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[02.1] The space of continuous functions on R going to 0 at infinity is

Co(R) = {f € C°(R) : for every £ > 0 there is T such that |f(z)| < e for all |z| > T}
Show that the closure of C2(R) in the space CPy4(R) of bounded continuous functions with sup norm, is
C2(R).

Discussion: The argument for this is general enough that we can replace R by a more general topological
space X, probably locally compact and Hausdorff so that Urysohn’s lemma assures us a good supply of
continuous functions for auxiliary purposes. Then C9(X) is defined to be the collection of continuous
functions f such that, given £ > 0, there is a compact K C X such that |f(x)| < e for z & K.

First, show that any f € C9(R) is a sup-norm limit of functions from C2(R). Given € > 0, let K be
sufficiently large so that | f(z)| < ¢ for x € K. We claim that there is an open U D K with compact closure
U (which would be obvious on R or R"). For each # € K, let U, > x be an open set with compact closure
(using the local compactness). By compactness of K, there is a finite subcover K C U,, U...UU,, . Then
the closure of U = U,, U...UU,_ is compact, as claimed. Then, invoking Urysohn’s Lemma, let ¢ be a
continuous function on X taking values in the interval [0, 1], that is 1 on K, and 0 off U, so ¢ has compact
support. Then ¢ - f is continuous and has compact support, and

sup [f () —p(z) - f(2)] < Sup|f(w)—80($)'f(x)\+§;£|f($)—@(ﬂf)'f(xﬂ = 04 sup [f(z) — () - f(2)]

zeX zeK €K
< sup[l—o|-sup [f(z)| < 1-¢
¢ K
That is, we can approximate f to within ¢, as claimed.

On the other hand, now show that any sup-norm Cauchy sequence of f, € C?(X) has a pointwise limit f
in C2(X). First, on any compact, the limit of the f,,’s is uniform pointwise, so is continuous on compacts.
Since every point x € X has a neighborhood U, with compact closure, the pointwise limit is continuous
on U,. Thus, the pointwise limit is continuous at every point, hence continuous. Given £ > 0, take n,
sufficiently large so that sup,cx | fm(x) — fn(z)| < € for all m,n > n,. Let K be the support of f, . Then

sup |f(z)] = sup |f(x) = fn, ()| < sup [f(z) = fo,| < €
@K 2gK zeX
Thus, the pointwise limit goes to 0 at infinity. ///

[02.2] Show that | [” f12 < |b—a| - [*| £

Discussion: This is the Cauchy-Schwarz-Bunyakowsky inequality on L?[a, b], where the inner product is

o = [ 15= [ 1w

e =] [rs@al < [ [ = e [

[02.3] In ¢2, show that the unique point in the closed unit ball closest to a point v not inside that ball is
v/|v]ge.
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Discussion: The minimum principle assures that there is a unique closest point w in the closed unit ball B
to v, because B is convex, closed, non-empty, and v is not in B.

First, we show that any minimizing point w must be on the boundary of B, that is, |w| = 1. Indeed, if not,
there is sufficiently small € > 0 such that the e-ball around w is inside B. Then we can move from w slightly
in the direction of v, getting strictly closer to v than w was: in formulas,

- 1 1 1
20 ke )] = [1e )| = [(me e emul < o
(wrep =0 = o] = [t = w0 = [1-e i w=0)] = [(-er =) o-ul < v-ul
contradiction.
Suppose w (with |w| =1 is closer than v/|v|. Then
o2 =2l 41 = o= 2 > fo—wf? = ol — o) — {w,0) + 0l = o ~ (v,u) — {w,0) +1

Thus,
2[v] < (v,w) + (w,v)

Thus, the sum of the two inner products is positive, and by Cauchy-Schwarz-Bunyakowsky:
2[o] < (v,w) + (w,v) = [(v,w) + (w,v)| < 2[v]-|w]

Thus, 1 < |w|, which is impossible. ///

[02.4] One form of the sawtooth function is f(x) = x — on [0, 27]. Compute the Fourier coefficients f(n).
From Plancherel-Parseval’s theorem for this function, show that

! o5+ ! t ot = ™
12 3? 52 -6
Discussion: We have the orthonormal basis e, (z) = \/%eim with n € Z for the Hilbert space L2[0, 2.

The Fourier coefficients are determined by Fourier’s formula

2m —inx

fln) = | f(x) N

For n = 0, this is 0. For n # 0, integrate by parts, to get

dx

R e—inT o 27 e—inT
fin) = [f(x%im' Hn)}o [ e

1 1 o Vor
- ' >_0 - V27 - (—in) —in

Thus, by Parseval,




Paul Garrett: Examples discussion 02 (October 28, 2018)

This simplifies first to

2 273
2. ==

n>1
and then to
I
n? 6
n>1
That is, Parseval applied to the sawtooth function evaluates ((2). ///

[02.5] Show that there is no f, € C°[0, 1] so that, for all g € C°[0, 1], fol folz) g(z) dz) = g(3).

Discussion: Here is just one among many possible approaches. By Cauchy-Schwarz-Bunyakowsky in L2[0, 1]
with its usual inner product, for every g € C°[0, 1] we’d have

o)l = | [ o) ate) da)] = V0. Tl < lales - Tl

That is, supposedly g(%) would be bounded by a constant multiple of |g|z2, for every g € C°. But this is

not true: we can make a variety of sequences {g,} of continuous functions with support in [% — %7% + %],
with g,(3) = 1, and with sup |g,| = 1. Piecewise-linear tent functions of height 1 and base [§ — +, 4 + *]
would do. The L? norms go to 0 as n — +o00. ///

[02.6] For ¢; > ¢ > ¢3 > ... > 0 a monotone-decreasing sequence of positive reals, with lim,, ¢, = 0, show
that, for every 0 < & < 2m, > ¢, e™* converges.

Discussion: The expression as a Fourier series should not distract us from seeing an instance of the
generalized alternating-decreasing criterion again, sometimes called Dirichlet’s criterion: for a positive real
sequence ¢y, ¢a, . .. monotone-decreasing to 0, and for a (possibly complex) sequence by, b, ... with bounded
partial sums B, = by + ...+ by, the sum Zn bnc, converges. The partial sums Zn<N e2™" are bounded
for 0 < x < 1, by summing finite geometric series: B

|2~ M — N+ 9

T—2 = -2

so this criterion applies here.

The proof of the criterion itself is by summation by parts, a discrete analogue of integration by parts. That
is, rewrite the tails of the sum as

Z bncn == Z (Bn - Bn—l)cn == *Bkl—ch + Z Bn(cn - Cn+1) + BNCN+1
M<n<N M<n<N M<n<N

Since the partial sums are bounded, the first and last summand go to 0. Letting 8 be a bound for all the
|B,,|, the summation is

‘ Z Bn(cn_anrl)’ < Z |Bn|'|cn_cn+1| = Z |Bn|'(cn_cn+1) < Z 6'(Cn_cn+1)

M<n<N M<n<N M<n<N M<n<N

= B> (ta—cny1) = B-(cm —cny1)

M<n<N

by telescoping the series. Again, cjs and cy4+1 go to 0. ///
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[02.7] Let b = {b,} be a sequence of complex numbers, such that there is a bound B such that, for every
c={cn} €2, |3, bucn| < B-|c|p2. Show that b € (2.

Discussion: The assumed inequality says that A(c) = > b,c, is a bounded linear functional on (2. By
Riesz-Fréchet, there is a = (a1, az,...) € £? such that A(c) = Y, ancy, for all ¢ € ¢2. Then, with {e,} the
standard (Hilbert-space) basis for ¢2, b, = A(e,) = a,, proves that a = b, so b € (2. ///

[02.8] For a vector subspace W of a Hilbert space V, show that (W=)+ is the topological closure of W.

Discussion: Let A, (v) = (v, z) for z,v € V. Then W+ = (N, oy ker Ay,. Similarly, (W+)* =, 1 ker A,
From the discussion in the Riesz-Fréchet theorem, or directly via Cauchy-Schwarz-Bunyakowsky, each A, is
continuous, so ker A, = A\ 1({0}) is closed, since {0} is closed. (One might check that the kernel of a linear
map is a vector subspace.) An arbitrary intersection of closed sets is closed, so (W) is closed.

Certainly (W)Lt > W, because for each w € W, (z,w) = 0 for all z € W+. Thus, (W+)* is a closed
subspace, containing . Being a closed subspace of a Hilbert space, (W) is a Hilbert space itself. If
(W)L were strictly larger than the topological closure W of W, then there would be 0 # y € (W4)+
orthogonal to W. Then y would be orthogonal to W itself, so 0 # y € W+, contradicting 0 # y € (W),

I

[02.9] Find two dense vector subspaces X,Y of £2 such that X NY = {0}. (And, if you need further
entertainment, can you find countably-many dense vector subspaces X, such that X,, N X,, = {0} for

m # n?)

Discussion: First, as a variant that refers to more natural constructions, but requires non-trivial proofs to
fully validate it, we can make two dense subspaces of L?[0, 1] which intersect just at {0}. Namely, the vector
space of all finite Fourier series, and the vector space of all polynomials (restricted to [0,1]). We need to
know that the appropriate exponentials (or sines and cosines) give a Hilbert space basis of L2[0,1], and also
Weierstrafl’ result on the density of polynomials in C°[0, 1], hence (depending on our definitional set-up) in
L?[0,1].

A more elementary, but trickier, approach is the following. Let X be the vector space of finite linear
combinations of the standard Hilbert space basis {e, }. This is a natural subspace. For the other subspace
Y, some sort of trickery seems to be needed, either in specification of Y itself so as to make verification of
X NY = {0} easy, or a simpler specification of ¥ but with complicated verification that X N Y = {0}, or
both.

One possibility involves Sun-Ze’s theorem (sometimes called the Chinese Remainder Theorem), namely, that
for a finite collection of mutually relatively prime integers V1, ..., Ng, and for integers by, . .., by there exists
x € Z such that £ = by mod Ng. Further, this x can be arbitrarily large, by adding multiples of the product
Ni...Ny, to it. Let p, be the n'" prime number, and put

1
Un = ent Y i,
k>1kp”

Of course, we claim that no (non-zero) finite linear combination y = >~ ¢, - v, is in X. That is, we claim
that for any such non-zero linear combination, there are arbitrarily large indices ¢ such that (y,e;) # 0.
Let n, be the largest index n such that ¢, # 0. Invoking Sun-Ze’s theorem, there exist ¢ > n, such that
¢ =1 mod p; for : < n, and £ = 0 mod p,,,. Then

(y,er) = Z(%(en,eﬁ—FZ%(e@n,e(g)) = Z 0+ %not =0
n k n

n<neg

This proves that X NY = {0}.
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Certainly X is dense, because every vector in ¢2 is an infinite sum of vectors from X, that is, an ¢2 limit of
finite linear combinations of vectors from X.

To see that Y is dense, observe that applying an infinite version of Gram-Schmidt to the vectors v,, produces
the standard basis e,. That is, the e,’s are infinite linear combinations of the v,’s, so Y is dense. (Yes,
there is an issue about convergence in an infinite version of Gram-Schmidt, in general!) ///




