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[07.1] Compute the Fourier transform of |x| on R. (Hint: its second derivative is 2δ.)

(Beware! There was a computational error in the discussion from last year!)

Discussion: (There are several lines of computation which succeed.) Let u(x) = |x|, or, rather, the
distribution given by integrating against |x|. This is certainly a tempered distribution, so it has a Fourier
transform, even if it is not (integration against) a pointwise-valued function. Its first derivative is (integration
against) sgnx, which has no pointwise value at 0, but that doesn’t matter. The derivative of this is 0 away
from 0, and, more importantly, gives a jump of 2 at 0, so u′′ = 2δ.

Taking Fourier transform, (2πiξ)2 û = 2, since δ̂ = 1. We are reasonably tempted to divide through and say
that û(ξ) = −1/2π2|ξ|2. However, this cannot be literally correct, since 1/|x|2 is not locally integrable, so
this description of the distribution û is inadequate. Also, attempting a naive principal value version fails
because there’s no cancellation.

But we might be reminded of the earlier example that the principal value distribution v(f) =

limε→0+
∫
|x|≥ε

f(x)
x dx appears as a Fourier transform:

ŝgn =
1

πi
v

In that case, we similarly saw that ξ ŝgn = 1/πi, but we could not simply divide, due to problems at 0.
Rather, since also ξ ·v = 1, ξ · (ŝgn−v/πi) = 0. Thus, ŝgn−v/πi is supported at 0, so is a linear combination
of δ and its derivatives. Being annihilated by multiplication by ξ, it must be a constant multiple of δ itself.
But ŝgn− v/πi is odd, and δ is even, so it must be that ŝgn− v/πi = 0.

Still, we might imagine that, since (1/ξ)′ = −1/|ξ|2 away from 0, û may be the derivative of the principal
value functional (up to a constant multiple). Taking the derivative of both sides of ξ · v = 1, we have
v + ξv′ = 0, so ξ(−v′) = v. Multiplying again by ξ,

ξ2 · (−v′) = ξ · v = 1

Thus,

ξ2 · (û− v′/2π2) =
−1

2π2
+

1

2π2
= 0

Thus, û − v′/2π2 is supported at 0, so is a (finite) linear combination of δ and its derivatives. Being
annihilated by multiplication by ξ2, it is necessarily just a linear combination of δ and δ′. Since û, v′, δ are
even, but δ′ is odd, the linear combination can only involve δ. So we know that

û =
v′

2π2
+ c · δ (for some constant c)

That is, up to the to-be-determined multiple of δ, û is essentially the derivative of the principal-value
functional. Unlike the previous, simpler example, we need to evaluate the constant. To do so, it’s handy to
use a Schwartz function that is its own Fourier transform, such as the Gaussian g(x) = e−πx

2

. Then
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c · 1 = c · δ(g) = û(g)− v′

2π2
(g) = u(ĝ) +

v

2π2
(g′) =

∫
R
|x| e−πx

2

dx+
1

2π2
lim
ε

∫
|x|≥ε

−2πx e−πx
2

x
dx

=
1

π
− 1

π
= 0

Thus, |̂x| = v′/2π2, with v the principal-value functional above. ///

[0.1] Remark: This can also be understood as an example of Hadamard’s finie partie (finite part), as well
as in terms of Riesz’s explanation of Hadamard’s idea in terms of meromorphic continuation of a family
of distributions. All of these viewpoints are useful. (A previous year’s computation of the constant was
apparently incorrect!)

[07.2] (Trace Theorem T2 → T1) For f ∈ Hs(T2) with s > 1
2 , show that f

∣∣∣
T×{0}

∈ Hs− 1
2 (T).

Discussion: Let’s recall the more general case of this done in class: let m < n and Tm → Tn by mapping
(x1, . . . , xm)→ (x1, . . . , xm, 0, . . . , 0).

[0.2] Claim: For s > n−m
2 , for f ∈ Hs(Tn), the restriction f |Tm is in Hs−n−m

2 −ε(Tm) for every ε > 0.

Proof: Fix ε > 0, and let h = n−m
2 + ε. Denote elements of Zn by (k, `) with k ∈ Tm and ` ∈ Tn−m. Also,

it suffices to consider f having a finite Fourier series, since these are dense in every Hs, so we do not have
to worry about convergence, only comparison of norms. Then

∣∣f ∣∣∣
Tm

∣∣2
Hs−h =

∑
k∈Zm

∣∣∣ ∑
`∈Zn−m

f̂(k, `)
∣∣∣2 · (1 + |k|2)s−h

By Cauchy-Schwarz-Bunyakowsky,∣∣∣ ∑
`∈Zn−m

f̂(k, `)
∣∣∣ ≤ ∑

`∈Zn−m

1 · |f̂(k, `)| =
∑

`∈Zn−m

1

(1 + |`|2)h/2
· |f̂(k, `)| · (1 + |`|2)h/2

≤
( ∑
`∈Zn−m

1

(1 + |`|2)h

) 1
2 ·
( ∑
`∈Zn−m

|f̂(k, `)|2 · (1 + |`|2)h
) 1

2

Since h > n
2 , the first sum has finite value Ch. Then∣∣f ∣∣∣

Tm

∣∣
Hs−h ≤ Ch ·

∑
k∈Zm

( ∑
`∈Zn−m

|f̂(k, `)|2 · (1 + |`|2)h
)
· (1 + |k|2)s−h

Since s− h ≥ 0 and h ≥ 0, for all a, b ≥ 0,

(1 + a)h · (1 + b)s−h ≤ (1 + a+ b)h · (1 + a+ b)s−h = (1 + a+ b)s

Thus, ∣∣f ∣∣∣
Tm

∣∣2
Hs−h ≤ Ch ·

∑
k∈Zm

∑
`∈Zn−m

|f̂(k, `)|2 · (1 + |k|2 + |`|2)s = Ch · |f |2Hs

This comparison of norms on finite Fourier series extends by continuity to give the same comparison for all
elements of Hs. ///

[07.3] Let ψξ(x) = e2πiξ·x. Tell in what useful sense
∫
Rn 1 · ψξ dξ converges.
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Discussion: It is easy to imagine that the integral should converge in some genuine sense, and express
δ, since δ̂ = 1, and Fourier inversion holds for tempered distributions. This is the Rn analogue of the Tn
situation with Fourier series having coefficients all 1, the Fourier expansion of the Dirac comb (a periodic
version of Dirac δ). But for tempered distributions there is no reason to expect pointwise convergence either
of Fourier transform or inversion, so from this viewpoint that integral can only refer to an extension-by-
continuity of Fourier inversion. We can do somewhat better.

First, since δ̂ = 1 is locally integrable, and
∫
Rn |1|2 · (1 + |ξ|2)s dξ <∞ for s < −n2 , we find that δ ∈ Hs(Rn)

for such s. We might aim to show that the integral in question converges (in some sense) to δ in Hs for such
s.

Just as Fourier series need not be interpreted as converging numerically to pointwise-valued functions, these
Fourier integrals need not be interpreted as converging numerically to pointwise-valued functions. One point
is that infinite sums or integrals over infinite-measure sets should be construed as limits of (for example)
finite sums or finite integrals.

We claim that this integral converges in the Sobolev space Hs(Rn) for every s < −n/2, and converges there
to δ. For example, the truncated integrals

uN =

∫
supi |ξi|≤N

1 · ψξ dξ

are absolutely convergent pointwise, so can be taken literally. Taking advantage of the box-truncations
(rather than other shapes that do not easily allow separation of variables),

uN (x) =

n∏
i=1

sin 2πNxi
πxi

We should expect that uN → δ in Hs(Rn). Indeed, by Fourier inversion, ûB is the characteristic function
χBN

of the box BN = {x : supi |xi| ≤ N}. Then

|δ − uN |2Hs =

∫
Rn

|1− χBN
|2 · (1 + |ξ|2|s dξ ≤

∫
|x|≥N

(1 + |ξ|2)s dξ −→ 0

for s < −n2 . ///

[07.4] Show that there exists f ∈ Co(Rn) and 0 ≤ k ∈ Z such that (1−∆)kf = δ.

Discussion: The key idea is that solving the equation (1−∆)f = g gives (1+4π2|ξ|2)f̂(ξ) = ĝ(ξ), and then

f̂(ξ) = ĝ(ξ)/(1 + 4π2|ξ|2). Thus, (1 −∆)kf = g gives f̂(ξ) = ĝ(ξ)/(1 + 4π2|ξ|2)k. This puts f in a better
Sobolev space than g was in, shifting the index by 2k. If the index is shifted to Hs with s > n

2 + `, then by
Sobolev inequalities/imbedding, actually f ∈ C`.

Again, δ ∈ Hs(Rn) for any s < −n2 , since δ̂ = 1 and
∫
|1|2 · (1 + |ξ|2)s dξ <∞. Let F (ξ) = 1/(1 + 4π2|ξ|2)k

with k large enough so that for some ε > 0∫
Rn

1

(1 + 4π2|ξ|2)2k
· (1 + |ξ|2)

n
2 +εdξ < ∞

With f = F̂ , f ∈ H n
2 +ε, and (1−∆)kf = δ. By Sobolev imbedding, f ∈ Co, as desired. ///

[07.5] Show that the characteristic function of an interval is in H
1
2−ε(R) for every ε > 0, but is not in

H
1
2 (R).
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Discussion: By direct computation,

χ̂[a,b](ξ) =
e−2πibξ − e−2πiaξ

−2πiξ

For ε > 0, ∫
R

∣∣∣e−2πibξ − e−2πiaξ−2πiξ

∣∣∣2 · (1 + ξ2)s dξ �
∫
R

1

(1 + |ξ|)2
· (1 + ξ2)s dξ < ∞

for 2− 2s > 1, which is s < 1
2 . ///

[07.6] (Corrected!) Show that f(x) = e−|x| is in H
3
2−ε(R) for every ε > 0, but is not in H

3
2 (R).

Discussion: The correct indexes for the Sobolev spaces are easily discovered by doing a simple computation:
basic calculus gives

f̂(ξ) =
2

1 + 4π2ξ2

and then, with implicit constant that doesn’t matter,

|f |2Hs =

∫
R
|f̂(ξ)|2 · (1 + ξ2)s dξ �

∫
R

(1 + ξ2)s−2 dξ

This if finite for s− 2 < − 1
2 , which is s < 3

2 . On the other hand, with implicit constants that don’t matter,

|f |2Hs =

∫
R
|f̂(ξ)|2 · (1 + ξ2)s dξ �

∫
R

(1 + ξ2)s−2 dξ

which diverges for s− 2 = − 1
2 . ///

[07.7] Recall the argument that δ ∈ H−n
2−ε(Rn) for every ε, but is not in H−

n
2 (Rn).

Discussion: This is a an important cliche:∫
Rn

|δ̂|2 · (1 + |ξ|2)s dξ =

∫
Rn

1 · (1 + |ξ|2)s dξ

which is finite for s < −n2 , but not for s = −n2 . ///

[07.8] Let u be a distribution on R. Show that δ ∗ u = u and δ′ ∗ u = u′.

Discussion: Use the definition/characterization

(u ∗ f)(x) = u(T−xf
∨)

where f∨(y) = f(−y), for u ∈ E∗ and f ∈ E . Then

(δ ∗ f)(x) = δ(T−xf
∨) = (T−x(y → f(−y)))|y=0 = (y → f(−y + x))|y=0 = f(x)

Similarly,

(δ′ ∗ f)(x) = δ′(T−xf
∨) = −(

d

dy
(y → T−xf(−y))|y=0 = −(

d

dy
(y → f(−y + x)))|y=0

= (y → f ′(−y + x))|y=0 = f ′(x)

as claimed. ///
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Another reasonable approach, is to use Fourier transforms: apparently

δ̂ ∗ u = δ̂ · û = 1 · û = û

and by Fourier inversion it would seem that δ ∗ u = u. Indeed, if û has pointwise values this argument is
correct. Thus, for u ∈ E∗, since by Sobolev H∞ ⊂ E and then E∗ ⊂ (H∞)∗ = H−∞, we know that û does
have pointwise values, justifying the argument. ///

Also, if û is a compactly-supported distribution, multiplication of it by any f ∈ E is defined, not pointwise,
but by duality, by (f · û)(ϕ) = û(f · ϕ) for ϕ ∈ E . ///

[07.9] For compactly supported distributions u, v on R, show that (u ∗ v)′ = u′ ∗ v = u ∗ v′.

Discussion: First, there is an argument from the definitions: for f ∈ E , using associativity,

((u ∗ v)′ ∗ f)(x) = (u ∗ v)′(T−xf
∨) = −(u ∗ v)(

d

dy
(y → f(−y + x))) = −u ∗ (v ∗ (

d

dy
(y → f(−y + x))))

Then, going back, this is

−u ∗ (v(T−x
d

dy
(y → f(−y)))) = −u ∗ (v(

d

dy
T−x(y → f(−y)))) = u ∗ (v′(T−x(y → f(−y))))

= u ∗ (x→ v′ ∗ f(x)) = ((u ∗ v′) ∗ f)(x)

as claimed. ///

Another approach uses the idea that δ′ ∗ u = u′ = u ∗ δ′ for u ∈ E∗, together with associativity. Namely,

u ∗ v′ = u ∗ (v ∗ δ′) = (u ∗ v) ∗ δ′ = (u ∗ v)′

and
u′ ∗ v = (δ′ ∗ u) ∗ v = δ′ ∗ (u ∗ v) = (u ∗ v)′

This might motivate us to think again why δ′ behaves this way on E∗, not only on E . ///

While we’re here, let’s explicitly prove associativity of ∗ for u, v, w ∈ E∗: for every f ∈ E , using the
associativity (u ∗ v) ∗ f = u ∗ (v ∗ f) that essentially defines u ∗ v,

(u ∗ (v ∗ w)) ∗ f = u ∗ ((v ∗ w) ∗ f) = u ∗ (v ∗ (w ∗ f)) = (u ∗ v) ∗ (w ∗ f) = ((u ∗ v) ∗ w) ∗ f

as desired. ///

[07.10] Let H be the Heaviside step function (with H ′ = δ). Let 1 denote the identically-one function.
Verify that (1 ∗ δ′) ∗H = 0, while 1 ∗ (δ′ ∗H) = 1, so associativity fails:

(1 ∗ δ′) ∗H = 0 6= 1 = 1 ∗ (δ′ ∗H)

(This is not a pathology, because there is no purposeful definition of convolution involving two or more
general not-compactly-supported distributions.)

Discussion: [... iou ...]

[07.11] (*) Show that the functional on f ∈ D(R2) given by integrating around the unit circle

u(f) =

∫ 2π

0

f(cos θ, sin θ) dθ
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is in H−
1
2−ε(R2) [Terrible typo: I had R1 in the original...] for every ε > 0.

Discussion: The (correct) idea is that restriction to a smooth, nicely imbedded submanifold reduces the
Sobolev index by half the codimension divided by 2, plus epsilon. To carry this out precisely, we’d need
to choose some change-of-coordinates to flatten out the round circle, to reduce to the cases of Tm ⊂ Tn or
Rm ⊂ Rn. ///
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