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[01.1] Show that the closed unit ball in `2, although closed and bounded, is not compact, by showing it is
not sequentially compact.

Discussion: Let en = (0, . . . , 0, 1, 0, . . .) with the single 1 at the nth place. Then d(em, en) =
√

2 for m 6= n.
Thus, the sequence of en’s has no Cauchy subsequence, so no convergent subsequence. ///

[01.2] Show that the closed unit ball in Co[a, b] is not compact, despite being closed and bounded.

Discussion: Let fn be a tent function centered at 1/2n, of height 1, and width 1/2n+2 (or anything strictly
larger than 1/2n+1). By design, the supports of these functions are disjoint, and all their sup-norms are 1.
Thus, for m 6= n, |fm − fn|Co = 1. Thus, the sequence has no Cauchy subsequence. ///

[01.3] Let X be a metric space with a countable dense subset D. Show that every open set in X is a
countable union of open balls.

Discussion: Let U be the open set. For x ∈ U , let B(rx, x) be an open ball or radius rx centered at x and
contained in U . We can shrink rx to make it rational. By density, there is an element dx in the smaller ball
B(rx/2, x). Then B(rx/2, dx) contains x and is inside B(rx, x), so is inside U . Thus, U ⊂

⋃
x∈U B(rx/2, dx).

By countability of D and of rationals (the radii), there can be only countably-many distinct balls B(rx, dx).
///

[01.4] Let X be a compact metric space. Show that a continuous function on X is uniformly continuous.

Discussion: Let f ∈ Co(X). Given ε > 0, for each x ∈ X let B(rx, x) be a ball of radius rx centered
at x such that |f(x) = f(y)| < ε for y ∈ B(rx, x). The open sets B(rx/2, x) cover X. By compactness,
there is a finite subcover B(rx1

/2, x1), . . . , B(rxn
/2, xn). Thus, given y, z ∈ X with d(y, z) < min irxi

/2, let
y ∈ B(rxi

/2, xi). Then z ∈ B(rxi
, xi), as is y. Thus, |f(y)− f(z)| < ε. ///

[01.5] Let X be a compact metric space. Show that a uniform pointwise limit of continuous real-valued
functions is continuous.

Discussion: This is a slightly abstracted version of the iconic three-epsilon argument. Let {fn} be
a uniformly pointwise convergent sequence of continuous functions on X. In particular, it is pointwise
convergent at every x ∈ X, so it has a pointwise limit f(x) = limn f(x) for each x. We claim that f(x)
is continuous. Given ε > 0, choose no sufficiently large so that for m,n ≥ no and for all x ∈ X we have
|fm(x)− fn(x)| < ε. This implies that |fn(x)− f(x)| ≤ ε for all x ∈ X and n ≥ no. Fix xo ∈ X. Let δ > 0
be such that for d(xo, y) < δ we have |fno

(xo)− fno
(y)| < ε. Then

|f(xo)−f(yo)| ≤ |f(xo)−fno
(xo)|+|fno

(xo)−fno
(y)|+|fno

(y)−f(y)| ≤ ε+|fno
(xo)−fno

(y)|+ε < ε+ε+ε

proving continuity. ///

[01.6] Show that Co[a, b] is not complete with the L2[a, b] metric.

Discussion: That is, we want a sequence {fn} of Co functions that is Cauchy in the L2 metric, but not in
the Co metric. In particular, it would suffice to find {fn} which converge in L2 to an L2 function which is
not Co.

1



Paul Garrett: Review examples discussion 01 (October 4, 2018)

For example, {fn} can be a sequence of continuous, piecewise-linear functions converging pointwise to a step
function (which is certainly not continuous). For example, with [a, b] = [0, 1],

fn(x) =


0 (for 0 ≤ x < 1

2 −
1
n )

n
2 · (x−

1
2 + 1

n ) (for 1
2 −

1
n ≤ x ≤

1
2 + 1

n )

1 (for 1
2 + 1

n < x ≤ 1)

The graph is flat to the left and flat to the right, and has a straight line of slope n/2 connecting the two flat
parts. The pointwise limit is a step function with step of height 1 at 1

2 .

For m ≤ n the L2 norm of fm − fn is easily estimated by

|fm − fn|2L2 =

∫ 1
2+

1
m

1
2−

1
m

|fm(x)− fn(x)|2 dx ≤
∫ 1

2+
1
m

1
2−

1
m

1 dx ≤ 2

m

Thus, the sequence is L2-Cauchy. Since the limit is not continuous, the sequence cannot possibly be Co-
Cauchy. Explicitly, |fm − fn|Co

= 1 for m 6= n. ///

[01.7] Show that C1[a, b] is not complete with the Co[a, b] metric.

Discussion: One approach is to find a Co-Cauchy sequence of C1 functions whose limit is not C1. For
example, in words, a tent function with base [a, b] with vertex at the point (a+b

2 , 1) is continuous, but not
differentiable. It can be approximate in Co by tent functions that are smoothed off in tinier-and-tinier
intervals around the vertex.

Formulaically, it’s a question of writing formulas for (for example) little pieces of pointier-and-pointier
parabola pieces to replace the sharp corner at the peak of the tent function.

Losing interest in this approach... Is there a better one? Non-formulaic? Seriously, turning obvious pictures
into formulas quickly becomes unrewarding and non-explanatory...

Yes: we should soon prove that C∞[a, b] is dense in all the spaces Ck[a, b]. This changes the presentation of
the question, but annihilates it. ///

[01.8] Show that C1[a, b] is complete, with the C1[a, b] metric

d(f, g) = sup
a≤x≤b

|f(x)− g(x)|+ sup
a≤x≤b

|f ′(x)− g′(x)|

Discussion: For a Cauchy sequence {fi} in Ck[a, b], the pointwise limits limi f(x) and limi f
′(x) exist, and

are continuous, since the limits are uniform pointwise. The issue is to show that limi f is differentiable, with
derivative limi f

′. That is, for a Cauchy sequence fn in C1[a, b], with pointwise limits f(x) = limn fn(x)
and g(x) = limn f

′
n(x), we have g = f ′. By the fundamental theorem of calculus, for any index i,

fi(x)− fi(a) =

∫ x

a

f ′i(t) dt

Since the f ′i uniformly approach g, given ε > 0 there is io such that |f ′i(t)− g(t)| < ε for i ≥ io and for all t
in the interval, so for such i∣∣∣ ∫ x

a

f ′i(t) dt−
∫ x

a

g(t) dt
∣∣∣ ≤ ∫ x

a

|f ′i(t)− g(t)| dt ≤ ε · |x− a| −→ 0
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Thus,

lim
i
fi(x)− fi(a) = lim

i

∫ x

a

f ′i(t) dt =

∫ x

a

g(t) dt

from which f ′ = g. ///

[01.9] Show that the Hilbert cube

C = {(z1, z2, . . .) ∈ `2 : |zn| ≤
1

n
}

is compact. More generally, for any sequence of positive reals rn,

C(r) = {(z1, z2, . . .) ∈ `2 : |zn| ≤ rn}

is compact if and only if
∑

n |rn|2 <∞.

Discussion: Use the total boundedness criterion. Given ε > 0, by convergence of
∑

n δ
2
n, there is no large

enough so that
∑

n≥no
δ2n < ε2. The set

Cno
= {(z1, z2, . . . , zno

) ∈ Rno : |zn| ≤ δn}

is a compact subset of Rno , so certainly has a finite cover by open balls of radius ε. Let the centers of these
balls be w1, . . . , wN . Let j : Rno → `2 be the inclusion j(z1, . . . , zno) = (z1, . . . , zno , 0, 0, . . .). Then we claim
that the open balls of radius 2ε at j(w1), j(w2), . . . , j(wN ) cover C(δ). Indeed, given z = (z1, z2, . . .) ∈ C(δ),
write z = j(z′) + z′′ where z′ = (z1, . . . , zno

) and z′′ = z − j(z′) = (0, . . . , 0, zno+1, . . .). There is at least one
of the wjs within ε of z′: let wjo be such. By the triangle inequality for the norm | · |`2 on `2,

d(z, j(wjo)) = |z − j(wjo)|`2 = |j(z′) + z′′ − j(wjo)|`2 ≤ |j(z′)− j(wjo)|`2 + |z′′|`2

= |z′ − wjo |Rno + |z′′|`2 < ε+ ε

Thus, C(r) can be covered by finitely-many open balls of radius 2ε.

Conversely, if
∑

n r
2
n = +∞, then there are indices 1 ≤ n1 < n2 < . . . such that∑

nk<i≤nk+1

r2n ≥ 1

With standard basis {en}, let

vk =
∑

nk<i≤nk+1

ri · ei

Then for k 6= `,

|vk − v`|2 =
∑

nk<i≤nk+1

r2i +
∑

n`<i≤n`+1

r2i ≥ 1 + 1

Thus, there are no convergent subsequences, and C(r) is not sequentially compact, so not compact. ///

[01.10] Let | · |1 and | · |2 be two norms on a real or complex vector space X. Suppose that |x|1 ≥ |x|2
for all x ∈ X. Let Xi be the completion of X with respect to the metric associated to | · |i. Show that the
identity map X → X extends by continuity to a continuous injection X1 → X2.

Discussion: As usual, attempt to define the extension-by-continuity S of the identity map by S(X1 −
limxn) = X2 − limxn for xn ∈ X. Then we’d want or need to show that it is well-defined, that it is
continuous, and linear, and that it is injective. All but the injectivity are treated in excruciating detail in
the notes.

For injectivity, it is probably best to not attempt to prove this directly by purely elementary means. It is a
significant issue, though, so we’ll come back to this later.
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