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[03.1] Show that the characteristic function of a measurable set is a measurable function.

Discussion: For non-empty open U ⊂ R, χ−1E (U) is the measurable set φ if U does not contain either 0 or
1. If U 3 1 but U 63 0, then χ−1E (U) = E, which is measurable. If U 3 0 but U 63 1, then χ−1E (U) = Ec, the
complement of E, which is measurable. If U contains both 0 and 1, then χ−1E (U) is the whole domain space,
which is measurable. ///

[03.2] For measurable E ⊂ [0, 2π], show that limn

∫
E
e−inx dx = 0 as n→∞ ranging over integers.

Discussion: This is a relatively easy instance of a Riemann-Lebesgue lemma, namely, that Fourier
coefficients of an L2 function on [0, 2π] go to 0. Here, the L2 function is the characteristic function of
E.

In fact, this relatively easy Riemann-Lebesgue lemma does not even need the completeness of exponentials
in L2, but only Bessel’s inequality. ///

[03.3] For f ∈ L2(R) and t ∈ R, show that there is a constant C (depending on f) such that

∣∣∣ ∫ t+δ

t−δ
f(x) dx

∣∣∣ < C ·
√
δ

Discussion: Let hδ be the characteristic function of [t− δ, t+ δ]. By Cauchy-Schwarz-Bunyakowsky

∣∣∣ ∫ t+δ

t−δ
f
∣∣∣ = |〈f, hδ〉L2 | ≤ |f |L2 · |hδ|L2 = |f |L2 ·

√
2δ

The case of conjugate exponents 1
p + 1

q = 1 is the same, using Hölder’s inequality rather than Cauchy-

Schwarz-Bunyakowsky. There is no immediate analogue for L1, although a weaker result is possible, as in
the next example. ///

[03.4] For f ∈ L1(R) and t ∈ R, show that, given ε > 0, there δ > 0 such that

∣∣∣ ∫ t+δ

t−δ
f(x) dx

∣∣∣ < ε

Discussion: Let Sn = {x : 1
n+1 ≤ |x− t| <

1
n}. Then∣∣∣∑

n≥1

∫
Sn

f
∣∣∣ ≤ ∑

n≥1

∫
Sn

|f | ≤ |f |L1

Thus, the sum of non-negative terms
∑
n≥1

∫
Sn
|f | is convergent, so the tails

∑
n≥N

∫
Sn
|f | go to 0 as

N → +∞. Thus, ∣∣∣ ∫
|x−t|≤1/N

f
∣∣∣ ≤ ∫

|x−t|≤1/N
|f | =

∑
n≥N

∫
Sn

|f |

goes to 0 as N → +∞. Then this idea can be applied to
∫
|x−t|<δ |f |

p in the previous example. ///
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[03.5] For non-negative real-valued f , show that

lim
ε→0+

∫
R
f(x) e−εx

2

dx =

∫
R
f(x) dx

(whether or not the integrals are finite).

Discussion: Among other possibilities, this is an instance of application of Lebesgue’s Monotone
Convergence Theorem, since f(x) e−εx

2 ≤ f(x) e−ε
′x2

for ε < ε′. Thus,

lim
ε→0+

∫
R
f(x) e−εx

2

dx =

∫
R
f(x) lim

ε
e−εx

2

dx =

∫
R
f(x) · 1 dx

as claimed. ///

[03.6] For f ∈ L1(R), show that

lim
ε→0+

∫
R
f(x) e−εx

2

dx =

∫
R
f(x) dx

Discussion: Among other possibilities, this is an instance of application of Lebesgue’s Dominated
Convergence Theorem, since |f(x) e−εx

2 | ≤ |f(x)| ∈ L1(R). Thus,

lim
ε→0+

∫
R
f(x) e−εx

2

dx =

∫
R
f(x) lim

ε
e−εx

2

dx =

∫
R
f(x) · 1 dx

as claimed. ///

[03.7] (Comparing Lp spaces) Let 1 ≤ p, p′ < ∞. When is Lp[a, b] ⊂ Lp
′
[a, b] for finite intervals [a, b] and

Lebesgue measure? When is Lp(R) ⊂ Lp′(R)? When is `p ⊂ `p′?

Discussion: Take p < p′. We claim that Lp[a, b] ⊃ Lp′ [a, b], with proper containment. The function f that

is (x − a)
− 1

p′ on (a, b] and 0 off that interval is not in Lp
′
, but is in Lp. Given f ∈ Lp′ [a, b], let E be the

set of x ∈ [a, b] where |f(x)| ≥ 1. Then
∫ b
a
|f |p′ < ∞ if and only if

∫
E
|f |p′ < ∞. On E, |f |p < |f |p′ , so∫

E
|f |p <∞, and then also

∫ b
a
|f |p <∞, so f ∈ Lp[a, b]. ///

We claim that Lp(R) and Lp
′
(R) are not comparable for p 6= p′. Take 1 ≤ p < p′. On one hand,

1/(1 + |x|)1/p′+ε is in Lp
′

for all ε > 0, but not in Lp for ε small enough so that 1
p′ + ε < 1

p . On the

other hand, the function f that is x
− 1

p′ on (0, 1] and 0 off that interval is not in Lp
′
, but is in Lp.

We claim that for 1 ≤ p < p′ <∞, `p ⊂ `p
′
, with strict containment. Indeed, f(n) = 1/np is not in `p, but

is in `p
′
. Let E = {n ∈ {1, 2, . . .} : |f(n)| < 1}. Then f ∈ `p if and only if the complement of E is finite,

and if
∑
n∈E |f(n)|p < ∞. Certainly |f(n)|p > |f(n)|p′ for n ∈ E, and the complement of E is finite, so∑

n∈E |f(n)|p′ <
∑
n∈E |f(n)|p, and f ∈ `p′ . ///

[03.8] For positive real numbers w1, . . . , wn such that
∑
i wi = 1, and for positive real numbers a1, . . . , an,

show that
aw1
1 . . . awn

n ≤ w1a1 + . . .+ wnan

Discussion: This is a corollary of Jensen’s inequality, similar to the arithmetic-geometric mean, but with
unequal weights. Namely, let X = {1, 2, . . . , n} with measure µ(i) = wi, and function f(i) = log ai. Then
Jensen’s inequality is

exp
( n∑
i=1

wi · log ai

)
≤

n∑
i=1

wi · elog ai
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which simplifies to the assertion. ///

[03.9] (Collecting Fourier transform pairs) Compute the Fourier transforms of

χ[a,b] e−πx
2

f(x) =

 e−x (for x > 0)

0 (for x ≤ 0)

Discussion: The first of these is direct:

χ̂[a,b](ξ) =

∫
R
e−2πiξxχ[a,b](x) dx =

∫ b

a

e−2πiξx dx =


e−2πiξb − e2πiξa

−2πiξ
(for ξ 6= 0)

b− a (for ξ = 0)

Since the latter function is not in L1(R), but is in L2(R), we define its Fourier transform (or inverse
Fourier transform) indirectly, via either the inversion theorem, or by extending-by-continuity via Plancherel,
expressing the function as an L2 limite of L1 functions.

The third is similarly direct:

f̂(ξ) =

∫ ∞
0

e−2πiξx e−x dx =

∫ ∞
0

e−(2πiξ+1)x dx =
[ e−(2πiξ+1)x

−(2πiξ + 1)

]∞
0

=
1

2πiξ + 1

Again, the latter function is not in L1, but is in L2, so its Fourier transform is most conveniently defined
indirectly.

The Gaussian’s Fourier transform is less trivial to evaluate, but is a very important example to have in hand,
with many different applications throughout mathematics. One approach is as follows. Letting f(x) = e−πx

2

,

f̂(ξ) =

∫
R
e−2πiξx e−πx

2

dx =

∫
R
e−π(x

2+2iξx) dx =

∫
R
e−π(x

2+iξ)2−πξ2 dx = e−πξ
2

∫
R
e−π(x+iξ)

2

dx

by completing the square. The unobvious claim is that the integral does not depend on ξ, and, in fact, has
value 1. Perhaps the optimal approach here is to observe that the integral is equal to a complex contour
integral: ∫

R
e−π(x

2+iξ)2 dx =

∫ iξ+∞

iξ−∞
e−πz

2

dz

along the line Im(z) = iξ. Given the good decay of the integrand as |Re(z)| → ∞, by Cauchy-Goursat
theory, the contour can be moved to integration along the real line, giving∫

R
e−π(x

2+iξ)2 dx =

∫ iξ+∞

iξ−∞
e−πz

2

dz =

∫ ∞
−∞

e−πx
2

dx = 1

The fact that the latter integral has value 1 comes from the usual trick involving polar coordinates:(∫ ∞
−∞

e−πx
2

dx
)2

=

∫
R2

e−π(x
2+y2) dx dy =

∫ 2π

0

∫ ∞
0

e−πr
2

r dr dθ = 2π

∫ ∞
0

e−πr
2

r dr

Replacing r by
√
t, this is

π

∫ ∞
0

eπt dt = π · 1

π
= 1

Thus, with the present normalization of Fourier transform and corresponding normalization of Gaussian, the
Gaussian is its own Fourier transform. ///
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[03.10] Compute

∫
R

( sinx

x

)2
dx. (Hint: do not attempt to do this directly, nor by complex analysis.)

Discussion: From a standard stock of easy Fourier transforms, the Fourier transform of a characteristic
function of a symmetrical interval is very close to the given function:

̂ch[−1,1](ξ) =

∫ 1

−1
e−2πiξx dx =

e−2πiξ − e2πiξ

−2πiξ
=

sin 2πξ

πξ

Applying Plancherel, we have

2 =

∫
R
|ch[−1,1]|2 =

∫
R

( sin 2πξ

πξ

)2
dξ

The change of variables replacing ξ by ξ/2π gives

2 =

∫
R

( sin ξ

ξ/2

)2 dξ
2π

=
2

π

∫
R

( sin ξ

ξ

)2
dξ

Thus, the desired integral is π. ///

[03.11] Let E ⊂ R be a measurable set with finite measure. Show that

∫
E

cos(tx) dx→ 0 as t→ +∞.

Discussion: This is an instance of the more substantial Riemann-Lebesgue Lemma for functions in L1(R).
The characteristic/indicator function χE of E is in L1(R), since the measure of E is finite. Thus, the Fourier
transform of χE is continuous and goes to 0 at infinity (by Riemann-Lebesgue). This immediately gives the
corresponding vanishing for sines and cosines. ///
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