(March 31, 2017)

Examples 12

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is http://www.math.umn.edu/~garrett/m/real/examples_2016-17/real-ex-12.pdf]

For feedback on these examples, please get your write-ups to me by Monday, April 10, 2017.

[12.1] Let T be a compact operator $T: V \to W$ for Hilbert spaces V, W. For S a continuous/bounded operator on V, show that $T \circ S: V \to W$ is compact. For R a continuous/bounded operator on W, show that $R \circ T: V \to W$ is compact.

[12.2] (Rellich's lemma on the circle) For $s < t \in \mathbb{R}$, show that the inclusion map $H^t(\mathbb{T}) \to H^s(\mathbb{T})$ is compact. (Hint: Use the orthogonal bases $\psi_n(x) = e^{2\pi i n x}$, and note that their lengths in $H^s(\mathbb{T})$ vary depending on s. Thus, if we choose isomorphisms of H^s and H^t to $\ell^2(\mathbb{Z})$, the inclusion $H^t \to H^s$ sending $\psi_n \to \psi_n$ will not be the identity map on those copies of $\ell^2(\mathbb{Z})$.)

[12.3] Let K(,) be a measurable function on \mathbb{R}^2 , with a bound B such that $\int_{\mathbb{R}} |K(x,y)| dx \leq B$ for every y, and $\int_{\mathbb{R}} |K(x,y)| dy \leq B$ for every x. Show that $Tf(x) = \int_{\mathbb{R}} K(x,y) f(y) dy$ gives a continuous linear map $L^p \to L^p$ for every $1 , with <math>|Tf|_{L^p} \leq B \cdot |f|_{L^p}$. (*Hint:* Hölder's inequality.)

[12.4] (A simple instance of Young's inequality) In the previous example, let K(x,y) = k(x-y) for $k \in L^1(\mathbb{R})$, so that Tf(x) = (k * f)(x). Show that $|Tf|_{L^p} \leq |k|_{L^1} \cdot |f|_{L^p}$.

[12.5] Solve $-u'' + u = \delta$ on \mathbb{R} . (*Hint:* use Fourier transform. Knowing how to evaluate standard/iconic integrals by residues would be convenient, but/and the relevant integral was done in an earlier example-discussion.)

[12.6] Show that $u'' = \delta_{\mathbb{Z}}$ has no solution on the circle \mathbb{T} . (*Hint:* Use Fourier series.) Show that $u'' = \delta_{\mathbb{Z}} - 1$ does have a solution. (And reflect on the Fredholm alternative?)

[12.7] On the circle \mathbb{T} , show that u'' = f has a unique solution for all $f \in L^2(\mathbb{T})$ orthogonal to the constant function 1. (And reflect on the Fredholm alternative?)