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[02.1] Show that `2 is complete as a metric space.

Discussion: We can do this directly, although it is also a special case of the general fact that L2(X,µ) is
complete. Indeed, the argument will be a somewhat simpler version of the more general proof.

Let f1, f2, . . . be a Cauchy sequence in `2. Let f(n) be the nth component of f ∈ `2, for n = 1, 2, . . .. For
any f ∈ `2, certainly |f(n)| ≤ |f |`2 , so for each n the scalar sequence f1(n), f2(n), f3(n), . . . must be Cauchy,
thus has a limit f(n). We claim that f = (f(1), f(2), f(3), . . .) is in `2, and is the `2 limit of the fi.

Given ε > 0, there is N sufficiently large so that |fi − fj |`2 < ε for all i, j ≥ N . By a discrete version of
Fatou’s lemma, for i ≥ N ,∑
n

|f(n)− fi(n)|2 =
∑
n

lim
j
|fj(n)− fi(n)|2 =

∑
n

lim inf
j
|fj(n)− fi(n)|2 ≤ lim inf

j

∑
n

|fj(n)− fi(n)|2

≤ lim inf
j
|fj − fi|2`2 ≤ lim inf

j
ε2 = ε2

Thus, f − fi ∈ `2, so f = (f − fi) + fi ∈ `2. Then the previous computation shows that for given ε for i ≥ N
we have |f − fi| ≤ ε. Thus, fi → f in `2. ///

Discrete version of Fatou’s Lemma: We claim that for [0,+∞]-valued functions fj on {1, 2, 3, . . .},
∞∑
n=1

lim inf
j

fj(n) ≤ lim inf
j

∞∑
n=1

fj(n)

Proof: Letting gj(n) = infi≥j fj(n), certainly gj(n) ≤ fj(n) for all n, and
∑
n gj(n) ≤

∑
n fj(n). Also,

g1(n) ≤ g2(n) ≤ . . . for all n, and limj gj(n) = lim infj fj(n). A discrete form of the Monotone Convergence
Theorem, proven just below, is ∑

n

lim
j
gj(n) = lim

j

∑
n

gj(n)

Thus, ∑
n

lim inf
j

fj(n) =
∑
n

lim
j
gj(n) = lim

j

∑
n

gj(n) = lim inf
j

∑
n

gj(n) ≤ lim inf
j

∑
n

fj(n)

as claimed. ///

Similarly, we have

Discrete version of Lebesgue’s Monotone Convergence Theorem: For [0,+∞]-valued functions fj on
{1, 2, 3, . . .}, with f1(n) ≤ f2(n) ≤ . . . for all n,

lim
j

∞∑
n=1

fj(n) =

∞∑
n=1

lim
j
fj(n) (allowing value +∞)

Proof: Each non-decreasing sequence f1(n) ≤ f2(n) ≤ . . . has a limit f(n) ∈ [0,+∞]. Similarly, since∑
n fj(n) ≤

∑
n fj+1(n), the non-decreasing sequence of these sums has a limit S = limj

∑
n fj(n). Since

fj(n) ≤ f(n), certainly
∑
n fj(n) ≤

∑
n f(n), and S ≤

∑
n f(n).
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Fix N , and put g(n) = f(n) for n ≤ N and g(n) = 0 for n > N . For ε > 0, let

Ej = {n :
∑
n

fj(n) ≥ (1− ε) ·
∑
n

g(n)} (for j = 1, 2, . . .)

Certainly E1 ⊂ E2 ⊂ . . ., since fj+1(n) ≥ fj(n) for all n. We claim that
⋃
Ej = {1, 2, . . .}: for f(n) > 0,

lim
j
fj(n) = f(n) > (1− ε) · f(n) ≥ (1− ε) · g(n) (for all n)

and for f(n) = 0, also g(n) = 0, and

f1(n) ≥ 0 ≥ (1− ε) · g(n)

Then ∑
n

fj(n) ≥
∑
n∈Ej

fj(n) ≥ (1− ε) ·
∑
n∈Ej

g(n)

The set of n for which g(n) is non-zero is finite, so there is jo such that for j ≥ jo∑
n∈Ej

g(n) =
∑
n

g(n) (for all j ≥ jo)

That is, limj

∑
n fj(n) ≥ (1− ε)

∑
n g(n). Then

S = lim
j

∑
n

fj(n) ≥ (1− ε) · lim
j

∑
n∈Ej

g(n) = (1− ε) ·
∑
n

g(n)

This holds for every ε > 0, so S ≥
∑
n g(n) =

∑
n≤N f(n). This holds for every N , so S ≥

∑
n f(n). ///

[02.2] Show that the characteristic function χE of a measurable set E is measurable.

Discussion: For non-empty open U ⊂ R, χ−1E (U) is the measurable set φ if U does not contain either 0 or
1. If U 3 1 but U 63 0, then χ−1E (U) = E, which is measurable. If U 3 0 but U 63 1, then χ−1E (U) = Ec, the
complement of E, which is measurable. If U contains both 0 and 1, then χ−1E (U) is the whole domain space,
which is measurable. ///

[02.3] Show that the product of two R-valued measurable functions on R is measurable.

Discussion: Let f, g be measurable functions. Let ∆ : R → R2 by ∆(x) = (x, x), s : R2 → R by
m(x, y) = x · y, and f ⊕ g : R2 → R2 by (f ⊕ g)(x, y) = (f(x), g(y)). Clearly m ◦ (f ⊕ g) ◦∆ = f · g, and
(f · g)−1 = ∆−1 ◦ (f ⊕ g)−1 ◦m−1.

For open U ⊂ R, m−1(U) ⊂ R2 is open, because m is continuous. Since R2 is countably based, and in fact
has a countable basis consisting of rectangles with rational endpoints, so m−1(U) is a countable unions of
rectangles (ai, bi)× (ci, di). Then

(f ⊕ g)−1 ◦m−1(U) = (f ⊕ g)−1(
⋃
i

(ai, bi)× (ci, di))

=
⋃
i

(f ⊕ g)−1((ai, bi)× (ci, di)) =
⋃
i

f−1(ai, bi)× g−1(ci, di)

The sets f−1(ai, bi) ⊂ R and g−1(ci, di) ⊂ R are Borel sets, so their product is a Borel set in R2. Then

∆−1(E1 × E2) = E1 ∩ E2 (for E1, E2 measurable in R)
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is measurable. ///

[02.4] Use Urysohn’s lemma to prove that Co[a, b] is dense in L1[a, b].

Discussion: By the Lebesgue definition of integrals, simple functions are dense in L1[a, b], so it suffices to
show that simple functions can be well approximated by continuous functions. Granting ourselves the (outer
and inner) regularity of Lebesgue measure µ, for measurable E there are open U and compact K such that
K ⊂ E ⊂ U , and m(U)− µ(K) < ε. Invoke Urysohn to make a continuous function f taking values in [0, 1]
and f |K = 1 and f = 0 off U . Then∫ b

a

|f − chE | =

∫
K

|f − chE |+
∫
E−K

|f − chE |+
∫
U−E

|f − chE | ≤
∫
K

|1− 1|+
∫
E−K

1 +

∫
U−E

1

= µ(E −K) + µ(U − E) = µ(U −K) < ε

as desired. ///

[02.5] Comparing Lp spaces. Let 1 ≤ p, p′ < ∞. When is Lp[a, b] ⊂ Lp
′
[a, b] for finite intervals [a, b] and

Lebesgue measure? When is Lp(R) ⊂ Lp′(R)? When is `p ⊂ `p′?

Discussion: Take p < p′. We claim that Lp[a, b] ⊃ Lp′ [a, b], with proper containment. The function f that

is (x − a)
− 1

p′ on (a, b] and 0 off that interval is not in Lp
′
, but is in Lp. Given f ∈ Lp′ [a, b], let E be the

set of x ∈ [a, b] where |f(x)| ≥ 1. Then
∫ b
a
|f |p′ < ∞ if and only if

∫
E
|f |p′ < ∞. On E, |f |p < |f |p′ , so∫

E
|f |p <∞, and then also

∫ b
a
|f |p <∞, so f ∈ Lp[a, b]. ///

We claim that Lp(R) and Lp
′
(R) are not comparable for p 6= p′. Take 1 ≤ p < p′. On one hand,

1/(1 + |x|)1/p′+ε is in Lp
′

for all ε > 0, but not in Lp for ε small enough so that 1
p′ + ε < 1

p . On the

other hand, the function f that is x
− 1

p′ on (0, 1] and 0 off that interval is not in Lp
′
, but is in Lp.

We claim that for 1 ≤ p < p′ <∞, `p ⊂ `p
′
, with strict containment. Indeed, f(n) = 1/np is not in `p, but

is in `p
′
. Let E = {n ∈ {1, 2, . . .} : |f(n)| < 1}. Then f ∈ `p if and only if the complement of E is finite,

and if
∑
n∈E |f(n)|p < ∞. Certainly |f(n)|p > |f(n)|p′ for n ∈ E, and the complement of E is finite, so∑

n∈E |f(n)|p′ <
∑
n∈E |f(n)|p, and f ∈ `p′ . ///

[02.6] For positive real numbers w1, . . . , wn such that
∑
i wi = 1, and for positive real numbers a1, . . . , an,

show that
aw1
1 . . . awn

n ≤ w1a1 + . . .+ wnan

Discussion: This is a corollary of Jensen’s inequality, similar to the arithmetic-geometric mean, but with
unequal weights. Namely, let X = {1, 2, . . . , n} with measure µ(i) = wi, and function f(i) = log ai. Then
Jensen’s inequality is ( n∑

i=1

wi · log ai

)
=

n∑
i=1

wi · elog ai

which simplifies to the assertion. ///

[02.7] In `2, show that the point in the closed unit ball closest to a point v not inside that ball is v/|v|`2 .

Discussion: The minimum principle assures that there is a unique closest point w in the closed unit ball B
to v, because B is convex, closed, non-empty, and v is not in B.

Suppose w is closer than v/v|. Then

|v|2 − 2|v|+ 1 = |v − v

|v|
|2 > |v − w|2 = |v|2 − 〈v, w〉 − 〈w, v〉+ |w|2 = |v|2 − 〈v, w〉 − 〈w, v〉+ 1
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Thus,
2|v| < 〈v, w〉+ 〈w, v〉

Thus, the sum of the two inner products is positive, and by Cauchy-Schwarz-Bunyakowsky:

2|v| < 〈v, w〉+ 〈w, v〉 = |〈v, w〉+ 〈w, v〉| ≤ 2|v| · |w|

Thus, 1 < |w|, which is impossible. ///

[02.8] For a measurable set E ⊂ [0, 2π], show that

lim
n→∞

∫
E

cosnx dx = 0 = lim
n→∞

∫
E

sinnx dx

Discussion: This is an instance of a Riemann-Lebesgue lemma, namely, that Fourier coefficients of an L2

function on [0, 2π] go to 0. Here, the L2 function is the characteristic function of E, and we use sines and
cosines instead of exponentials. ///

[02.9] One form of the sawtooth function is f(x) = x− π on [0, 2π]. Compute the Fourier coefficients f̂(n).
Write out the conclusion of Parseval’s theorem for this function.

Discussion: We have the orthonormal basis en(x) = 1√
2π
einx with n ∈ Z for the Hilbert space L2[0, 2π].

The Fourier coefficients are determined by Fourier’s formula

f̂(n) =

∫ 2π

0

f(x)
e−inx√

2π
dx

For n = 0, this is 0. For n 6= 0, integrate by parts, to get

f̂(n) =
[
f(x) · e−inx√

2π · (−in)

]2π
0
−
∫ 2π

0

1 · e−inx√
2π · (−in)

dx

=
(

(π · 1√
2π · (−in)

)− (−π · 1√
2π · (−in)

)
)
− 0 =

2π√
2π · (−in)

=

√
2π

−in

The L2 norm of f is ∫ 2π

0

(x− π)2 dx =
[ (x− π)3

3

]2π
0

=
π3 − (−π)3

3
=

2π3

3

Thus, by Parseval, ∑
n6=0

∣∣∣√2π

−in

∣∣∣2 =
2π3

3

This simplifies first to

2
∑
n≥1

2π

n2
=

2π3

3

and then to ∑
n≥1

1

n2
=

π2

6

That is, Parseval applied to the sawtooth function evaluates ζ(2). ///
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[02.10] For fixed y ∈ [0, 1], show that there is no fy ∈ L2[0, 1] so that 〈g, fy〉 = g(y) for all g ∈ L2[0, 1].

Discussion: Part of the issue here is whether L2 functions truly have meaningful pointwise values at all, and
we generally imagine that they do not, although such a negative fact may be hard to express formulaically.

Among many approaches, one is to suppose such f exists. Choose an orthonormal basis for L2[0, 1] consisting
of the continuous functions ψn(x) = e2πinx, and see what the condition 〈fy, ψn〉 = ψn(y) imposes on the
alleged fy. Indeed, this condition completely determines the Fourier coefficients of the alleged fy: since
ψn ∈ L2[0, 1], 〈ψn, fy〉 = ψn(y), and then

f̂y(n) =

∫ 1

0

fy(x)ψn(x) dx = 〈ψn, fy〉 = ψn(y)

so
fy =

∑
n∈Z

ψn(y) · ψn (with equality in an L2 sense)

By Parseval,

|fy|2L2 =
∑
n

|ψn(y)|2 = +∞

since |ψn(y)| = 1 for all n. Thus, there can be no such fy in L2. ///

In contrast to the previous example’s outcome: Let V be the complex vector space of power series
f(z) =

∑
n≥0 cn z

n convergent on the open unit disk D in C, having finite norm

|f | =
(∫

D

|f(x+ iy)|2 dx dy
) 1

2

with hermitian inner product

〈f, g〉 =

∫
D

f(x+ iy) · g(x+ iy) dx dy

It is not hard to show that 〈zm, zn〉 = 0 unless m = n, in which case it is 2π
2n+1 , and that ψn(z) = zn ·

√
2n+1√
2π

is an orthonormal basis for V . The sum fw(z) =
∑
n≥0 ψn(z)ψn(w) converges absolutely for z, w ∈ D, and

〈g(−), fw〉 = g(w) (for w in the disk)

For each fixed w ∈ D, pointwise evaluation g → g(w) is a continuous linear functional on V .
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