n
−
√
n

ϕ(x) dx =

∫
R
ϕ(x) dx = 1

given ε > 0 there is sufficiently large no such that for all n ≥ no

1 ≤ lim
n

∫ √n
−
√
n

ϕ(x) dx > 1− ε

Then, by replacing x by x/n in the integral,∫ 1√
n

− 1√
n

ϕn(x) dx =

∫ 1√
n

− 1√
n

n · ϕ(n · x) dx =

∫ √n
−
√
n

ϕ(x) dx > 1− ε

The verifies the bunching-up property. ///

[05.6] Without worrying too much about identifying the finite, positive constant
∫
R

(sin x)2

x2 dx, prove that,
for given f ∈ Coc (R), given ε > 0, there is sufficiently large n and a function ϕ ∈ Coc (R) such that

sup
x∈R

∣∣∣f(x)−
∫
R
ϕ(ξ) · (sinn(x− ξ))2

(x− ξ)2
dξ
∣∣∣ < ε

Discussion: After the more general discussion of the previous example, this is just another such. ///
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