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[02.1] Show that ¢? is complete as a metric space.

Discussion: We can do this directly, although it is also a special case of the general fact that L?(X, u) is
complete. Indeed, the argument will be a somewhat simpler version of the more general proof.

Let f1, f2,... be a Cauchy sequence in ¢2. Let f(n) be the n'" component of f € ¢2, for n = 1,2,.... For

any f € £2, certainly |f(n)| < |f|e, so for each n the scalar sequence fi1(n), f2(n), f3(n), ... must be Cauchy,
thus has a limit f(n). We claim that f = (f(1), f(2), f(3),...) is in ¢2, and is the 2 limit of the f;.

Given € > 0, there is N sufficiently large so that |f; — fj|e2 < € for all 4,5 > N. By a discrete version of
Fatou’s lemma, for ¢ > N,

1)~ f = Y tmlfin) — L) = Y tmint f50) = AP < lminf 37500 — i)
< liminf |f; — fi|% < liminfe? = &?

Thus, f— fi € 2,50 f = (f — f;) + fi € 2. Then the previous computation shows that for given e for i > N
we have |f — f;| < e. Thus, f; — f in (2. ///

Discrete version of Fatou’s Lemma: We claim that for [0, +-o00]-valued functions f; on {1,2,3,...},

;hmjinffj(n) < hmjinf;fj(n)

Proof: Letting gj(n) = inf;>; f;(n), certainly g;(n) < f;(n) for all n, and Y, g;(n) < >, f;(n). Also,
g1(n) < ga(n) < ... for all n, and lim; g;(n) = liminf; f;(n). A discrete form of the Monotone Convergence

Theorem, proven just below, is
ZIijmgj(n) = li;nZgj(n)
Thus,
liminf f;(n) = limg;(n) = lim i(n) = liminf i(n) < liminf i(n
; 1 jl fi(n) ; 1j 9;(n) lj ;gj( ) 1 jl ;g]( ) < I jm ;fj( )
as claimed. ///

Similarly, we have
Discrete wversion of Lebesgue’s Monotone Convergence Theorem: For [0,+oc]-valued functions f; on

{1,2,3,...}, with f1(n) < fa(n) < ... for all n,

o0 (o ]
I ) = S lim £, Howing value +
1?1; fi(n) nz::l im fi(n) (allowing value +oc0)

Proof: Each non-decreasing sequence fi(n) < fa(n) < ... has a limit f(n) € [0,4oc]. Similarly, since
>onfi(n) < 3, fiti1(n), the non-decreasing sequence of these sums has a limit S = lim; > f;(n). Since

fi(n) < f(n), certainly > f;j(n) <>, f(n),and S <> f(n).
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Fix N, and put g(n) = f(n) for n < N and g(n) =0 for n > N. For ¢ > 0, let
Bj = {n:) fi(n=0-2)> g} (for j =1,2,...)

Certainly Eq C E3 C ..., since fj11(n) > f;(n) for all n. We claim that |J E; = {1,2,...}: for f(n) >0,
lim fi(n) = f(n) > (1—e)-f(n) > (1—2)-g(n) (for all n)
J
and for f(n) =0, also g(n) =0, and

filn) 20 = (1-¢)-g(n)

Then

Y filn) = Y fin) = (1—e)- Y gn)

nek; nek;
The set of n for which g(n) is non-zero is finite, so there is j, such that for j > j,

Z g(n) = Zg(n) (for all 7 > j,)

nek;

That is, lim; >~ fj(n) > (1 —¢) )", g(n). Then

§ =limy fi(n) > (1=¢) lim Y g(n) = (1-¢)- 3 g(n)

nek;

This holds for every e > 0,50 S > >, g(n) =, .y f(n). This holds for every N,s0 S >3- f(n). ///

[02.2] Show that the characteristic function xg of a measurable set F is measurable.

Discussion: For non-empty open U C R, X;(U ) is the measurable set ¢ if U does not contain either 0 or
1. If U 3 1 but U %0, then ;' (U) = E, which is measurable. If U 3 0 but U # 1, then x5 (U) = E°, the
complement of E, which is measurable. If U contains both 0 and 1, then X;(U ) is the whole domain space,
which is measurable. ///

[02.3] Show that the product of two R-valued measurable functions on R is measurable.

Discussion: Let f,g be measurable functions. Let A : R — R? by A(z) = (z,2), s : R? — R by
m(z,y) =z -y, and f @ g:R* = R? by (f @ g)(z,y) = (f(2),9(y)). Clearly mo (f@g)oA = f-g, and
(f-9) ' =Ato(fog)tom

For open U C R, m~1(U) C R? is open, because m is continuous. Since R? is countably based, and in fact
has a countable basis consisting of rectangles with rational endpoints, so m~1(U) is a countable unions of
rectangles (a;, b;) X (¢;,d;). Then

(fog)tom™(U) = (fog9) (Ul b) x (¢ di)

i

= Jr @9 ((aib) x (¢, d) = Uf‘l(ai,bi) x g~ (ciyd;)

3

The sets f~(a;,b;) C R and g~ (c;,d;) C R are Borel sets, so their product is a Borel set in R?. Then

A NE, x Ey) = EyNE;y (for Ey, E3 measurable in R)
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is measurable. /]

[02.4] Use Urysohn’s lemma to prove that C°[a, b] is dense in L'[a, b).

Discussion: By the Lebesgue definition of integrals, simple functions are dense in L![a,b], so it suffices to
show that simple functions can be well approximated by continuous functions. Granting ourselves the (outer
and inner) regularity of Lebesgue measure p, for measurable F there are open U and compact K such that
K C EcCU,and m(U) — u(K) < e. Invoke Urysohn to make a continuous function f taking values in [0, 1]
and f|g =1 and f =0 off U. Then

b
/\f—chE|:/|f—chE|+/ \f—chE|+/ |f—chE|§/|1—1|+/ 1+/ 1
a K E—-K U—-FE K E—-K U—-F

— W(E—K)+u(U—E) = p(U-K) < =
as desired. ///

[02.5] Comparing LP spaces. Let 1 < p,p’ < co. When is LP[a,b] C o [a, b] for finite intervals [a, b] and
Lebesgue measure? When is LP(R) C L? (R)? When is £2 C (7’7

Discussion: Take p < p/. We claim that L?[a,b] D L?'[a,b], with proper containment. The function f that
is (z — a)fﬁ on (a,b] and 0 off that interval is not in L?', but is in LP. Given f € L¥'[a,b], let E be the
set of & € [a,b] where |f(x)| > 1. Then fab|f\p/ < oo if and only if [, |f|” < co. On E, [f|? < |f|"', so
S |fIP < o0, and then also ff |[f|P < o0, so f € LP[a,b]. ///

We claim that LP(R) and L¥ (R) are not comparable for p # p/. Take 1 < p < p/. On one hand,
1/(1 + |z))Y/P'*¢ is in LP for all € > 0, but not in LP for ¢ small enough so that 1% +e< zl)' On the

other hand, the function f that is "% on (0,1] and 0 off that interval is not in L¥', but is in LP.
We claim that for 1 < p < p/ < oo, €7 C ¢¢', with strict containment. Indeed, f(n) = 1/nP is not in 7, but

isin 7. Let E = {n e {1,2,...} : [f(n)| < 1}. Then f € ¢* if and only if the complement of E is finite,
and if 37 o |f(n)P < co. Certainly |f(n)[P > |f(n)[P for n € E, and the complement of E is finite, so

Yoneplf)P <3 cplf(n)|P, and f € 7. ///
[02.6] For positive real numbers w, ..., w, such that 3", w; = 1, and for positive real numbers ay, ..., a,,
show that

al’..oapm < wiap 4 ...+ wpay

Discussion: This is a corollary of Jensen’s inequality, similar to the arithmetic-geometric mean, but with
unequal weights. Namely, let X = {1,2,...,n} with measure u(i) = w;, and function f(i) = loga;. Then

Jensen’s inequality is
n n
( E w; - log ai) = g w; - €lo8 %
i=1 i=1

which simplifies to the assertion. /]

[02.7] In £2, show that the point in the closed unit ball closest to a point v not inside that ball is v/|v|.

Discussion: The minimum principle assures that there is a unique closest point w in the closed unit ball B
to v, because B is convex, closed, non-empty, and v is not in B.

Suppose w is closer than v/v|. Then

v
o] = 2Jv| +1 = \v—ml2 > o —wf = [of* = (v,w) = (w,v) + [w* = |* = (v,w) = (w,v) +1
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Thus,
2[v] < (v,w) + (w,v)

Thus, the sum of the two inner products is positive, and by Cauchy-Schwarz-Bunyakowsky:

20 < (v,w) + (w,v) = [(v,w) + (w, )| < 2Jv] - |w]

Thus, 1 < |w]|, which is impossible.
[02.8] For a measurable set E C [0, 27, show that

lim cosnrdr = 0 = lim sinnz dr
n—oo E n— o0 E

"

Discussion: This is an instance of a Riemann-Lebesgue lemma, namely, that Fourier coefficients of an L?
function on [0,27] go to 0. Here, the L? function is the characteristic function of E, and we use sines and

cosines instead of exponentials.

I

[02.9] One form of the sawtooth function is f(x) =z —m on [0,27]. Compute the Fourier coefficients Fn).

Write out the conclusion of Parseval’s theorem for this function.

Discussion: We have the orthonormal basis e, (r) = —=¢™® with n € Z for the Hilbert space L?[0,27].

V2r
The Fourier coefficients are determined by Fourier’s formula

27 —inx

f(n) = o (.Z‘) m

For n = 0, this is 0. For n # 0, integrate by parts, to get

dx

R e—inT o 27 e—inT
1o = P i o e

2w Vo

1 1
™

) T ) T
The L? norm of f is

2 T — m)3q2m 23— (—1)3 3
T

Thus, by Parseval,

Z ‘ V4 2 ‘2 - 27T3
o —in 3
This simplifies first to
27 273
2 —_ = —
dooa =
n>1
and then to
DER
n2 6
n>1

That is, Parseval applied to the sawtooth function evaluates ((2).

4
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[02.10] For fixed y € [0,1], show that there is no f, € L?[0, 1] so that (g, f,) = g(y) for all g € L?[0, 1].

Discussion: Part of the issue here is whether L? functions truly have meaningful pointwise values at all, and
we generally imagine that they do not, although such a negative fact may be hard to express formulaically.

Among many approaches, one is to suppose such f exists. Choose an orthonormal basis for L2[0, 1] consisting
of the continuous functions v, (z) = €?™"* and see what the condition (f,, ) = ¥, (y) imposes on the
alleged f,. Indeed, this condition completely determines the Fourier coefficients of the alleged f,: since

w" € L2[07 ]-L <wn7fy> - wn(y), and then

Fyn) = / @) (@) de = (Gn, fy) = Yul)

s0
fo =D 0, (y) - thn (with equality in an L? sense)

By Parseval,
fylfe = D [a@)® = +o0

since |1, (y)| = 1 for all n. Thus, there can be no such f, in L% ///

In contrast to the previous example’s outcome: Let V be the complex vector space of power series
f(2) =3",,50 Cn 2™ convergent on the open unit disk D in C, having finite norm

1= ([ 15+ P dray)’

with hermitian inner product

(f.9) = /D f(& +iy) - (@ T i) de dy

It is not hard to show that (2™, z™) = 0 unless m = n, in which case it is 23%7 and that i, (z) = 2" - %

is an orthonormal basis for V. The sum fi,(2) = 3_, 50 ¥n(2) ¢¥n(w) converges absolutely for z,w € D, and
(9(=), fuw) = g(w) (for w in the disk)

For each fixed w € D, pointwise evaluation g — g(w) is a continuous linear functional on V.




