Examples discussion 05

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is http://www.math.umn.edu/~garrett/m/real/examples_2016-17/real-ex-05.pdf]

[05.1] Show that every vector subspace of \mathbb{R}^n and/or \mathbb{C}^n is (topologically) closed.

Discussion: Let v_1, \ldots, v_m be an orthonormal basis for the given vector subspace W. For a Cauchy sequence $\{w_n\}$ in W, we claim that for each j the sequence $\langle w_n, v_j \rangle$ is Cauchy: by Cauchy-Schwarz-Bunyakowsky,

 $|\langle w_n, v_j \rangle - \langle w_{n'}, v_j \rangle| = |\langle w_n - w_{n'}, v_j \rangle| \le |w_n - w_{n'}| \cdot |v_j| = |w_n - w_{n'}|$

Thus, by completeness of \mathbb{R} and/or \mathbb{C} , that sequence has a limit c_j . As expected, we claim that $\lim_n w_n = \sum_{j=1}^m c_j \cdot v_j$. Indeed, using the orthonormality of the v_j 's,

$$\left|w_n - \sum_{j=1}^m c_j \cdot v_j\right|^2 = \left|w_n - \sum_{j=1}^m \lim_i \langle w_i, v_j \rangle \cdot v_j\right|^2 = \left|\sum_{j=1}^m \lim_i \langle w_n - w_i, v_j \rangle \cdot v_j\right|^2$$

$$\leq \sum_{j=1}^{m} |\lim_{i} \langle w_n - w_i, v_j \rangle|^2 = \lim_{i} \sum_{j=1}^{m} |\langle w_n - w_i, v_j \rangle|^2 \leq \lim_{i} \sum_{j=1}^{m} |w_n - w_i|^2 \cdot |v_j|^2 = \lim_{i} m \cdot |w_n - w_i|^2$$

Take n_o large enough so that $|w_n - w_i| < \varepsilon$ for $i, n \ge n_o$. Then the latter expression is at most $m \cdot \varepsilon$. This holds for all $\varepsilon > 0$, so the limit is 0. ///

[05.2] For a subspace W of a Hilbert space V, show that $(W^{\perp})^{\perp}$ is the closure of the subspace W in V.

Discussion: Let $\lambda_x(v) = \langle v, x \rangle$ for $x, v \in V$. Then $W^{\perp} = \bigcap_{w \in W} \ker \lambda_w$. Similarly, $(W^{\perp})^{\perp} = \bigcap_{x \in W^{\perp}} \ker \lambda_x$. From the discussion in the Riesz-Fréchet theorem, or directly via Cauchy-Schwarz-Bunyakowsky, each λ_x is continuous, so $\ker \lambda_x = \lambda_x^{-1}(\{0\})$ is closed, since $\{0\}$ is closed. (One might check that the kernel of a linear map is a vector subspace.) An arbitrary intersection of closed sets is closed, so $(W^{\perp})^{\perp}$ is closed.

Certainly $(W^{\perp})^{\perp} \supset W$, because for each $w \in W$, $\langle x, w \rangle = 0$ for all $x \in W^{\perp}$. Thus, $(W^{\perp})^{\perp}$ is a closed subspace, containing W. Being a closed subspace of a Hilbert space, $(W^{\perp})^{\perp}$ is a Hilbert space itself. If $(W^{\perp})^{\perp}$ were strictly larger than the topological closure \overline{W} of W, then there would be $0 \neq y \in (W^{\perp})^{\perp}$ orthogonal to \overline{W} . Then y would be orthogonal to W itself, so $0 \neq y \in W^{\perp}$, contradicting $0 \neq y \in (W^{\perp})^{\perp}$.

 $[05.3] \text{ Let } T: \ell^2 \to \ell^2 \text{ be the right shift: } T(z_1, z_2, z_3, \ldots) = (0, z_1, z_2, z_3, \ldots). \text{ Determine the adjoint } T^*.$

Discussion: The adjoint characterization is $\langle Tv, w \rangle = \langle v, T^*w \rangle$. That means that, for $(w_1, w_2, ...)$ in ℓ^2 , we want

$$\langle (z_1, z_2, \ldots), T^*(w_1, w_2, \ldots) \rangle = \langle T(z_1, z_2, \ldots), (w_1, w_2, \ldots) \rangle = \langle (0, z_1, z_2, \ldots), (w_1, w_2, \ldots) \rangle$$
$$= z_1 w_2 + z_2 w_3 + z_3 w_4 + \ldots = \langle (z_1, z_2, \ldots), (w_2, w_3, \ldots) \rangle$$

Thus, we see that $T^*(w_1, w_2, w_3, \ldots) = (w_2, w_3, \ldots)$. That is, it is the *left* shift (yes, that loses the w_1 -coordinate.

[05.4] Show that for 0 < x < 1

$$\sum_{n \ge 1} \frac{\sin 2\pi n x}{n} = \pi(\frac{1}{2} - x)$$

Discussion: The Fourier series of the right-hand side is computed to be that given on the left-hand side. By the Fourier-Dirichlet result on pointwise convergence, since $\pi(\frac{1}{2} - x)$ is finitely-piecewise C^o , and has left and right derivatives in (0, 1), its Fourier series converges to it pointwise there. ///

[05.5] Prove that every $f \in C_c^o(\mathbb{R})$ can be uniformly approximated (in sup norm) arbitrarily well as superpositions of Gaussians: given $\varepsilon > 0$, there is $\varphi \in C_c^o(\mathbb{R})$ and sufficiently large n such that

$$\sup_{x \in \mathbb{R}} \left| f(x) - \int_{\mathbb{R}} \varphi(\xi) \cdot n e^{-\pi n^2 (\xi - x)^2} \, d\xi \right| < \varepsilon$$

Discussion: This is an instance of an *approximate identity* and the basic property of such. Namely, for an approximate identity $\{\varphi_n\}$ on \mathbb{R} and $f \in C_c^o(\mathbb{R})$, we have

$$\sup_{x \in \mathbb{R}} \left| f(x) - \int_{\mathbb{R}} \varphi(\xi) \cdot f(x+\xi) \, d\xi \right| \longrightarrow 0 \qquad (\text{as } n \to +\infty)$$

By replacing ξ by $\xi - x$ in the integral, we have

$$\sup_{x \in \mathbb{R}} \left| f(x) - \int_{\mathbb{R}} f(\xi) \cdot \varphi(\xi - x) \, d\xi \right| \longrightarrow 0 \qquad (\text{as } n \to +\infty)$$

Rather than reproving this general assertion in the example at hand, we simply clarify the interpretation in terms of approximate identities. That is, with $\varphi_1(x) = e^{-\pi x^2}$, we that the sequence $\varphi_n(x) = n \cdot \varphi_1(nx)$ is an approximate identity. More generally, we prove

[0.0.1] Claim: Let $\varphi \in C^o(\mathbb{R})$ be a non-negative \mathbb{R} -valued function, with $\int_{\mathbb{R}} \varphi = 1$. Then $\varphi_n(x) = n \cdot \varphi(n \cdot x)$ is an approximate identity.

Proof: The non-negative real-valued-ness is of course immediate. The integral of φ_n is

$$\int_{\mathbb{R}} \varphi_n(x) \, dx = \int_{\mathbb{R}} n \cdot \varphi(n \cdot x) \, dx = \int_{\mathbb{R}} n \cdot \varphi(x) \, \frac{dx}{n} = \int_{\mathbb{R}} \varphi(x) \, dx = 1$$

by replacing x by x/n in the integral. Finally, to see that the masses of the φ_n bunch up near 0: Since $\varphi \ge 0$ and

$$\lim_{n} \int_{-\sqrt{n}}^{\sqrt{n}} \varphi(x) \, dx = \int_{\mathbb{R}} \varphi(x) \, dx = 1$$

given $\varepsilon > 0$ there is sufficiently large n_o such that for all $n \ge n_o$

$$1 \leq \lim_{n} \int_{-\sqrt{n}}^{\sqrt{n}} \varphi(x) \, dx > 1 - \varepsilon$$

Then, by replacing x by x/n in the integral,

$$\int_{-\frac{1}{\sqrt{n}}}^{\frac{1}{\sqrt{n}}} \varphi_n(x) \, dx = \int_{-\frac{1}{\sqrt{n}}}^{\frac{1}{\sqrt{n}}} n \cdot \varphi(n \cdot x) \, dx = \int_{-\sqrt{n}}^{\sqrt{n}} \varphi(x) \, dx > 1 - \varepsilon$$

ching-up property. ///

The verifies the bunching-up property.

[05.6] Without worrying too much about identifying the finite, positive constant $\int_{\mathbb{R}} \frac{(\sin x)^2}{x^2} dx$, prove that, for given $f \in C_c^o(\mathbb{R})$, given $\varepsilon > 0$, there is sufficiently large n and a function $\varphi \in C_c^o(\mathbb{R})$ such that

$$\sup_{x \in \mathbb{R}} \left| f(x) - \int_{\mathbb{R}} \varphi(\xi) \cdot \frac{(\sin n(x-\xi))^2}{(x-\xi)^2} \, d\xi \right| < \varepsilon$$

Discussion: After the more general discussion of the previous example, this is just another such. ///