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[04.1] With g(x) = f(x+ xo), express ĝ in terms of f̂ , for f ∈ L1(Rn).

Discussion: For f ∈ S (Rn), the literal integral computes the Fourier transform:

ĝ(ξ) =

∫
Rn
e−2πiξ·x g(x) dxn =

∫
Rn
e−2πiξ·x f(x+ xo) dx

Replacing x by x− xo in the integral gives

ĝ(ξ) =

∫
Rn
e−2πiξ·(x−xo) f(x) dx = e2πiξ·xo

∫
Rn
e−2πiξ·x f(x) dx = e2πiξ·xo · f̂(ξ)

The precise corresponding statement for tempered distributions cannot refer to pointwise values. Write ψxo
for the function ξ → e2πiξ·xo . Since ψxo is bounded, for a tempered distribution u, ψxo · u is the tempered
distribution described by

(ψxo · u)(ϕ) = u(ψxo ϕ) (for ϕ ∈ S )

This is compatible with multiplication of (integrate-against-) functions S ⊂ S ∗. Also, let translation
u → Txou be defined by (Txou)(ϕ) = u(T−xoϕ), again compatibly with integration against Schwartz
functions. In these terms, the above argument shows that

(Txof)̂ = ψxo · f̂ (for f ∈ S )

This formulation avoids reference to pointwise values, and thus could make sense for tempered distributions.

One argument is extension by continuity: Fourier transform is a continuous map S ∗ → S ∗, as is translation
u→ Txou, so the identity extends by continuity to all tempered distributions. ///

Another argument is by duality: first,

(Txou) (̂ϕ) = (Txou)(ϕ̂) = u(T−xo ϕ̂) = u
(

(ψxo · ϕ)
)̂

by applying the identity to ϕ, ϕ̂ ∈ S . Going back, this is

û(ψxo · ϕ) = (ψxo · û)(ϕ) (for all ϕ ∈ S )

Altogether, (Txou)̂ = ψxo · û. ///

[04.2] Let {bn} be a sequence of complex numbers. Suppose that
∑
n anbn converges for every {an} ∈ `2.

Show that {bn} ∈ `2.

Discussion: This is an example application of uniform boundedness, also known as the Banach-Steinhaus
theorem. Namely, here, for a collection {λn} of continuous linear functionals on `2, either the linear-functional
norms |λn| = sup|v|≤1 |λn(v)| are uniformly bounded, or there is v ∈ `2 such that |λn(v)| → +∞.

Here, let λn({an}) =
∑
i≤n anbn. Since the corresponding infinite sum converges, by assumption, the

absolute values do not go to infinity, so the |λn|’s are uniformly bounded, by some C < +∞. Let

v(n) = (b1, b2, . . . , bn−1, bn, 0, 0, . . .)
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and note that w(n) = v(n)/|v(n)| is in the closed unit ball in `2. Thus, for every n,

∑
i≤n

bi√∑
j≤n |bj |2

· bi ≤ C

Simplifying, this gives
∑
i≤n |bi|2 ≤ C2 for all n. Thus,

∑
i |bi|2 converges, so {bi} ∈ `2. ///

[04.3] Let g be a measurable [0,+∞]-value function on [a, b] such that, for every f ∈ L2[a, b],∫ b
a
|f(x) g(x)| dx <∞. Show that g ∈ L2[a, b].

Discussion: This is another instance of application of uniform boundedness.

For g almost-everywhere 0, we’re done. So we can suppose that g is not almost-everywhere 0. Let

gn(x) =

 g(x) (for |g(x)| ≤ n)

0 (otherwise)

We apply uniform boundedness to the functionals λn(f) =
∫ b
a
gn · f , to conclude that there is a uniform

bound C such that |λn(f)| ≤ C for every f in L2[a, b] with |f |L2 ≤ 1.

Since g is not almost-everywhere 0, for sufficiently large n the functions gn are not almost-everywhere 0.
Thus, for large-enough n, we can let

hn(x) =
gn(x)√∫ b
a
|gn|2

(with non-zero denominator). Then ∣∣∣ ∫ b

a

g(x) · hn(x) dx
∣∣∣ ≤ C

Since g(x) · gn(x) = 0 when g(x) > n, this gives∫ b
a
gn(x)2 dx√∫ b
a
gn(x)2 dx

≤ C

From this,
∫ b
a
|gn(x)|2 dx ≤ C2 for all n, so g ∈ L2. ///

[04.4] Give a persuasive proof that the function

f(x) =

{
0 (for x ≤ 0)

e−1/x (for x > 0)

is infinitely differentiable at 0. Use this to make a smooth step function: 0 for x ≤ 0 and 1 for x ≥ 1, and goes
monotonically from 0 to 1 in the interval [0, 1]. Use this to construct a family of smooth cut-off functions
{fn : n = 1, 2, 3, . . .}: for each n, fn(x) = 1 for x ∈ [−n, n], fn(x) = 0 for x 6∈ [−(n+ 1), n+ 1], and fn goes
monotonically from 0 to 1 in [−(n+ 1),−n] and monotonically from 1 to 0 in [n, n+ 1].

Discussion: In x > 0, by induction, the derivatives are finite linear linear combinations of functions of the
form x−ne−1/x. It suffices to show that limx→0+ x

−ne−1/x = 0. Equivalently, that limx→+∞ xne−x = 0,
which follows from e−x = 1/ex, and

x−ne−1/x =
xn

ex
=

xn∑
m≥0

xm

m!

≤ xn

xn+1

(n+1)!

−→ 0 (as x→ +∞)
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(This is perhaps a little better than appeals to L’Hospital’s Rule.) Thus, f is smooth at 0, with all derivatives
0 there. ///

Next, we make a smooth bump function by

b(x) =


0 (for x ≤ −1)

e
1

x2−1 (for −1 < x < 1)

0 (for x ≥ 1)

A similar argument to the previous shows that this is smooth. Renormalize it to have integral 1 by

β(x) =
b(x)∫ 1

−1 b(t) dt

Then
∫ x
−1 β(t) dt is a smooth (monotone) step function that goes from 0 at −1 to 1 at 1. The minor

modification s(x) = 2
∫ x
−1 β(2t− 1) dt gives a smooth (monotone) step function going from 0 at 0 to 1 at 1.

///

Then s(x+n+1) is a smooth, monotone step function going up from 0 to 1 in [−n−1,−n], and s(n+1−x)
for n ∈ Z is a smooth, monotone step function going down from 1 to 0 in [n, n + 1]. Thus, the product
fn(x) = s(x+ n+ 1) · s(n+ 1− x) is the desired smooth cut-off function. ///

[04.5] Give an explicit non-zero function f such that
∫
R x

n f(x) dx = 0, for all n = 0, 1, 2, . . ..

Discussion: We choose to find a Schwartz function f meeting the condition, since success in finding such f
in such a relatively small class of nice functions will be a stronger result than find such f in a larger class of
less-nice functions.

For Schwartz (and other) functions g,
∫
R g(x) dx = ĝ(0). Thus, the requirement on f is that

0 = ̂(xnf)(0) = (−2πi)−n
( d
dx

)n
f̂(0)

Thus, the requirement on f ∈ S is equivalent to the vanishing of all derivatives of f̂ at 0. Taking f̂ to be a
smooth bump function with support not including 0 would suffice, for example,

f̂(x) =

 e1/(x−1)(x−3) (for 1 < x < 3)

0 (otherwise)

and then f is the inverse Fourier transform of f̂ :

f(x) =

∫ 3

1

e2πiξxe1/(ξ−1)(ξ−3) dξ

Note that f cannot be compactly supported and meet the requirement, because in that case f̂ is an entire
(holomorphic) function (in the Paley-Wiener space), which cannot vanish to infinite order at any point
(without being identically 0). ///

[04.6] Show that χ[a,b] ∗ χ[c,d] is a piecewise-linear function, and express it explicitly.
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Discussion: Once enunciated, this fact (and the explicit expression) should be just a matter of book-
keeping. We do assume that a ≤ b and c ≤ d. Also, by symmetry, without loss of generality we can suppose
that |b− a| ≥ |d− c|. This is used in the treatment of cases below.

(χ[a,b] ∗ χ[c,d])(x) =

∫
R
χ[a,b](x− y) · χ[c,d](y) dy =

∫ d

c

χ[a,b](x− y) dy

=

∫ d

c

χ[a−x,b−x](−y) dy =

∫ −c
−d

χ[a−x,b−x](y) dy = meas
(

[−d,−c] ∩ [a− x, b− x]
)

Looking at the cases of overlap, using b− a ≥ d− c, this is

0 (for b− x ≤ −d, that is, [a− x, b− x] is to the left of [−d,−c])

(b− x)− (−d) (for a− x ≤ −d ≤ b− x ≤ −c)

(−c)− (−d) (for a− x ≤ −d ≤ −c ≤ b− x, that is, [−d,−c] ⊂ [a− x, b− x])

(−c)− (a− x) (for −d ≤ a− x ≤ −c ≤ b− x)

0 (for a− x ≥ −c, that is, [a− x, b− x] is to the right of [−d,−c])

=



0 (for x ≥ b+ d)

b+ d− x (for max(a+ d, b+ c) ≤ x ≤ b+ d)

d− c (for a+ d ≤ x ≤ b+ c)

−a− c+ x (for a+ c ≤ x ≤ min (b+ c, a+ d))

0 (for x ≤ a+ c)

We used the fact that b − a ≥ d − c implies a − c ≤ b − d. It is useful to consider the special configuration
[a, b] = [−A,A] and [c, d] = [−B,B] with A ≥ B ≥ 0: the convolution is

0 (for x ≥ A+B)

A+B − x (for A−B ≤ x ≤ A+B)

2B (for −A+B ≤ x ≤ A−B)

A+B + x (for −A−B ≤ x ≤ −A+B)

0 (for x ≤ −A−B)

In particular, the convolution is supported inside [−A−B,A+B]. Similarly, for f and g supported in [−a, a]
and [−b, b], the convolution is supported in [−a− b, a+ b]. ///

[04.7] Compute e−πx
2 ∗ e−πx2

and
sinx

x
∗ sinx

x
. (Be careful what you say: sin x

x is not in L1(R), so there

are potential problems with convolution.)

Discussion: The idea is to invoke f ∗ g = (f̂ · ĝ)̂ for even functions f, g ∈ L1, since for even functions
the inverse Fourier transform is the same as the forward Fourier transform. Conveniently, Gaussians are in
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L1 ∩ L2, and, from above, have Fourier transforms which are again Gaussians:

̂e−πax2(ξ) =
1√
a
e−πξ

2/a (for a > 0)

so

e−πx
2

∗ e−πx
2

(ξ) = ̂e−πx2 · e−πx2(ξ) = ̂e−2πx2(ξ) =
1√
2
e−πξ

2/2

For the other example, the bound |f ∗ g|L1 ≤ |f |Lp · |g|Lq for conjugate exponents p, q shows that f ∗ g ∈ L1

for f, g ∈ L2. Thus, the same identity holds for f, g ∈ L2, with the Plancherel extension of Fourier transform.
That is, f̂ and ĝ need not be the literal integrals for the Fourier transform, but its extension by continuity
to L2. Above, we computed the Fourier transform of characteristic functions of intervals:

̂χ[−a,a]a(ξ) =
sin 2πaξ

πξ

Thus,

(π · χ[−1/2π, 1/2π]) ̂ (ξ) =
sin ξ

ξ

Then ( sinx

x
∗ sinx

x

)
(ξ) =

(
(π · χ[−1/2π, 1/2π]) · (π · χ[−1/2π, 1/2π])

)̂(ξ)

= π · (π · χ[−1/2π, 1/2π])̂(ξ) = π · sin ξ

ξ

///

[04.8] Evaluate the Borwein integral ∫
R

sinx

x
· sinx/3

x/3
· sinx/5

x/5
dx

Discussion: View this as an inner product and invoke Plancherel:∫
R

sinx

x
· sinx/3

x/3
· sinx/5

x/5
dx =

〈 sinx

x
,

sinx/3

x/3
· sinx/5

x/5

〉
=
〈( sinx

x

)̂
,
( sinx/3

x/3
· sinx/5

x/5

)̂〉
Since Fourier transform converts pointwise multiplication to convolution, this is〈( sinx

x

)̂
,
( sinx/3

x/3

)̂
∗
( sinx/5

x/5

)̂〉
We have computed that ̂χ[−a,a](ξ) =

sin 2πaξ

πξ
= 2a · sin 2πaξ

2πaξ

That is, by linearity of Fourier transform,( 1

2a
χ[−a,a]

)̂
(ξ) =

sin(2πa)ξ

(2πa)ξ

By Fourier inversion, noting that sin x
x is not in L1, only in L2, so the inverse transform is not necessarily

the literal integral, ( sin(2πa)ξ

(2πa)ξ

)̂
(x) =

1

2a
χ[−a,a](x)
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Replacing a by a/2π gives ( sin aξ

aξ

)̂
(x) =

π

a
χ[− a

2π ,
a
2π ]

(x)

We will use a = 1, 13 , and 1
5 . The relevant convolution was also computed above, but all we need is the fact

that the support of
3π χ[− 1

6π ,
1
6π ]
∗ 5π χ[− 1

10π ,
1

10π ]

is inside the interval [− 1
6π −

1
10π ,

1
6π + 1

10π ]. Thus, the integral of three sinc functions is equal to∫
R
πχ[−1

2π ,
1
2π ]

(x) ·
(

3πχ[− 1
6π ,

1
6π ]
∗ 5π χ[− 1

10π ,
1

10π ]

)
(x) dx = π · 3π · 5π

∫ 1/π

−1/π

(
χ[− 1

6π ,
1
6π ]
∗ χ[− 1

10π ,
1

10π ]

)
(x) dx

= π · 3π · 5π
∫
R

(
χ[− 1

6π ,
1
6π ]
∗ χ[− 1

10π ,
1

10π ]

)
(x) dx

since [−1/2π, 1/2π] contains the support of the convolution. Observing that (invoking Fubini-Tonelli as
necessary),∫

R
(f ∗ g)(x) dx =

∫
R

∫
R
f(x− y)g(y) dx dy =

∫
R

∫
R
f(x)g(y) dx dy =

∫
R
f(x) dx ·

∫
R
g(x) dy

the integral of the convolution is ∫
R
χ[− 1

6π ,
1
6π ]
·
∫
R
χ[− 1

10π ,
1

10π ]
=

1

3π
· 1

5π

Thus, the whole is

π · 3π · 5π · 1

3π
· 1

5π
= π

Similarly, the integral of f1 ∗ . . . fn is the product of the integrals
∫
fi. With the support of fi inside [−ai, ai],

the support of the convolution is inside [−a1− . . .− an, a1 + . . .+ an]. Thus, since 1
3 + 1

5 + . . .+ 1
13 < 1, the

same argument shows that∫
R

sinx

x
· sinx/3

x/3
· sinx/5

x/2n+ 1
dx = π (for 2n+ 1 = 3, 5, 7, 9, 11, 13)

but for 2n + 1 = 15, the support of the Fourier transform of sin x
x no longer contains the support of the

convolution. ///

[04.9] For f ∈ S , show that

lim
ε→0+

f(x) ∗ e
−πx2/ε

√
ε

= f(x)

Discussion: It suffices to show that the functions ϕε(x) = e−πx
2/ε form an approximate identity, in a

not-quite-strictest sense that their masses bunch up at 0, although their supports to do not shrink to {0}.

We know that
∫
R e
−πx2

dx = 1, so the integrals of the ϕε are all 1. They are non-negative. Elementary
estimates do show that, for fixed δ > 0,

∫
|x|≥δ ϕε → 0 as ε → 0+. This verifies that the ϕε form an

approximate identity in a slightly less-than-strictest sense, so the assertion holds. ///

Discussion: In contrast to the previous example, the functions ϕn(x) = sin 2πnx
πx (related to the Fourier-

Dirichlet kernel) do not form an approximate identity in a straightforward sense, since they are not non-
negative. And they are not in L1(R), so the integrals for their Fourier transforms do not converge absolutely.
But they are in L2(R), so do have Fourier transforms in the extended Fourier-Plancherel sense, and the
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identity ̂f ∗ ϕn = f̂ · ϕ̂n still holds. By Fourier inversion, ϕ̂n = χ[−t,t]. In particular, f̂ · χ[−t,t] converges in

L2(R) to f̂ (and f̂ is certainly in L2, because it is in S ).

Plancherel shows that the Fourier(-Plancherel) map and inverse are isometric isomorphisms L2(R)→ L2(R),
so

f = ( f̂ )∨ =
(
L2 − lim

n
f̂ · χ[−t,t]

)∨
= L2 − lim

n

((
f̂ · χ[−t,t]

)∨)
= L2 − lim

n

(
( f̂ )∨ ∗ χ∨[−t,t]

)
= f ∗ sin 2πtx

πx

as claimed. ///
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