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[05.1] Show that multiplication by x, and also differentiation d/dx, are continuous operators S (R)→ S (R).

Discussion: By the definition of the topology on S , and by the equivalent of continuity at 0 and continuity
for linear maps, it suffices to show that, given ε > 0 and seminorm ν on S , there is δ > 0 and seminorm µ
on Schwartz functions ϕ such that µ(ϕ) < δ implies ν(ϕ) < ε.

For ν(ϕ) = sup0≤i≤k supx∈R(1 + x2)n · |f (i)(x)|, observe that

|(xf)(i)(x)| = |(f + xf ′)(i−1)(x)| = |(2f ′ + xf ′′)(i−2)(x)| = . . . = |(if (i−1) + xf (i))(x)|

≤ |f (i−1)(x)|+ (1 + x2) f (i))(x)|

by induction. Thus,

ν(xf) = sup
0≤i≤k

sup
x∈R

(1 + x2)n · |f (i)(x)| ≤ sup
0≤i≤k

sup
x∈R

(1 + x2)n|f (i−1)(x)|+ sup
x∈R
|(1 + x2)n+1 f (i))(x)|

≤ 2 sup
0≤i≤k

sup
x∈R
|(1 + x2)n+1 f (i))(x)|

So if we make
µ(f) = sup

0≤i≤k
sup
x∈R
|(1 + x2)n+1 f (i))(x)|

smaller than ε, then |ν(xf)| < 2ε, giving the continuity of multiplication by x. ///

Even more simply, |(f ′)(i)(x)| = |f (i+1)(x)| gives

ν(f ′) = sup
0≤i≤k

sup
x∈R

(1+x2)n · |(f ′)(i)(x)| = sup
1≤i≤k+1

sup
x∈R

(1+x2)n · |f (i)(x)| ≤ sup
0≤i≤k+1

sup
x∈R

(1+x2)n · |f (i)(x)|

So if we make
µ(f) = sup

0≤i≤k+1
sup
x∈R
|(1 + x2)n+1 f (i))(x)|

smaller than ε, then |ν(f ′)| < ε. ///

[05.2] Show that d/dx is a continuous operator on C∞(T), where T is the circle R/2πZ.

Discussion: This is simpler than the case of differentiation on Schwartz functions, since there is no issue
about growth at infinity. For ν(f) = sup0≤i≤k supx∈T |f (i)(x)|,

ν(f ′) = sup
0≤i≤k

sup
x∈T
|(f ′)(i)(x)| = sup

1≤i≤k+1
sup
x∈T
|f (i)(x)| ≤ sup

0≤i≤k+1
sup
x∈T
|f (i)(x)|

So if
µ(f) = sup

0≤i≤k+1
sup
x∈R
|f (i))(x)|

is smaller than ε, then |ν(f ′)| < ε, giving continuity. ///

[05.3] Show that δ(ϕ) = ϕ(0) is a tempered distribution.
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Discussion: By the definition of the topology on S , and by the equivalent of continuity at 0 and continuity
for linear maps, it suffices to show that, given ε > 0, there is η > 0 and seminorm ν on Schwartz functions
ϕ such that ν(ϕ) < η implies |ϕ(0)| < ε. This succeeds for ν(ϕ) = supx∈R |ϕ(x)| and η = ε. ///

[05.4] Let ψn(x) = einx. Show that
∑
n∈Z 1 · ψn converges in the Sobolev space Hs(T) for s < − 1

2 .

Discussion: Using the spectral characterization of these Sobolev spaces, the question is for what s ∈ R∑
n∈Z

12 · (1 + n2)s < +∞

where the 12 is the absolute value squared of the Fourier coefficients. By the integral test, or other elementary
tests, the precise condition is that s < − 1

2 . ///

[05.5] Differentiate
∑
n∈Z 1 · ψn twice.

Discussion: Let u be that generalized function, which we’ve shown is in Hs(T) for every s < − 1
2 . Thus,

we can distributionally differentiate u by differentiating the Fourier expansion termwise, since we have seen
that (extended) differentiation is a continuous map Hs → Hs−1 for all s ∈ R:

u′ =
∑
n

in · einx (converging in Hs−1 with s < − 1
2 )

and

u′′ =
∑
n

(in)2 · einx (converging in Hs−2 with s < − 1
2 )

That’s all there is to it. ///

[05.6] Show that the principal value integral limε→0+
∫
|x|>ε

f(x)
x dx is a tempered distribution, and satisfies

x · u = 1.

Discussion: Let u be that functional. For fixed ε > 0, integrate by parts, so, ignoring the boundary terms
at infinity, hoping they’re 0 (!?!), we still do definitely have boundary terms at ±ε:

u(f) = lim
ε→0+

([
log |x| · f(x)

]
−
∫
|x|>ε

f ′(x) · log |x| dx
)

The boundary terms

log |ε| · f(ε) − log | − ε| · f(−ε) = (2ε · log ε) · f(ε)− f(−ε)
2ε

are 0: differentiability of f at 0 implies that

lim
ε→0+

f(ε)− f(−ε)
2ε

= f ′(0)

and in particular the limit exists, while

lim
ε→0+

ε · log ε = 0

Thus,

|u(f)| =
∣∣∣ lim
ε→0+

∫
|x|>ε

f ′(x) · log |x| dx
∣∣∣ =

∣∣∣ ∫
R
f ′(x) · log |x| dx

∣∣∣
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Further, ∣∣∣ ∫
R
f ′(x)(1 + x2) · log |x|

1 + x2
dx
∣∣∣ ≤ sup

x∈R
(1 + x2)|f ′(x)|(1 + x2) ·

∫
R

| log |x||
1 + x2

dx

The latter integral is a finite constant, so to make |u(f)| small it suffices to make the seminorm

µ(f) = sup
0≤i≤1

sup
x∈R

(1 + x2)|f (i)(x)|

small, proving the continuity. ///

For f ∈ S ,

(x · u)(f) = lim
ε→0+

∫
|x|≥ε

x · f(x)

x
dx = lim

ε→0+

∫
|x|≥ε

f(x) dx =

∫
R
f(x) dx =

∫
R

1 · f(x) dx = 1(ϕ)

thinking of 1 as the integrate-against-1 distribution, since ϕ is continuous at 0. Thus, x · u = 1. ///

[05.7] Show that δ̂ = 1 by approximating δ by Gaussians.

Discussion: We have already shown that un(x) =
√
n · e−πnx2

is an approximate identity, meaning that

un(f) −→ f(0) = δ(f)

for every f ∈ S , which is exactly to say that un → δ in the weak dual topology on S ∗. Fourier transform
on tempered distributions is continuous, so Fourier transform and the weak-dual-topology limit can be
interchanged:

δ̂ = lim
n
ûn = lim

n
e−πx

2/n

from earlier computations of Fourier transforms of Gaussians. By Lebesgue dominated convergence, for
f ∈ L1,

lim
n

∫
R
e−πx

2/n · f(x) dx =

∫
R

lim
n
e−πx

2/n · f(x) dx =

∫
R

1 · f(x) dx = 1(f) (for all f ∈ S )

That is, δ̂ = 1. ///

[05.8] Show that lim
n

1

1 + (x− n)2
= 0 in S (R)∗.

Discussion: It is implicit in the question that the functionals are integrate against the functions 1
1+(x−n)2 .

By definition of the weak dual topology on S ∗, we must show that for every f ∈ S (R)

lim
n

∫
R

1

1 + (x− n)2
· f(x) dx = 0

The idea is that most of the mass of 1/(1 + (x−n)2) is centered around n, near which f is small for large n.

Given the convergence of the integral of 1/(1 + x2), for every ε > 0 there is N such that∫
|x|≥N

1

1 + x2
dx < ε

and then by changing variables, for every n,∫
|x−n|≥N

1

1 + (x− n)2
dx < ε
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For each f ∈ S ,∣∣∣ ∫
R

1

1 + (x− n)2
·f(x) dx

∣∣∣ =
∣∣∣ ∫

R

1

(1 + (x− n)2)(1 + x2)
·(1+x2)f(x) dx

∣∣∣ ≤ ∫
R

1

(1 + (x− n)2)(1 + x2)
dx·sup

x∈R
(1+x2)| f(x)|

Thus, it suffices to show that ∫
R

1

(1 + (x− n)2)(1 + x2)
dx −→ 0

Indeed,∫
R

1

(1 + (x− n)2)(1 + x2)
dx =

∫
|x|≤n/2

1

(1 + (x− n)2)(1 + x2)
dx +

∫
|x|>n/2

1

(1 + (x− n)2)(1 + x2)
dx

≤
∫
|x|≤n/2

1

((n2 )2)(1 + x2)
dx +

∫
|x|>n/2

1

(1 + (x− n)2)(1 + (n2 )2)
dx

=
4

n2

∫
|x|≤n/2

1

1 + x2
dx +

4

n2

∫
|x|>n/2

1

1 + (x− n)2
dx =

8

n2

∫
|x|≤n/2

1

1 + x2
dx

≤ 8

n2

∫
R

1

1 + x2
dx −→ 0

since the last integral is just a constant. This proves that 1/(1 + (x − n)2) → 0 in the weak dual topology
on S ∗. ///

[05.9] Determine the constant c such that x2δ′′ = c · δ.

Discussion: Compute directly: for f ∈ S ,

(x2δ′′)(f) = δ′′(x2 · f) = −δ′(2x · f + x2 · f ′) = δ(2 · f + 4x · f ′ + x2f ′′)

= 2 · f(0) + 4 · 0 · f ′(0) + 02 · f ′′(0) = 2 · f(0) = 2δ(f)

So x2δ′′ = 2δ. ///

[05.10] Show that the characteristic function of an interval is in H
1
2−ε(R) for every ε > 0, but is not in

H
1
2 (R).

Discussion:

[05.11] Show that f(x) = e−|x| is in H1−ε(R) for every ε > 0, but is not in H1(R).

[05.12] Show that sin(nx)→ 0 in the S ∗-topology as n→ +∞.

[05.13] Show that the (distributional) derivative of a positive, regular Borel measure µ on R is in H−
1
2−ε(R)

for every ε > 0. (Hint: use Sobolev imbedding and Riesz-Markov-Kakutani theorem.)
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