(October 28, 2018)

Examples discussion 02

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/ [This document is http://www.math.umn.edu/~garrett/m/real/examples_2018-19/real-disc-02.pdf]

[02.1] The space of continuous functions on \mathbb{R} going to 0 at infinity is

 $C_o^o(\mathbb{R}) = \{ f \in C^o(\mathbb{R}) : \text{for every } \varepsilon > 0 \text{ there is } T \text{ such that } |f(x)| < \varepsilon \text{ for all } |x| \ge T \}$

Show that the closure of $C_c^o(R)$ in the space $C_{bdd}^o(\mathbb{R})$ of bounded continuous functions with sup norm, is $C_o^o(\mathbb{R})$.

Discussion: The argument for this is general enough that we can replace \mathbb{R} by a more general topological space X, probably locally compact and Hausdorff so that Urysohn's lemma assures us a good supply of continuous functions for auxiliary purposes. Then $C_o^o(X)$ is defined to be the collection of continuous functions f such that, given $\varepsilon > 0$, there is a compact $K \subset X$ such that $|f(x)| < \varepsilon$ for $x \notin K$.

First, show that any $f \in C_o^o(\mathbb{R})$ is a sup-norm limit of functions from $C_c^o(\mathbb{R})$. Given $\varepsilon > 0$, let K be sufficiently large so that $|f(x)| < \varepsilon$ for $x \notin K$. We claim that there is an open $U \supset K$ with compact closure \overline{U} (which would be obvious on \mathbb{R} or \mathbb{R}^n). For each $x \in K$, let $U_x \ni x$ be an open set with compact closure (using the local compactness). By compactness of K, there is a finite subcover $K \subset U_{x_1} \cup \ldots \cup U_{x_n}$. Then the closure of $U = U_{x_1} \cup \ldots \cup U_{x_n}$ is compact, as claimed. Then, invoking Urysohn's Lemma, let φ be a continuous function on X taking values in the interval [0, 1], that is 1 on K, and 0 off U, so φ has compact support. Then $\varphi \cdot f$ is continuous and has compact support, and

$$\begin{split} \sup_{x \in X} |f(x) - \varphi(x) \cdot f(x)| &\leq \sup_{x \in K} |f(x) - \varphi(x) \cdot f(x)| + \sup_{x \notin K} |f(x) - \varphi(x) \cdot f(x)| = 0 + \sup_{x \notin K} |f(x) - \varphi(x) \cdot f(x)| \\ &\leq \sup |1 - \varphi| \cdot \sup_{x \notin K} |f(x)| < 1 \cdot \varepsilon \end{split}$$

That is, we can approximate f to within ε , as claimed.

On the other hand, now show that any sup-norm Cauchy sequence of $f_n \in C_c^o(X)$ has a pointwise limit fin $C_o^o(X)$. First, on any compact, the limit of the f_n 's is *uniform* pointwise, so is continuous on compacts. Since every point $x \in X$ has a neighborhood U_x with compact closure, the pointwise limit is continuous on U_x . Thus, the pointwise limit is continuous at every point, hence continuous. Given $\varepsilon > 0$, take n_o sufficiently large so that $\sup_{x \in X} |f_m(x) - f_n(x)| < \varepsilon$ for all $m, n \ge n_o$. Let K be the support of f_{n_o} . Then

$$\sup_{x \notin K} |f(x)| = \sup_{x \notin K} |f(x) - f_{n_o}(x)| \le \sup_{x \in X} |f(x) - f_{n_o}| \le \varepsilon$$

Thus, the pointwise limit goes to 0 at infinity.

[02.2] Show that $|\int_a^b f|^2 \le |b-a| \cdot \int_a^b |f|^2$.

Discussion: This is the Cauchy-Schwarz-Bunyakowsky inequality on $L^{2}[a, b]$, where the inner product is

$$\langle f,g\rangle = \int_a^b f\,\overline{g} = \int_a^b f(x)\,\overline{g(x)}\,dx$$
$$|\int_a^b f|^2 = \left|\int_a^b 1\cdot f(x)\,dx\right|^2 \le \int_a^b 1\cdot \int_a^b |f|^2 = |b-a|\cdot \int_a^b |f|^2$$

[02.3] In ℓ^2 , show that the unique point in the closed unit ball closest to a point v not inside that ball is $v/|v|_{\ell^2}$.

///

Discussion: The minimum principle assures that there is a *unique* closest point w in the closed unit ball B to v, because B is convex, closed, non-empty, and v is not in B.

First, we show that any minimizing point w must be on the boundary of B, that is, |w| = 1. Indeed, if not, there is sufficiently small $\varepsilon > 0$ such that the ε -ball around w is inside B. Then we can move from w slightly in the direction of v, getting strictly closer to v than w was: in formulas,

$$\left| (w + \varepsilon \cdot \frac{v - w}{|v - w|}) - v \right| = \left| (1 + \varepsilon \cdot \frac{1}{|v - w|}) \cdot (w - v) \right| = \left| (1 - \varepsilon \cdot \frac{1}{|w - v|}) \cdot (w - v) \right| = \left| (1 - \varepsilon \cdot \frac{1}{|w - v|}) \right| \cdot |v - w| < |v - w|$$

contradiction.

Suppose w (with |w| = 1 is closer than v/|v|. Then

$$|v|^{2} - 2|v| + 1 = |v - \frac{v}{|v|}|^{2} > |v - w|^{2} = |v|^{2} - \langle v, w \rangle - \langle w, v \rangle + |w|^{2} = |v|^{2} - \langle v, w \rangle - \langle w, v \rangle + 1$$

Thus,

$$2|v| < \langle v, w \rangle + \langle w, v \rangle$$

Thus, the sum of the two inner products is *positive*, and by Cauchy-Schwarz-Bunyakowsky:

$$2|v| < \langle v, w \rangle + \langle w, v \rangle = |\langle v, w \rangle + \langle w, v \rangle| \le 2|v| \cdot |w|$$

Thus, 1 < |w|, which is impossible.

[02.4] One form of the sawtooth function is $f(x) = x - \pi$ on $[0, 2\pi]$. Compute the Fourier coefficients $\hat{f}(n)$. From Plancherel-Parseval's theorem for this function, show that

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{6}$$

Discussion: We have the orthonormal basis $e_n(x) = \frac{1}{\sqrt{2\pi}}e^{inx}$ with $n \in \mathbb{Z}$ for the Hilbert space $L^2[0, 2\pi]$. The Fourier coefficients are determined by Fourier's formula

$$\widehat{f}(n) = \int_0^{2\pi} f(x) \frac{e^{-inx}}{\sqrt{2\pi}} dx$$

For n = 0, this is 0. For $n \neq 0$, integrate by parts, to get

$$\widehat{f}(n) = \left[f(x) \cdot \frac{e^{-inx}}{\sqrt{2\pi} \cdot (-in)} \right]_{0}^{2\pi} - \int_{0}^{2\pi} 1 \cdot \frac{e^{-inx}}{\sqrt{2\pi} \cdot (-in)} \, dx$$
$$= \left(\left(\pi \cdot \frac{1}{\sqrt{2\pi} \cdot (-in)} \right) - \left(-\pi \cdot \frac{1}{\sqrt{2\pi} \cdot (-in)} \right) \right) - 0 = \frac{2\pi}{\sqrt{2\pi} \cdot (-in)} = \frac{\sqrt{2\pi}}{-in}$$

The L^2 norm of f is

=

$$\int_0^{2\pi} (x-\pi)^2 \, dx = \left[\frac{(x-\pi)^3}{3}\right]_0^{2\pi} = \frac{\pi^3 - (-\pi)^3}{3} = \frac{2\pi^3}{3}$$

Thus, by Parseval,

$$\sum_{n \neq 0} \left| \frac{\sqrt{2\pi}}{-in} \right|^2 = \frac{2\pi^3}{3}$$

///

This simplifies first to

$$2\sum_{n\geq 1}\frac{2\pi}{n^2} = \frac{2\pi^3}{3}$$

and then to

$$\sum_{n \ge 1} \frac{1}{n^2} = \frac{\pi^2}{6}$$

That is, Parseval applied to the sawtooth function evaluates $\zeta(2)$.

[02.5] Show that there is no $f_o \in C^o[0,1]$ so that, for all $g \in C^o[0,1]$, $\int_0^1 f_o(x) g(x) dx = g(\frac{1}{2})$.

Discussion: Here is just one among many possible approaches. By Cauchy-Schwarz-Bunyakowsky in $L^2[0,1]$ with its usual inner product, for every $g \in C^o[0,1]$ we'd have

$$|g(\frac{1}{2})| = \left| \int_0^1 f_o(x) g(x) \, dx \right| = |\langle g, \overline{f}_o \rangle| \le |g|_{L^2} \cdot |\overline{f}_o|_{L^2}$$

That is, supposedly $g(\frac{1}{2})$ would be bounded by a constant multiple of $|g|_{L^2}$, for every $g \in C^o$. But this is not true: we can make a variety of sequences $\{g_n\}$ of continuous functions with support in $[\frac{1}{2} - \frac{1}{n}, \frac{1}{2} + \frac{1}{n}]$, with $g_n(\frac{1}{2}) = 1$, and with $\sup |g_n| = 1$. Piecewise-linear tent functions of height 1 and base $[\frac{1}{2} - \frac{1}{n}, \frac{1}{2} + \frac{1}{n}]$ would do. The L^2 norms go to 0 as $n \to +\infty$.

[02.6] For $c_1 > c_2 > c_3 > \ldots > 0$ a monotone-decreasing sequence of positive reals, with $\lim_n c_n = 0$, show that, for every $0 < x < 2\pi$, $\sum_n c_n e^{inx}$ converges.

Discussion: The expression as a Fourier series should not distract us from seeing an instance of the generalized alternating-decreasing criterion again, sometimes called *Dirichlet's criterion*: for a positive real sequence c_1, c_2, \ldots monotone-decreasing to 0, and for a (possibly complex) sequence b_1, b_2, \ldots with bounded partial sums $B_n = b_1 + \ldots + b_n$, the sum $\sum_n b_n c_n$ converges. The partial sums $\sum_{n \leq N} e^{2\pi i nx}$ are bounded for 0 < x < 1, by summing finite geometric series:

$$\sum_{n=-M}^{N} z^{n} \Big| = \frac{|z^{-M} - z^{N+1}|}{|1 - z|} \le \frac{2}{|1 - z|}$$

so this criterion applies here.

The proof of the criterion itself is by *summation by parts*, a discrete analogue of integration by parts. That is, rewrite the tails of the sum as

Since the partial sums are bounded, the first and last summand go to 0. Letting β be a bound for all the $|B_n|$, the summation is

$$\left| \sum_{M \le n \le N} B_n(c_n - c_{n+1}) \right| \le \sum_{M \le n \le N} |B_n| \cdot |c_n - c_{n+1}| = \sum_{M \le n \le N} |B_n| \cdot (c_n - c_{n+1}) \le \sum_{M \le n \le N} \beta \cdot (c_n - c_{n+1})$$
$$= \beta \cdot \sum_{M \le n \le N} (c_n - c_{n+1}) = \beta \cdot (c_M - c_{N+1})$$

by telescoping the series. Again, c_M and c_{N+1} go to 0.

///

///

[02.7] Let $b = \{b_n\}$ be a sequence of complex numbers, such that there is a bound B such that, for every $c = \{c_n\} \in \ell^2$, $|\sum_n b_n c_n| \le B \cdot |c|_{\ell^2}$. Show that $b \in \ell^2$.

Discussion: The assumed inequality says that $\lambda(c) = \sum_n b_n c_n$ is a *bounded* linear functional on ℓ^2 . By Riesz-Fréchet, there is $a = (a_1, a_2, \ldots) \in \ell^2$ such that $\lambda(c) = \sum_n a_n c_n$ for all $c \in \ell^2$. Then, with $\{e_n\}$ the standard (Hilbert-space) basis for ℓ^2 , $b_n = \lambda(e_n) = a_n$ proves that a = b, so $b \in \ell^2$. ///

[02.8] For a vector subspace W of a Hilbert space V, show that $(W^{\perp})^{\perp}$ is the topological closure of W.

Discussion: Let $\lambda_x(v) = \langle v, x \rangle$ for $x, v \in V$. Then $W^{\perp} = \bigcap_{w \in W} \ker \lambda_w$. Similarly, $(W^{\perp})^{\perp} = \bigcap_{x \in W^{\perp}} \ker \lambda_x$. From the discussion in the Riesz-Fréchet theorem, or directly via Cauchy-Schwarz-Bunyakowsky, each λ_x is continuous, so $\ker \lambda_x = \lambda_x^{-1}(\{0\})$ is closed, since $\{0\}$ is closed. (One might check that the kernel of a linear map is a vector subspace.) An arbitrary intersection of closed sets is closed, so $(W^{\perp})^{\perp}$ is closed.

Certainly $(W^{\perp})^{\perp} \supset W$, because for each $w \in W$, $\langle x, w \rangle = 0$ for all $x \in W^{\perp}$. Thus, $(W^{\perp})^{\perp}$ is a closed subspace, containing W. Being a closed subspace of a Hilbert space, $(W^{\perp})^{\perp}$ is a Hilbert space itself. If $(W^{\perp})^{\perp}$ were strictly larger than the topological closure \overline{W} of W, then there would be $0 \neq y \in (W^{\perp})^{\perp}$ orthogonal to \overline{W} . Then y would be orthogonal to W itself, so $0 \neq y \in W^{\perp}$, contradicting $0 \neq y \in (W^{\perp})^{\perp}$.

[02.9] Find two dense vector subspaces X, Y of ℓ^2 such that $X \cap Y = \{0\}$. (And, if you need further entertainment, can you find countably-many dense vector subspaces X_n such that $X_m \cap X_n = \{0\}$ for $m \neq n$?)

Discussion: First, as a variant that refers to more natural constructions, but requires non-trivial proofs to fully validate it, we can make two dense subspaces of $L^2[0, 1]$ which intersect just at $\{0\}$. Namely, the vector space of all finite Fourier series, and the vector space of all polynomials (restricted to [0, 1]). We need to know that the appropriate exponentials (or sines and cosines) give a Hilbert space basis of $L^2[0, 1]$, and also Weierstraß' result on the density of polynomials in $C^o[0, 1]$, hence (depending on our definitional set-up) in $L^2[0, 1]$.

A more elementary, but trickier, approach is the following. Let X be the vector space of *finite* linear combinations of the standard Hilbert space basis $\{e_n\}$. This is a natural subspace. For the other subspace Y, some sort of trickery seems to be needed, either in specification of Y itself so as to make verification of $X \cap Y = \{0\}$ easy, or a simpler specification of Y but with complicated verification that $X \cap Y = \{0\}$, or both.

One possibility involves Sun-Ze's theorem (sometimes called the Chinese Remainder Theorem), namely, that for a finite collection of mutually relatively prime integers N_1, \ldots, N_k , and for integers b_1, \ldots, b_k there exists $x \in \mathbb{Z}$ such that $x = b_k \mod N_k$. Further, this x can be arbitrarily large, by adding multiples of the product $N_1...N_k$ to it. Let p_n be the n^{th} prime number, and put

$$v_n = e_n + \sum_{k \ge 1} \frac{1}{kp_n} \cdot e_{kp_n}$$

Of course, we claim that no (non-zero) finite linear combination $y = \sum_n c_n \cdot v_n$ is in X. That is, we claim that for any such non-zero linear combination, there are arbitrarily large indices ℓ such that $\langle y, e_\ell \rangle \neq 0$. Let n_o be the largest index n such that $c_n \neq 0$. Invoking Sun-Ze's theorem, there exist $\ell \geq n_o$ such that $\ell = 1 \mod p_i$ for $i < n_o$ and $\ell = 0 \mod p_{n_o}$. Then

$$\langle y, e_{\ell} \rangle = \sum_{n} \left(\frac{1}{n} \langle e_n, e_{\ell} \rangle + \sum_{k} \frac{1}{kp_n} \langle e_{kp_n}, e_{\ell} \rangle \right) = \sum_{n < n_o} 0 + \frac{1}{\ell} not = 0$$

This proves that $X \cap Y = \{0\}$.

Certainly X is dense, because every vector in ℓ^2 is an infinite sum of vectors from X, that is, an ℓ^2 limit of finite linear combinations of vectors from X.

To see that Y is dense, observe that applying an *infinite* version of Gram-Schmidt to the vectors v_n produces the standard basis e_n . That is, the e_n 's are *infinite* linear combinations of the v_n 's, so Y is dense. (Yes, there is an issue about *convergence* in an infinite version of Gram-Schmidt, in general!) ///