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[06.1] Let ψn(x) = e2πinx. Let δZ be the Dirac comb, that is, a periodic version of Dirac’s δ, describable
as having Fourier series

δZ =
∑
n∈Z

1 · ψn (converging in H−
1
2−ε(T) for all ε > 0)

With λ 6∈ R, show that the differential equation

u′′ − λ · u = δZ

has a periodic solution u ∈ H
3
2−ε(T) ⊂ Co(T), using Fourier series, by division. Show that the equation

v′′ − λv = f is solved by

v =

∫
T
u(x− t) f(t) dt =

∫ 1

0

u(x− t) f(t) dt

Discussion: Let’s assume that we are asking for a solution u that is at worst a tempered distribution. Thus,
we can take Fourier transform, obtaining

(4π2ξ2 − λ)û = δ̂ = 1

Obviously we want to divide by 4π2ξ2−λ. Unlike some other examples, where division is not quite legitimate,
here, we can achieve the effect of division by multiplication by the smooth, bounded function 1/(4π2ξ2 + λ),
since 4π2ξ2 + λ does not vanish on R. Thus,

û =
1

4π2ξ2 − λ

Since the right-hand side is luckily in L1(R), we can compute its image under Fourier inversion by the
literal integral, its inverse Fourier transform will be a continuous function (by Riemann-Lebesgue), so has
meaningful pointwise values:

u(x) =

∫
R

e2πiξx

(2πiξ)2 − λ
dξ

The integral can be evaluated by residues: depending on the sign of the real part of x
√
λ, we use an auxiliary

arc in the upper or lower half plane, so that ξ → e2πi
√
λξx is bounded in that half-plane. Thus, we pick up

either 2πi times the residue at ξ = ±
√
λ/2πi, or the negative (because the orientation is negative) of the

residue at ξ = ±
√
λ/2πi. Summarizing the two computations, this is

2πi · e2πi·(
√
λ/2πi)·x

4π2 · (
√
λ

2πi −
−
√
λ

2πi )
=
−e±

√
λ|x|

2
√
λ

with sign chosen so that the function is bounded. This answers the first part.

To see that this function u has the property of fundamental solution, as indicated, we (at least) heuristically
compute

(∆− λ)v = (∆− λ)

∫
T
u(x− t) f(t) dt =

∫
T

(∆x − λ)u(x− t) f(t) dt =

∫
T

(u′′ − λu)(x− t) f(t) dt
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since ∆ is translation-invariant. Then this would be∫
T
δ(x− t) f(t) dt = f(x)

as desired. The work remaining is to justify moving the differential operator inside the integral, and to
understand how (after doing that) the literal integral has to be something more abstract, to make sense of
supposedly integrating against Dirac δ. We’ll do this in notes, elsewhere. ///

[06.2] Show that u′′ = δZ has no solution on the circle T. (Hint: Use Fourier series.) Show that u′′ = δZ−1
does have a solution.

Discussion: In Fourier series converging in H−
1
2−ε(T) for all ε > 0, δZ =

∑
n∈Z 1·ψn, where ψn(x) = e2πinx.

A function u in the relatively large-yet-tractable space H−∞(T) has a Fourier expansion u =
∑
n û(n) · ψn.

Application of the (extended-sense) second derivative operator can be done termwise (by design), and
annihilates the n = 0 term. That is, no u′′ can have 0th Fourier coefficient 1, as does δZ, so that equation is
not solvable. ///

In contrast, δZ−1 has exactly lost that difficult Fourier component, and, in terms of Fourier series, u′′ = δZ−1
is ∑

n∈Z
(2πin)2) · û(n) · ψn =

∑
n 6=0

1 · ψn

has the solution by division

u =
∑
n6=0

1

(2πin)2
ψn

[06.3] On the circle T, show that u′′ = f has a unique solution u orthogonal to the constant function, for
all f ∈ L2(T) orthogonal to the constant function 1.

Discussion: We use Fourier series for functions in H−∞(T): we want to solve the equation∑
n

f̂(n) · ψn = f = u′′ = ∆
∑
n

û(n) · ψn

First, the differentiation can be moved inside the sum, that is, we can differentiate termwise, because we
have shown that differentiation is a continuous map Hs → Hs−1 for all s, by design. That is, since sums
are limits of their finite partial sums, and since

d

dx
(Hs − limun) = Hs−1 − lim

d

dx
un

we have justified termwise differentiation. By the very convenient mutual orthogonality of the exponentials
ψn in all the Hilbert spaces Hs, we have uniqueness of Fourier coefficients in H−∞, even though the latter
is only a union of Hilbert spaces, and not a Hilbert space itself. Thus, for u′′ = f to have a solution, it must
be that

((2πin)2 − λ) · û(n) = f̂(n)

This is impossible if f̂(0) 6= 0, since the coefficient on the left is 0, so we must require f̂(0) = 0, which (in
whatever Hilbert space Hs lies) is to say that f ⊥ 1.

Given f̂(0) = 0, we can solve the equation by division. But there is ambiguity of û(0). For uniqueness, we
also require û(0) = 0, which, again, is u ⊥ 1 in whatever Hilbert space u lies. ///

[06.4] Compute ĉosx.
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Discussion: This reduces to knowing that δ̂ = 1 and the behavior of Fourier transforms under translation...
[... iou ...]

[06.5] Smooth functions f ∈ E act on distributions u ∈ D(R)∗ by a dualized form of pointwise multiplication:
(f · u)(ϕ) = u(fϕ) for ϕ ∈ D(R). Show that if x · u = 0, then u is supported at 0, in the sense that for
ϕ ∈ D with sptϕ 63 0, necessarily u(ϕ) = 0. Thus, by the theorem classifying such distributions, u is a linear
combination of δ and its derivatives. Show that in fact x · u = 0 implies that u is a multiple of δ itself.

Discussion: For ϕ ∈ D whose support does not include 0, the function 1/x is defined and smooth on sptϕ.
Thus, x→ ϕ(x)/x is in D. For such ϕ,

u(ϕ) = u(x · ϕ
x

) = 0

Thus, sptu = {0}, so by the theorem is a finite linear combination u =
∑n
i=0 ci δ

(i) with scalars ci. To see

that in fact only δ itself can appear, we use the idea that 1, x, x
2

2! ,
x3

3! , . . . ,
xn

n! are essentially a dual basis to

δ, δ′, δ′′, . . . , δ(n). One way to make this completely precise is to use a smooth cut-off function η ∈ D around
0, namely, identically 1 on a neighborhood of 0. Then η · xi ∈ D, and

δ(i)(η · x
j

j!
) =

 1 (for i = j)

0 (for i 6= j)

In particular, this shows that the derivatives of δ are linearly independent. For 0 ≤ j ∈ Z,

0 = (x · u)(xj) = (x ·
∑
i

ci δ
(i))(xj) =

∑
i

ci δ
(i)(x · xj) =

∑
i

ci δ
(i)(xj+1) = (j + 1)! · cj+1

Thus, cj = 0 for j ≥ 1, and u is a multiple of δ itself. ///

[06.6] Given f in the Schwartz space S , show that there is F ∈ S with F ′ = f if and only if
∫
R f = 0.

Discussion: On one hand, if f = F ′ for F ∈ S , then
∫ x
−∞ f(y) dy = F (x). Since limx→+∞ F (x) = 0,∫

R f = 0.

On the other hand, if
∫
R f = 0, let F (x) =

∫ x
−∞ f , and show that F ∈ S . Since F ′ = f by the fundamental

theorem of calculus, the (higher) derivatives of F are those of f , so all that needs to be shown is that F
itself is of rapid decay. For x→ −∞,

|F (x)| ≤
∫ x

−∞
|f | ≤

∫ x

−∞
|1 + y2|−N · sup

t∈R

∣∣∣(1 + t2)N · f(t)
∣∣∣ dy ≤ sup

t∈R

∣∣∣(1 + t2)N · f(t)
∣∣∣ · ∫ x

−∞
|1 + y2|−N dy

≤ sup
t∈R

∣∣∣(1 + t2)N · f(t)
∣∣∣ · ∫ x

−∞

dt

tN
≤ sup

t∈R

∣∣∣(1 + t2)N · f(t)
∣∣∣ · 1

|x|N−1
(for x→ −∞)

giving the rapid decay. For x→ +∞, using the condition
∫
R f = 0,

F (x) =

∫ x

−∞
f =

∫
R
f −

∫ ∞
x

f = 0−
∫ ∞
x

f

so for x→ +∞ it suffices to similarly estimate∣∣∣ ∫ ∞
x

f
∣∣∣ ≤ ∫ ∞

x

(1 + y2)−N · sup
t∈R
|(1 + t2)N · f(t)| dy ≤ sup

t∈R
|(1 + t2)N · f(t)| ·

∫ ∞
x

(1 + y2)−N dy

which similarly gives the rapid decay as x→ +∞. ///
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[06.7] Let u(x) = ex ·sin(ex). Explain in what sense the integral

∫
R
f(x)u(x) dx converges for every f ∈ S .

Discussion: The idea is to integrate by parts, noting that u = v′ with v(x) = cos(ex). We must be careful
with the boundary terms:∫

R
f(x)u(x) dx =

∫
R
f(x) v′(x) dx = lim

M,N→+∞

∫ N

−M
f(x) v′(x) dx

= lim
M,N→+∞

([
f(x) v(x)

]N
−M
−
∫ N

−M
f ′(x) v(x) dx

)
Since v(x) is bounded and f ′ is of rapid decay, the limit exists, so the original integral is convergent. Further,
the value is correctly determined by integration by parts, namely

−
∫ ∞
−∞

f ′(x) v(x) dx = −
∫ ∞
−∞

f ′(x) cos(ex) dx

That is, for f ∈ S and functions such as u obtained by differentiating bounded smooth functions, integration
by parts is completely justifiable via the natural estimates. ///

[06.8] Compute the Fourier transform of the sign function

sgn(x) =

 1 (for x > 0)

−1 (for x < 0)

Hint: d
dx sgn = 2δ. Since Fourier transform converts d/dx to multiplication by 2πix, this implies that

(2πi)x · ŝgn = 2δ̂ = 2. Thus, (πi)x · ŝgn = 1.

Discussion: From the hint, x ·(πi ŝgn) = 1. Also, we have seen that the principal-value functional u satisfies
x · u = 1: for all ϕ ∈ S ,

(x·u)(ϕ) = u(x·ϕ) = lim
ε→0+

∫
|x|>ε

x · ϕ(x)

x
dx = lim

ε→0+

∫
|x|>ε

ϕ(x) dx =

∫
R
ϕ(x) dx =

∫
R

1·ϕ(x) dx = 1(ϕ)

Thus,
x · (u− πi ŝgn) = 0

We have also seen that x · v = 0 for distribution v implies that v is a constant multiple of δ. Thus, u−πi ŝgn
is a multiple of δ. In fact, the multiple is 0, because δ is even, while u, sgn, and thus ŝgn, are all odd. [1]

That is, ŝgn = 1
πiu. ///

[06.9] On Rn, show that |x|2 ·∆δ = 2n · δ.

Discussion: Another direction computation, using the duality characterization: for ϕ ∈ S ,

(r2∆δ)(ϕ) = (∆δ)(r2ϕ) = = (−1)2δ(∆(r2ϕ))

Compute

∆(r2ϕ) =
∑
i

∂2

∂x2i
(r2ϕ) =

∑
i

∂

∂xi
(2xiϕ+ r2

∂ϕ

∂xi
)

[1] This notion of parity can be defined for distributions from the obvious notion for functions (θ · f)(x) = f(−x),

and then (θ · v)(f) = v(θ · f) for distributions v.
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=
∑
i

2ϕ+ 2xi
∂ϕ

∂xi
+ r2

∂2ϕ

∂x2i
= 2nϕ+

∑
i

2xi
∂ϕ

∂xi
+ nr2∆ϕ

Applying δ to this gives

2nϕ(0) +
∑
i

2 · 0 · ∂ϕ
∂xi

(0) + n · 0 · (∆ϕ)(0) = 2nϕ(0) = 2nδ(ϕ)

as claimed. ///

[06.10] On R2, compute the Fourier transform of (x± iy)n ·e−π(x2+y2) for n = 0, 1, 2, . . .. (Hint: Re-express
things, including Fourier transform, in terms of z = x+ iy and z = x− iy, w = u+ iv, and w = u− iv.)

Discussion: Using z and w, the functions are zne−πzz and zne−πzz, and Fourier transform is∫
R2

e−πi(zw+zw) zne−πzz dx dy =

∫
R2

e−πi(zw+zw) 1

(−π)n

( ∂
∂z

)n
e−πzz dx dy

Imagining that we can integrate by parts, this is

(−1)n
1

(−π)n

∫
R2

( ∂
∂z

)n
e−πi(zw+zw) e−πzz dx dy =

1

πn

∫
R2

(−πiw)ne−πi(zw+zw) e−πzz dx dy

= (−i)n wn
∫
R2

e−πi(zw+zw) e−πzz dx dy = i−n wn e−π(ww)

since we know the Fourier transform of a Gaussian. A similar computation with roles of z, z reversed
accomplishes the other computation. That is, (x± iy)ne−π(x

2+y2) is an eigenfunction for Fourier transform,
with eigenvalue i−|n|. ///

[06.11] Show that on Rn with n ≥ 3,

∆
1

|x|n−2
= constant multiple of δ

That is, up to a constant, 1/|x|n−2 is a fundamental solution for the Laplacian.

[... iou ...]

[06.12] In the context of complex analysis, the Cauchy-Riemann operator is

∂

∂z
= 1

2

( ∂
∂x

+ i
∂

∂y

)
The Cauchy-Riemann equation characterizing holomorphic functions f is

∂

∂z
f = 0

Show that
∂

∂z

1

z
= constant multiple of δ

That is, 1/z is a fundamental solution for the Cauchy-Riemann operator. (So the shape of the Cauchy
integral formula is perhaps not so surprising.)

[... iou ...]
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[06.13] Show that, given a distribution u on Tn, for any 0 ≤ k ∈ Z there is f ∈ Ck(Tn) and sufficiently
large ` such that (1−∆)nf = u.

Done in class.

[06.14] Show that, given a compactly-supported distribution u on Rn, for any 0 ≤ k ∈ Z there is f ∈ Ck(Rn)
and sufficiently large ` such that (1−∆)`f = u.

Done in class.
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