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[02.1] The space of continuous functions on R going to 0 at infinity is

Coo (R) = {f ∈ Co(R) : for every ε > 0 there is T such that |f(x)| < ε for all |x| ≥ T}

Show that the closure of Coc (R) in the space Cobdd(R) of bounded continuous functions with sup norm, is
Coo (R).

Discussion: The argument for this is general enough that we can replace R by a more general topological
space X, probably locally compact and Hausdorff so that Urysohn’s lemma assures us a good supply of
continuous functions for auxiliary purposes. Then Coo (X) is defined to be the collection of continuous
functions f such that, given ε > 0, there is a compact K ⊂ X such that |f(x)| < ε for x 6∈ K.

First, show that any f ∈ Coo (R) is a sup-norm limit of functions from Coc (R). Given ε > 0, let K be
sufficiently large so that |f(x)| < ε for x 6∈ K. We claim that there is an open U ⊃ K with compact closure
U (which would be obvious on R or Rn). For each x ∈ K, let Ux 3 x be an open set with compact closure
(using the local compactness). By compactness of K, there is a finite subcover K ⊂ Ux1 ∪ . . . ∪ Uxn . Then
the closure of U = Ux1

∪ . . . ∪ Uxn
is compact, as claimed. Then, invoking Urysohn’s Lemma, let ϕ be a

continuous function on X taking values in the interval [0, 1], that is 1 on K, and 0 off U , so ϕ has compact
support. Then ϕ · f is continuous and has compact support, and

sup
x∈X
|f(x)−ϕ(x) · f(x)| ≤ sup

x∈K
|f(x)−ϕ(x) · f(x)|+ sup

x 6∈K
|f(x)−ϕ(x) · f(x)| = 0 + sup

x 6∈K
|f(x)−ϕ(x) · f(x)|

≤ sup |1− ϕ| · sup
x 6∈K
|f(x)| < 1 · ε

That is, we can approximate f to within ε, as claimed.

On the other hand, now show that any sup-norm Cauchy sequence of fn ∈ Coc (X) has a pointwise limit f
in Coo (X). First, on any compact, the limit of the fn’s is uniform pointwise, so is continuous on compacts.
Since every point x ∈ X has a neighborhood Ux with compact closure, the pointwise limit is continuous
on Ux. Thus, the pointwise limit is continuous at every point, hence continuous. Given ε > 0, take no
sufficiently large so that supx∈X |fm(x)− fn(x)| < ε for all m,n ≥ no. Let K be the support of fno

. Then

sup
x 6∈K
|f(x)| = sup

x 6∈K
|f(x)− fno

(x)| ≤ sup
x∈X
|f(x)− fno

| ≤ ε

Thus, the pointwise limit goes to 0 at infinity. ///

[02.2] Show that |
∫ b
a
f |2 ≤ |b− a| ·

∫ b
a
|f |2.

Discussion: This is the Cauchy-Schwarz-Bunyakowsky inequality on L2[a, b], where the inner product is

〈f, g〉 =

∫ b

a

f g =

∫ b

a

f(x) g(x) dx

|
∫ b

a

f |2 =
∣∣∣ ∫ b

a

1 · f(x) dx
∣∣∣2 ≤ ∫ b

a

1 ·
∫ b

a

|f |2 = |b− a| ·
∫ b

a

|f |2

[02.3] In `2, show that the unique point in the closed unit ball closest to a point v not inside that ball is
v/|v|`2 .
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Discussion: The minimum principle assures that there is a unique closest point w in the closed unit ball B
to v, because B is convex, closed, non-empty, and v is not in B.

First, we show that any minimizing point w must be on the boundary of B, that is, |w| = 1. Indeed, if not,
there is sufficiently small ε > 0 such that the ε-ball around w is inside B. Then we can move from w slightly
in the direction of v, getting strictly closer to v than w was: in formulas,∣∣∣(w+ε· v − w

|v − w|
) − v

∣∣∣ =
∣∣∣(1+ε· 1

|v − w|
)·(w−v)

∣∣∣ =
∣∣∣(1−ε· 1

|w − v|
)·(w−v)

∣∣∣ =
∣∣∣(1−ε· 1

|w − v|
)
∣∣∣·|v−w| < |v−w|

contradiction.

Suppose w (with |w| = 1 is closer than v/|v|. Then

|v|2 − 2|v|+ 1 = |v − v

|v|
|2 > |v − w|2 = |v|2 − 〈v, w〉 − 〈w, v〉+ |w|2 = |v|2 − 〈v, w〉 − 〈w, v〉+ 1

Thus,
2|v| < 〈v, w〉+ 〈w, v〉

Thus, the sum of the two inner products is positive, and by Cauchy-Schwarz-Bunyakowsky:

2|v| < 〈v, w〉+ 〈w, v〉 = |〈v, w〉+ 〈w, v〉| ≤ 2|v| · |w|

Thus, 1 < |w|, which is impossible. ///

[02.4] One form of the sawtooth function is f(x) = x− π on [0, 2π]. Compute the Fourier coefficients f̂(n).
From Plancherel-Parseval’s theorem for this function, show that

1

12
+

1

22
+

1

32
+

1

42
+

1

52
+ . . . =

π2

6

Discussion: We have the orthonormal basis en(x) = 1√
2π
einx with n ∈ Z for the Hilbert space L2[0, 2π].

The Fourier coefficients are determined by Fourier’s formula

f̂(n) =

∫ 2π

0

f(x)
e−inx√

2π
dx

For n = 0, this is 0. For n 6= 0, integrate by parts, to get

f̂(n) =
[
f(x) · e−inx√

2π · (−in)

]2π
0
−
∫ 2π

0

1 · e−inx√
2π · (−in)

dx

=
(

(π · 1√
2π · (−in)

)− (−π · 1√
2π · (−in)

)
)
− 0 =

2π√
2π · (−in)

=

√
2π

−in

The L2 norm of f is ∫ 2π

0

(x− π)2 dx =
[ (x− π)3

3

]2π
0

=
π3 − (−π)3

3
=

2π3

3

Thus, by Parseval, ∑
n6=0

∣∣∣√2π

−in

∣∣∣2 =
2π3

3
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This simplifies first to

2
∑
n≥1

2π

n2
=

2π3

3

and then to ∑
n≥1

1

n2
=

π2

6

That is, Parseval applied to the sawtooth function evaluates ζ(2). ///

[02.5] Show that there is no fo ∈ Co[0, 1] so that, for all g ∈ Co[0, 1],
∫ 1

0
fo(x) g(x) dx〉 = g( 1

2 ).

Discussion: Here is just one among many possible approaches. By Cauchy-Schwarz-Bunyakowsky in L2[0, 1]
with its usual inner product, for every g ∈ Co[0, 1] we’d have

|g( 1
2 )| =

∣∣∣ ∫ 1

0

fo(x) g(x) dx〉
∣∣∣ = |〈g, f o〉| ≤ |g|L2 · |f o|L2

That is, supposedly g( 1
2 ) would be bounded by a constant multiple of |g|L2 , for every g ∈ Co. But this is

not true: we can make a variety of sequences {gn} of continuous functions with support in [ 12 −
1
n ,

1
2 + 1

n ],
with gn( 1

2 ) = 1, and with sup |gn| = 1. Piecewise-linear tent functions of height 1 and base [ 12 −
1
n ,

1
2 + 1

n ]
would do. The L2 norms go to 0 as n→ +∞. ///

[02.6] For c1 > c2 > c3 > . . . > 0 a monotone-decreasing sequence of positive reals, with limn cn = 0, show
that, for every 0 < x < 2π,

∑
n cn e

inx converges.

Discussion: The expression as a Fourier series should not distract us from seeing an instance of the
generalized alternating-decreasing criterion again, sometimes called Dirichlet’s criterion: for a positive real
sequence c1, c2, . . . monotone-decreasing to 0, and for a (possibly complex) sequence b1, b2, . . . with bounded
partial sums Bn = b1 + . . . + bn, the sum

∑
n bncn converges. The partial sums

∑
n≤N e

2πinx are bounded
for 0 < x < 1, by summing finite geometric series:

∣∣∣ N∑
n=−M

zn
∣∣∣ =

|z−M − zN+1|
|1− z|

≤ 2

|1− z|

so this criterion applies here.

The proof of the criterion itself is by summation by parts, a discrete analogue of integration by parts. That
is, rewrite the tails of the sum as∑

M≤n≤N

bncn =
∑

M≤n≤N

(Bn −Bn−1)cn = −BM−1cM +
∑

M≤n≤N

Bn(cn − cn+1) +BNcN+1

Since the partial sums are bounded, the first and last summand go to 0. Letting β be a bound for all the
|Bn|, the summation is∣∣∣ ∑
M≤n≤N

Bn(cn− cn+1)
∣∣∣ ≤ ∑

M≤n≤N

|Bn| · |cn− cn+1| =
∑

M≤n≤N

|Bn| · (cn− cn+1) ≤
∑

M≤n≤N

β · (cn− cn+1)

= β ·
∑

M≤n≤N

(cn − cn+1) = β · (cM − cN+1)

by telescoping the series. Again, cM and cN+1 go to 0. ///
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[02.7] Let b = {bn} be a sequence of complex numbers, such that there is a bound B such that, for every
c = {cn} ∈ `2, |

∑
n bncn| ≤ B · |c|`2 . Show that b ∈ `2.

Discussion: The assumed inequality says that λ(c) =
∑
n bncn is a bounded linear functional on `2. By

Riesz-Fréchet, there is a = (a1, a2, . . .) ∈ `2 such that λ(c) =
∑
n ancn for all c ∈ `2. Then, with {en} the

standard (Hilbert-space) basis for `2, bn = λ(en) = an proves that a = b, so b ∈ `2. ///

[02.8] For a vector subspace W of a Hilbert space V , show that (W⊥)⊥ is the topological closure of W .

Discussion: Let λx(v) = 〈v, x〉 for x, v ∈ V . Then W⊥ =
⋂
w∈W kerλw. Similarly, (W⊥)⊥ =

⋂
x∈W⊥ kerλx.

From the discussion in the Riesz-Fréchet theorem, or directly via Cauchy-Schwarz-Bunyakowsky, each λx is
continuous, so kerλx = λ−1x ({0}) is closed, since {0} is closed. (One might check that the kernel of a linear
map is a vector subspace.) An arbitrary intersection of closed sets is closed, so (W⊥)⊥ is closed.

Certainly (W⊥)⊥ ⊃ W , because for each w ∈ W , 〈x,w〉 = 0 for all x ∈ W⊥. Thus, (W⊥)⊥ is a closed
subspace, containing W . Being a closed subspace of a Hilbert space, (W⊥)⊥ is a Hilbert space itself. If
(W⊥)⊥ were strictly larger than the topological closure W of W , then there would be 0 6= y ∈ (W⊥)⊥

orthogonal to W . Then y would be orthogonal to W itself, so 0 6= y ∈ W⊥, contradicting 0 6= y ∈ (W⊥)⊥.
///

[02.9] Find two dense vector subspaces X,Y of `2 such that X ∩ Y = {0}. (And, if you need further
entertainment, can you find countably-many dense vector subspaces Xn such that Xm ∩ Xn = {0} for
m 6= n?)

Discussion: First, as a variant that refers to more natural constructions, but requires non-trivial proofs to
fully validate it, we can make two dense subspaces of L2[0, 1] which intersect just at {0}. Namely, the vector
space of all finite Fourier series, and the vector space of all polynomials (restricted to [0, 1]). We need to
know that the appropriate exponentials (or sines and cosines) give a Hilbert space basis of L2[0, 1], and also
Weierstraß’ result on the density of polynomials in Co[0, 1], hence (depending on our definitional set-up) in
L2[0, 1].

A more elementary, but trickier, approach is the following. Let X be the vector space of finite linear
combinations of the standard Hilbert space basis {en}. This is a natural subspace. For the other subspace
Y , some sort of trickery seems to be needed, either in specification of Y itself so as to make verification of
X ∩ Y = {0} easy, or a simpler specification of Y but with complicated verification that X ∩ Y = {0}, or
both.

One possibility involves Sun-Ze’s theorem (sometimes called the Chinese Remainder Theorem), namely, that
for a finite collection of mutually relatively prime integers N1, . . . , Nk, and for integers b1, . . . , bk there exists
x ∈ Z such that x = bk mod Nk. Further, this x can be arbitrarily large, by adding multiples of the product
N1...Nk to it. Let pn be the nth prime number, and put

vn = en +
∑
k≥1

1

kpn
· ekpn

Of course, we claim that no (non-zero) finite linear combination y =
∑
n cn · vn is in X. That is, we claim

that for any such non-zero linear combination, there are arbitrarily large indices ` such that 〈y, e`〉 6= 0.
Let no be the largest index n such that cn 6= 0. Invoking Sun-Ze’s theorem, there exist ` ≥ no such that
` = 1 mod pi for i < no and ` = 0 mod pno

. Then

〈y, e`〉 =
∑
n

( 1

n
〈en, e`〉+

∑
k

1

kpn
〈ekpn , e`〉

)
=

∑
n<no

0 +
1

`
not = 0

This proves that X ∩ Y = {0}.
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Certainly X is dense, because every vector in `2 is an infinite sum of vectors from X, that is, an `2 limit of
finite linear combinations of vectors from X.

To see that Y is dense, observe that applying an infinite version of Gram-Schmidt to the vectors vn produces
the standard basis en. That is, the en’s are infinite linear combinations of the vn’s, so Y is dense. (Yes,
there is an issue about convergence in an infinite version of Gram-Schmidt, in general!) ///
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