(December 6, 2018)

Examples discussion 03

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is http://www.math.umn.edu/~garrett/m/real/examples_2018-19/real-disc-03.pdf]

[03.1] Show that the characteristic function of a measurable set is a measurable function.

Discussion: For non-empty open $U \subset \mathbb{R}$, $\chi_E^{-1}(U)$ is the measurable set ϕ if U does not contain either 0 or 1. If $U \ni 1$ but $U \not\ni 0$, then $\chi_E^{-1}(U) = E$, which is measurable. If $U \ni 0$ but $U \not\ni 1$, then $\chi_E^{-1}(U) = E^c$, the complement of E, which is measurable. If U contains both 0 and 1, then $\chi_E^{-1}(U)$ is the whole domain space, which is measurable. $\|f\|$

[03.2] For measurable $E \subset [0, 2\pi]$, show that $\lim_{n \to \infty} \int_{E} e^{-inx} dx = 0$ as $n \to \infty$ ranging over integers.

Discussion: This is a relatively easy instance of a *Riemann-Lebesgue lemma*, namely, that Fourier coefficients of an L^2 function on $[0, 2\pi]$ go to 0. Here, the L^2 function is the characteristic function of E.

In fact, this relatively easy Riemann-Lebesgue lemma does not even need the completeness of exponentials in L^2 , but only Bessel's inequality. ///

[03.3] For $f \in L^2(\mathbb{R})$ and $t \in \mathbb{R}$, show that there is a constant C (depending on f) such that

$$\left|\int_{t-\delta}^{t+\delta} f(x) \, dx\right| < C \cdot \sqrt{\delta}$$

Discussion: Let h_{δ} be the characteristic function of $[t - \delta, t + \delta]$. By Cauchy-Schwarz-Bunyakowsky

$$\Big| \int_{t-\delta}^{t+\delta} f \Big| = |\langle f, h_{\delta} \rangle_{L^2} | \le |f|_{L^2} \cdot |h_{\delta}|_{L^2} = |f|_{L^2} \cdot \sqrt{2\delta}$$

The case of conjugate exponents $\frac{1}{p} + \frac{1}{q} = 1$ is the same, using Hölder's inequality rather than Cauchy-Schwarz-Bunyakowsky. There is no immediate analogue for L^1 , although a weaker result is possible, as in the next example.

[03.4] For $f \in L^1(\mathbb{R})$ and $t \in \mathbb{R}$, show that, given $\varepsilon > 0$, there $\delta > 0$ such that

$$\Big|\int_{t-\delta}^{t+\delta} f(x) \, dx\Big| \, < \, \varepsilon$$

Discussion: Let $S_n = \{x : \frac{1}{n+1} \le |x-t| < \frac{1}{n}\}$. Then

$$\left|\sum_{n\geq 1} \int_{S_n} f\right| \leq \sum_{n\geq 1} \int_{S_n} |f| \leq |f|_{L^1}$$

Thus, the sum of non-negative terms $\sum_{n\geq 1} \int_{S_n} |f|$ is convergent, so the tails $\sum_{n\geq N} \int_{S_n} |f|$ go to 0 as $N \to +\infty$. Thus,

$$\left| \int_{|x-t| \le 1/N} f \right| \le \int_{|x-t| \le 1/N} |f| = \sum_{n \ge N} \int_{S_n} |f|$$

goes to 0 as $N \to +\infty$. Then this idea can be applied to $\int_{|x-t|<\delta} |f|^p$ in the previous example. ///

[03.5] For non-negative real-valued f, show that

$$\lim_{\varepsilon \to 0^+} \int_{\mathbb{R}} f(x) \ e^{-\varepsilon x^2} \ dx = \int_{\mathbb{R}} f(x) \ dx$$

(whether or not the integrals are finite).

Discussion: Among other possibilities, this is an instance of application of Lebesgue's Monotone Convergence Theorem, since $f(x) e^{-\varepsilon x^2} \leq f(x) e^{-\varepsilon' x^2}$ for $\varepsilon < \varepsilon'$. Thus,

as claimed.

[03.6] For $f \in L^1(\mathbb{R})$, show that

$$\lim_{\varepsilon \to 0^+} \int_{\mathbb{R}} f(x) \ e^{-\varepsilon x^2} \ dx = \int_{\mathbb{R}} f(x) \ dx$$

Discussion: Among other possibilities, this is an instance of application of Lebesgue's Dominated Convergence Theorem, since $|f(x) e^{-\varepsilon x^2}| \leq |f(x)| \in L^1(\mathbb{R})$. Thus,

as claimed.

[03.7] (Comparing L^p spaces) Let $1 \leq p, p' < \infty$. When is $L^p[a, b] \subset L^{p'}[a, b]$ for finite intervals [a, b] and Lebesgue measure? When is $L^p(\mathbb{R}) \subset L^{p'}(\mathbb{R})$? When is $\ell^p \subset \ell^{p'}$?

Discussion: Take p < p'. We claim that $L^p[a, b] \supset L^{p'}[a, b]$, with proper containment. The function f that is $(x-a)^{-\frac{1}{p'}}$ on (a, b] and 0 off that interval is not in $L^{p'}$, but is in L^p . Given $f \in L^{p'}[a, b]$, let E be the set of $x \in [a, b]$ where $|f(x)| \ge 1$. Then $\int_a^b |f|^{p'} < \infty$ if and only if $\int_E |f|^{p'} < \infty$. On E, $|f|^p < |f|^{p'}$, so $\int_E |f|^p < \infty$, and then also $\int_a^b |f|^p < \infty$, so $f \in L^p[a, b]$.

We claim that $L^p(\mathbb{R})$ and $L^{p'}(\mathbb{R})$ are not comparable for $p \neq p'$. Take $1 \leq p < p'$. On one hand, $1/(1+|x|)^{1/p'+\varepsilon}$ is in $L^{p'}$ for all $\varepsilon > 0$, but not in L^p for ε small enough so that $\frac{1}{p'} + \varepsilon < \frac{1}{p}$. On the other hand, the function f that is $x^{-\frac{1}{p'}}$ on (0,1] and 0 off that interval is *not* in $L^{p'}$, but is in L^p .

We claim that for $1 \le p < p' < \infty$, $\ell^p \subset \ell^{p'}$, with strict containment. Indeed, $f(n) = 1/n^p$ is not in ℓ^p , but is in $\ell^{p'}$. Let $E = \{n \in \{1, 2, ...\} : |f(n)| < 1\}$. Then $f \in \ell^p$ if and only if the *complement* of E is finite, and if $\sum_{n \in E} |f(n)|^p < \infty$. Certainly $|f(n)|^p > |f(n)|^{p'}$ for $n \in E$, and the complement of E is finite, so $\sum_{n \in E} |f(n)|^{p'} < \sum_{n \in E} |f(n)|^p$, and $f \in \ell^{p'}$.

[03.8] For positive real numbers w_1, \ldots, w_n such that $\sum_i w_i = 1$, and for positive real numbers a_1, \ldots, a_n , show that

$$a_1^{w_1} \dots a_n^{w_n} \leq w_1 a_1 + \dots + w_n a_n$$

Discussion: This is a corollary of Jensen's inequality, similar to the arithmetic-geometric mean, but with unequal weights. Namely, let $X = \{1, 2, ..., n\}$ with measure $\mu(i) = w_i$, and function $f(i) = \log a_i$. Then Jensen's inequality is

$$\exp\left(\sum_{i=1}^{n} w_i \cdot \log a_i\right) \leq \sum_{i=1}^{n} w_i \cdot e^{\log a_i}$$

which simplifies to the assertion.

[03.9] (Collecting Fourier transform pairs) Compute the Fourier transforms of

$$\chi_{[a,b]}$$
 $e^{-\pi x^2}$ $f(x) = \begin{cases} e^{-x} & (\text{for } x > 0) \\ 0 & (\text{for } x \le 0) \end{cases}$

Discussion: The first of these is direct:

$$\widehat{\chi_{[a,b]}}(\xi) = \int_{\mathbb{R}} e^{-2\pi i \xi x} \chi_{[a,b]}(x) \, dx = \int_{a}^{b} e^{-2\pi i \xi x} \, dx = \begin{cases} \frac{e^{-2\pi i \xi b} - e^{2\pi i \xi a}}{-2\pi i \xi} & \text{(for } \xi \neq 0) \\ b - a & \text{(for } \xi = 0) \end{cases}$$

Since the latter function is not in $L^1(\mathbb{R})$, but is in $L^2(\mathbb{R})$, we define its Fourier transform (or inverse Fourier transform) *indirectly*, via either the inversion theorem, or by extending-by-continuity via Plancherel, expressing the function as an L^2 limite of L^1 functions.

The third is similarly direct:

$$\widehat{f}(\xi) = \int_0^\infty e^{-2\pi i\xi x} e^{-x} dx = \int_0^\infty e^{-(2\pi i\xi + 1)x} dx = \left[\frac{e^{-(2\pi i\xi + 1)x}}{-(2\pi i\xi + 1)}\right]_0^\infty = \frac{1}{2\pi i\xi + 1}$$

Again, the latter function is not in L^1 , but is in L^2 , so its Fourier transform is most conveniently defined indirectly.

The Gaussian's Fourier transform is less trivial to evaluate, but is a very important example to have in hand, with many different applications throughout mathematics. One approach is as follows. Letting $f(x) = e^{-\pi x^2}$,

$$\widehat{f}(\xi) = \int_{\mathbb{R}} e^{-2\pi i\xi x} e^{-\pi x^2} dx = \int_{\mathbb{R}} e^{-\pi (x^2 + 2i\xi x)} dx = \int_{\mathbb{R}} e^{-\pi (x^2 + i\xi)^2 - \pi \xi^2} dx = e^{-\pi \xi^2} \int_{\mathbb{R}} e^{-\pi (x + i\xi)^2} dx$$

by completing the square. The unobvious claim is that the integral does not depend on ξ , and, in fact, has value 1. Perhaps the optimal approach here is to observe that the integral is equal to a complex contour integral:

$$\int_{\mathbb{R}} e^{-\pi (x^2 + i\xi)^2} dx = \int_{i\xi - \infty}^{i\xi + \infty} e^{-\pi z^2} dz$$

along the line $\text{Im}(z) = i\xi$. Given the good decay of the integrand as $|\text{Re}(z)| \to \infty$, by Cauchy-Goursat theory, the contour can be *moved* to integration along the real line, giving

$$\int_{\mathbb{R}} e^{-\pi (x^2 + i\xi)^2} dx = \int_{i\xi - \infty}^{i\xi + \infty} e^{-\pi z^2} dz = \int_{-\infty}^{\infty} e^{-\pi x^2} dx = 1$$

The fact that the latter integral has value 1 comes from the usual trick involving polar coordinates:

$$\left(\int_{-\infty}^{\infty} e^{-\pi x^2} dx\right)^2 = \int_{\mathbb{R}^2} e^{-\pi (x^2 + y^2)} dx dy = \int_{0}^{2\pi} \int_{0}^{\infty} e^{-\pi r^2} r dr d\theta = 2\pi \int_{0}^{\infty} e^{-\pi r^2} r dr$$

Replacing r by \sqrt{t} , this is

$$\pi \int_0^\infty e^{\pi t} dt = \pi \cdot \frac{1}{\pi} = 1$$

Thus, with the present normalization of Fourier transform and corresponding normalization of Gaussian, the Gaussian is its own Fourier transform. ///

///

[03.10] Compute $\int_{\mathbb{R}} \left(\frac{\sin x}{x}\right)^2 dx$. (*Hint:* do not attempt to do this directly, nor by complex analysis.)

Discussion: From a standard stock of easy Fourier transforms, the Fourier transform of a characteristic function of a symmetrical interval is very close to the given function:

$$\widehat{\mathrm{ch}_{[-1,1]}}(\xi) = \int_{-1}^{1} e^{-2\pi i\xi x} \, dx = \frac{e^{-2\pi i\xi} - e^{2\pi i\xi}}{-2\pi i\xi} = \frac{\sin 2\pi\xi}{\pi\xi}$$

Applying Plancherel, we have

$$2 = \int_{\mathbb{R}} |\mathrm{ch}_{[-1,1]}|^2 = \int_{\mathbb{R}} \left(\frac{\sin 2\pi\xi}{\pi\xi}\right)^2 d\xi$$

The change of variables replacing ξ by $\xi/2\pi$ gives

$$2 = \int_{\mathbb{R}} \left(\frac{\sin\xi}{\xi/2}\right)^2 \frac{d\xi}{2\pi} = \frac{2}{\pi} \int_{\mathbb{R}} \left(\frac{\sin\xi}{\xi}\right)^2 d\xi$$

///

Thus, the desired integral is π .

[03.11] Let $E \subset \mathbb{R}$ be a measurable set with finite measure. Show that $\int_E \cos(tx) \, dx \to 0$ as $t \to +\infty$.

Discussion: This is an instance of the more substantial Riemann-Lebesgue Lemma for functions in $L^1(\mathbb{R})$. The characteristic/indicator function χ_E of E is in $L^1(\mathbb{R})$, since the measure of E is finite. Thus, the Fourier transform of χ_E is continuous and goes to 0 at infinity (by Riemann-Lebesgue). This immediately gives the corresponding vanishing for sines and cosines. ///