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[10.1] With g(x) = f(x+ xo), express ĝ in terms of f̂ , first for f ∈ S (Rn), then for f ∈ S (Rn)∗.

Discussion: For f ∈ S (Rn), the literal integral computes the Fourier transform:

ĝ(ξ) =

∫
Rn

e−2πiξ·x g(x) dx =

∫
Rn

e−2πiξ·x f(x+ xo) dx

Replacing x by x− xo in the integral gives

ĝ(ξ) =

∫
Rn

e−2πiξ·(x−xo) f(x) dx = e2πiξ·xo

∫
Rn

e−2πiξ·x f(x) dx = e2πiξ·xo · f̂(ξ)

The precise corresponding statement for tempered distributions cannot refer to pointwise values. Write ψxo

for the function ξ → e2πiξ·xo . Since ψxo
is bounded, for a tempered distribution u, ψxo

· u is the tempered
distribution described by

(ψxo · u)(ϕ) = u(ψxo ϕ) (for ϕ ∈ S )

This is compatible with multiplication of (integrate-against-) functions S ⊂ S ∗. Also, let translation
u → Txo

u be defined by (Txo
u)(ϕ) = u(T−xo

ϕ), again compatibly with integration against Schwartz
functions. In these terms, the above argument shows that

(Txo
f)̂ = ψxo

· f̂ (for f ∈ S )

This formulation avoids reference to pointwise values, and thus could make sense for tempered distributions.

One argument is extension by continuity: Fourier transform is a continuous map S ∗ → S ∗, as is translation
u→ Txou, so the identity extends by continuity to all tempered distributions. ///

Another argument is by duality: first,

(Txou) (̂ϕ) = (Txou)(ϕ̂) = u(T−xo ϕ̂) = u
(

(ψxo · ϕ)
)̂

by applying the identity to ϕ, ϕ̂ ∈ S . Going back, this is

û(ψxo · ϕ) = (ψxo · û)(ϕ) (for all ϕ ∈ S )

Altogether, (Txo
u)̂ = ψxo

· û.

[10.2] Compute ĉosx.

Discussion: Start from δ̂ = 1. Using the previous example’s identity,

(Txoδ)̂ = ψxo · 1 = ψxo

By Fourier inversion, ψ̂xo
= T−xo

δ. Thus,

ĉosx = 1
2 (ψ1/2π + ψ−1/2π)̂ = 1

2 (T−1/2πδ + T1/2πδ)

Written in terms of mock-pointwise-values, this is ĉos(ξ) =
δ(ξ − 1

2π ) + δ(ξ + 1
2π )

2
. ///
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[10.3] Smooth functions f ∈ E act on distributions u ∈ D(R)∗ by a dualized form of pointwise multiplication:
(f · u)(ϕ) = u(fϕ) for ϕ ∈ D(R). Show that if x · u = 0, then u is supported at 0, in the sense that for
ϕ ∈ D with sptϕ 63 0, necessarily u(ϕ) = 0. Thus, by the theorem classifying such distributions, u is a linear
combination of δ and its derivatives. Show that in fact x · u = 0 implies that u is a multiple of δ itself.

Discussion: For ϕ ∈ D whose support does not include 0, the function 1/x is defined and smooth on sptϕ.
Thus, x→ ϕ(x)/x is in D. For such ϕ,

u(ϕ) = u(x · ϕ
x

) = 0

Thus, sptu = {0}, so is a finite linear combination u =
∑n
i=0 ci δ

(i) with scalars ci. To see that in fact only δ

itself can appear, we use the idea that 1, x, x
2

2! ,
x3

3! , . . . ,
xn

n! are essentially a dual basis to δ, δ′, δ′′, . . . , δ(n). One
way to make this completely precise is to use a smooth cut-off function η ∈ D around 0, namely, identically
1 on a neighborhood of 0. Then η · xi ∈ D, and

δ(i)(η · x
j

j!
) =

 1 (for i = j)

0 (for i 6= j)

In particular, this shows that the derivatives of δ are linearly independent. For 0 ≤ j ∈ Z,

0 = (x · u)(xj) = (x ·
∑
i

ci δ
(i))(xj) =

∑
i

ci δ
(i)(x · xj) =

∑
i

ci δ
(i)(xj+1) = (j + 1)! · cj+1

Thus, cj = 0 for j ≥ 1, and u is a multiple of δ itself. ///

[10.4] Show that the principal value functional u(ϕ) = P.V.
∫
R
ϕ(x)
x dx satisfies x · u = 1.

Discussion: For ϕ ∈ D,

u(ϕ) = lim
ε→0+

∫
|x|≥ε

x · ϕ(x)

x
dx = lim

ε→0+

∫
|x|≥ε

ϕ(x) dx =

∫
R
ϕ(x) dx =

∫
R

1 · ϕ(x) dx = 1(ϕ)

since ϕ is continuous at 0. Thus, x · u = 1. ///

[10.5] Compute the Fourier transform of the sign function

sgn(x) =

 1 (for x > 0)

−1 (for x < 0)

Hint: d
dx sgn = 2δ. Since Fourier transform converts d/dx to multiplication by 2πix, this implies that

(2πi)x · ŝgn = 2δ̂ = 2. Thus, (πi)x · ŝgn = 1.

Discussion: From the hint, x·(πi ŝgn) = 1. Also, the principal-value functional u from the previous example
satisfies x · u = 1. Thus,

x · (u− πi ŝgn) = 0

By another earlier example, this implies that u− πi ŝgn is a multiple of δ. In fact, the multiple is 0, because
δ is even, while u, sgn, and thus ŝgn, are all odd. [1] That is, ŝgn = 1

πiu. ///

[1] This notion of parity can be defined for distributions from the obvious notion for functions (θ · f)(x) = f(−x),

and then (θ · v)(f) = v(θ · f) for distributions v.
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[0.1] Remark: In particular, it is not quite that ŝgn(ξ) = 1/πiξ. Indeed, 1/ξ is not locally integrable, so
does not directly describe a distribution. This example shows that, yes, ξ · ŝgn = 1/πi, but apparently we
cannot just divide (pointwise values). Indeed, we have proven that the principal-value integral is the Fourier
transform (up to constants), and it is not quite just an integral.

[10.6] Compute the Fourier transform of |x|.

Discussion: From d
dx |x| = sgnx, taking Fourier transforms,

ŝgn = (
d

dx
|x|)̂ = 2πi · ξ · |̂x|

Recall that in the previous example it was just barely not ok to divide by ξ, and the principal-value functional
was not quite a literal integral against 1/x. Similarly, but even more so, here we cannot just divide through

by ξ to obtain |̂x| from the principal-value functional.

Similarly, from ( d
dx )2|x| = 2δ, by Fourier transform, (2πi)2 · ξ2 · |̂x| = 2 · 1 = 2 and −2π2 · ξ2 · |̂x| = 1, but we

can’t just divide.

We can try to make a 1/x2 version of the earlier principal-value functional, such as

u(ϕ) = lim
ε→0+

∫
|x|≥ε

ϕ(x)− ϕ(0)

x2
dx

In fact, we can see that this u is the (distributional) derivative of the previous principal-value functional:
integrating by parts,∫

|x|≥ε

ϕ(x)− ϕ(0)

x2
dx =

[ϕ(x)− ϕ(0)

−x

]∞
ε

+
[ϕ(x)− ϕ(0)

−x

]−ε
−∞
−
∫
|x|≥ε

ϕ′(x)

−x
dx

= −ϕ(ε)− ϕ(0)

−ε
+
ϕ(−ε)− ϕ(0)

−(−ε)
+

∫
|x|≥ε

ϕ′(x)

x
dx =

ϕ(ε)− ϕ(0)

ε
− ϕ(−ε)− ϕ(0)

−ε
+

∫
|x|≥ε

ϕ′(x)

x
dx

In the limit, the first two terms give ϕ′(0) − ϕ′(0) = 0. Thus, this principal-value functional u is the
distributional derivative of the earlier one.

As in the earlier example, we claim that x2 · u = 1: for ϕ ∈ D,

(x2 · u)(ϕ) = u(x2 · ϕ) = lim
ε→0+

∫
|x|≥ε

x2 · ϕ(x)− 02 · ϕ(0)

x2
dx = lim

ε→0+

∫
|x|≥ε

ϕ(x) dx =

∫
R
ϕ(x) dx = 1(ϕ)

Thus, both x2 · (−2π2 · |̂x|) = 1 and x2 · u = 1. Thus, x2 · (u − 2π2 |̂x|) = 0. As in an earlier example, this

implies that u− 2π2 |̂x|) = a · δ+ b · δ′ for some scalars a, b. Since u, |x| and, hence, |̂x| are even, in fact that
difference must be a multiple of δ, since δ′ is odd.

To determine the constant, it suffices to apply both functionals to a convenient ϕ ∈ S , such as ϕ(x) = e−πx
2

,
which is its own Fourier transform. On one hand,

u(ϕ) = lim
ε→0+

∫
|x|≥ε

(e−πx
2

)′

x
dx = lim

ε→0+

∫
|x|≥ε

−2πx e−πx
2

x
dx

= lim
ε→0+

∫
|x|≥ε

−2π e−πx
2

dx =

∫
R
−2π e−πx

2

dx = −2π
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On the other hand,

|̂x|(e−πx
2

) = |x|( ̂e−πx2) = |x|(e−πx
2

) =

∫
R
|x| · e−πx

2

dx = 2

∫ ∞
0

xe−πx
2

dx =

∫ ∞
0

e−πx dx =
1

π

by replacing x by
√
x. Thus,

a = a δ(e−πx
2

) = (u− 2π2 |̂x|)(e−πx
2

) = (−2π)− 2π2 · ( 1

π
) = −2π − 2π = −4π

That is,

|̂x| =
u

2π2
+ 4δ

... that is, if no constants got lost. ///

[0.2] Remark: Again, the principal-value functional u cannot be a literal integral.

[10.7] Determine the Schwartz kernel K(, ) for the identity map D(Tn) → D(Tn), and show that it is in
H−

n
2−ε(T2n) for every ε > 0.

Discussion: Let T be the identity map D(Tn)→ D(Tn) viewed as a map D(Tn)→ D(Tn)∗ via the natural
imbedding D ⊂ D∗. Write ψξ for the function ψξ(x) = e2πiξ·x for ξ ∈ Zn and x ∈ R/Z. Anticipating that
K is at worst in H−∞(T2n), we can write a Fourier expansion K =

∑
ξ,η∈Zn cξ,η ψξ ⊗ ψη with coefficients

to be determined. [2] Of course there is no reason to think that this converges pointwise, and this doesn’t
matter. The Schwartz kernel for T : D → D∗ is characterized by

K(ϕ⊗ Tf) = (Tf)(ϕ) (for all ϕ ∈ D)

Applying this to ϕ = ψα and f = ψβ ,

cα,β = K(ψα, ψβ) = (Tψβ)(ψα) =

∫
Tn

ψβ · ψα =

 0 (for β 6= −α ∈ Zn)

1 (for β = α ∈ Zn)

The latter necessary condition already completely determines K: apparently K =
∑
α ψα ⊗ ψ−α. However,

we should give a reason why this expression really does give the identity map on D(Tn). Certainly∣∣∣ ∑
α∈Zn

ψα ⊗ ψ−α
∣∣∣2
Hs

=
∑
α∈Zn

|1|2 · (1 + |α|2)s

is finite if and only if s < −n2 . Thus, for every ε > 0, K ∈ H−n
2−ε(T2n) ⊂ H−∞(T2n) = H∞(T2n)∗. That

is, that Fourier expansion converges in a Sobolev space and does give a distribution on T2n.

Since finite linear combinations of ψα are dense in D(Tn), and since K is continuous on H∞(Tn)⊗H∞(Tn) ⊂
H∞(T2n), the earlier computation of K(ψα ⊗ ψβ) extends by continuity to certify that K(f ⊗ g) =

∫
f · g

for f, g ∈ D(Tn). ///

[2] The tensor notation here is just a way to refer to the function x, y → ψξ(x) · ψη(y) without using arguments.
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