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[07.1] Recall the proof of the spectral theorem for self-adjoint operators on a finite-dimensional complex
vector space V with hermitian inner product.

Discussion: First, we prove that any linear map T on a finite-dimensional complex vector space V has a
non-zero eigenvector. Let ϕ : C[x] → EndC(V ) be the C-linear ring homomorphism defined by ϕ(x) = T .
Since C[x] is infinite-dimensional over C, and EndC(V ) is finite-dimensional (by the finite-dimensionality of
V ), the kernel of ϕ is non-zero. It is an ideal in C[x], and since C[x] is a principal ideal domain (because
C is a field), kerϕ = 〈P 〉 for some monic polynomial P . This is the minimal polynomial of T . Since C
is algebraically closed, we can factor P (x) = (x − α1) . . . (x − αn) with αi ∈ C. Since this is the minimal
polynomial of T , letting Q(x) = (x− α2) . . . (x− αn), there is vo ∈ V such that Q(T )(vo) 6= 0. But

0 = P (T )(vo) = (T − α1)
(
Q(T )(vo)

)
so Q(T )(vo) is a non-zero α1-eigenvector of T . ///

Next, with such vo, for T = T ∗ for a hermitian inner product 〈, 〉 on V , we claim that v⊥o is a T -stable
subspace of V , and that the restriction of T to v⊥o is still hermitian. Indeed, for w ∈ v⊥o ,

〈Tw, vo〉 = 〈w, Tvo〉 = 〈w, λvo〉 = λ · 〈w, vo〉 = λ · 0 = 0

so v⊥o is T stable. Then the hermitian-ness of the restriction of T to that space is immediate.

By induction on the dimensions of vector spaces with hermitian operators, the restriction of T to v⊥o has
an orthonormal basis of eigenvectors. Adjoining vo to this orthonormal basis gives an orthonormal basis of
eigenvectors for V .

[07.2] Recall the proof of a spectral theorem for two self-adjoint operators S, T on V under the assumption
that ST = TS.

Discussion: Given another self-adjoint operator S on V , first observe that S stabilizes the λ-eigenspace Vλ
of T : for v in that eigenspace, by associativity,

T (Sv) = (TS)(v) = (ST )(v) = S(Tv) = S(λv) = λ · Sv

The restriction of S to Vλ is still hermitian, so Vλ has an orthonormal basis of S-eigenvectors. These are also
T -eigenvectors. Since V is the orthogonal direct sum of the T -eigenspaces, this gives the desired orthonormal
basis of simultaneous S-and-T -eigenvectors. ///

[07.3] Let K(x, y) = |x− y|, and let

Tf(x) =

∫ b

a

K(x, y) f(y) dy (for f ∈ L2[a, b])

Find some eigenvalues/eigenfunctions for the operator T . (Hint: consider d2

dx2 (Tf) and use the fundamental
theorem of calculus.)

Discussion: Take λ 6= 0. First, a bootstrapping procedure shows that a λ-eigenfunction f is at least C1,

as follows. From λ · f(x) =
∫ b
a
|x− y| f(y) dy, with 0 ≤ x < x′ ≤ 1,

|f(x)− f(x′)| ≤ 1

|λ|

∫ 1

0

∣∣∣|x′ − y| − |x− y|∣∣∣ · |f(y) dy
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There are three cases: 0 ≤ y ≤ x, x < y < x′, and y ≥ x′. In the first and third, ||x′− y|− |x− y|| = |x′−x|.
In the second, we have uniform estimate∣∣∣|x′ − y| − |x− y|∣∣∣ ≤ |x′ − y|+ |x− y| = ≤ 2|x′ − x|

Then Cauchy-Schwarz-Bunyakowsky gives

|f(x)− f(x′)| ≤ 1

|λ|
· |f |L2 · 2|x′ − x|

and f is continuous. Then, invoking the fundamental theorem of calculus, the eigenfunction property
expressses f as a finite linear combination of C1 functions:

λ · f(x) = x

∫ x

0

f −
∫ x

0

y · f(y) dy +

∫ 1

x

y · f(y) dy − x
∫ 1

x

f

so f itself is C1. Repeating, we find that f is C2, justifying taking a second derivative of both sides of the
equation (in a classical sense rather than distributional): first derivative is

λ · f ′(x) =

∫ x

0

f + xf(x)− xf(x)− xf(x)−
∫ 1

x

f + xf(x) =

∫ x

0

f −
∫ 1

x

f

and the second derivative is
λ · f ′′(x) = f(x) + f(x) = 2f(x)

(For λ 6= 0) this gives the constant-coefficient equation f ′′ = 2
λf , which has solutions consisting of linear

combinations of x→ ex·
√

2/λ.

With f(x) = ecx, the integral transform can be evaluated by breaking the integral into pieces and integrating
by parts:

Tf(x) =

∫ 1

0

|x− y| · ecy dy =

∫ x

0

(x− y) · ecy dy −
∫ 1

x

(x− y) · ecy dy

=
[
(x− y) · e

cy

c

]x
y=0
−
∫ x

0

(−1) · e
cy

c
dy −

[
(x− y) · e

cy

c

]1
y=x

+

∫ 1

x

(−1) · e
cy

c
dy

=
(

0− x1

c

)
+
[ecy
c2

]x
y=0
−
(

(x− 1)
ec

c
− 0
)
−
[ecy
c2

]1
y=x

= −x
c

+
(ecx
c2
− 1

c2

)
− (x− 1)

ec

c
−
(ec
c2
− ecx

c2

)
= 2

ecx

c2
− x
(1

c
+
ec

c

)
+
(
− 1

c2
+
ec

c
− ec

c2

)
Such f cannot be an eigenfunction unless the linear terms vanish identically. We must examine the extent
to which linear combinations f(x) = Aecx + Be−cx may cause the extra terms to cancel, under conditions
on c =

√
2/λ: with such f ,

T (Aecx+Be−cx) = 2
Aecx +B−cx

c2
−x
(A
c

+
B

−c
+
Aec

c
+
Be−c

−c

)
+
(
−A
c2
− B

(−c)2
+
Aec

c
+
Be−c

−c
−Ae

c

c2
−Be

−c

(−c)2
)

For the linear term to vanish identically, the coefficient of x and the constant coefficient must be 0. This
gives a homogeneous system of two equations in the two unknowns A,B:

(
1
c + ec

c

)
·A −

(
1
c + e−c

c

)
·B = 0(

−1
c2 + ec

c −
ec

c2

)
·A −

(
1
c2 + e−c

c + e−c

c2

)
·B = 0

2
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This has a non-trivial solution if and only if the determinant is zero, multiplying through by c3, this condition
is

0 = −(1 + ec) · (1 + ce−c + e−c) + (−1 + cec − ec) · (1 + e−c)

= −(1 + ce−c + e−c + ec + c+ 1) + (−1 + cec − ec − e−c + c− 1)

= −1− ce−c − e−c − ec − c− 1− 1 + cec − ec − e−c + c− 1

= −4− ce−c − 2e−c − 2ec + cec = −2(ec/2 + e−c/2)2 + c(ec − e−c)

= (ec/2 + e−c/2)
(
c(ec/2 − e−c/2)− 2(ec/2 + e−c/2)

)
For ec/2 + e−c/2 = 0, the first factor is 0, so c/2 ∈ πi

2 + πiZ gives an eigenfunction. That is, c ∈ πi+ 2πiZ.
Without worrying about possible zeros of the other factor of the determinant, taking A = 1, since the first
equation in the system vanishes identically, we look at the second, obtaining

B =
−1 + cec − ec

1 + ce−c + e−c
=

cec − ec/2(ec/2 + e−c/2)

ce−c + e−c/2(ec/2 + e−c/2)
=

cec

ce−c
= e2c = 1 (since c ∈ πi+ 2πiZ)

Thus, for c ∈ πi+ 2πiZ,
ecx + e−cx

is an eigenfunction. That is, at least cosπx, cos 3πx, cos 5pix, . . . are eigenfunctions. ///

[0.1] Remark: As might be suspected, there are more eigenvalues and eigenvectors, corresponding to zeros

of the second factor in the determinant, but the eigenvalues λ and corresponding parameters c =
√

2/λ are
not as elementarily expressible as in the previous case. Indeed, with c = ib and b ∈ R, with ec/2 + e−c/2 6= 0,
vanishing of the second factor is

0 = ib(eib/2 − e−ib/2)− 2(eib/2 + e−ib/2) = b(eib/2 + e−ib/2) ·
(
− eib/2 − e−ib/2

i(eib/2 + e−ib/2)
− 2

b

)

= b(eib/2 + e−ib/2) ·
(
− tan

b

2
− 2

b

)
Since tan b

2 is periodic and goes from −∞ to +∞ in each period, it intersects the curve (b,−2/b) in each
period. In fact, since both are monotone, they intersect exactly once in each period. That is, there is (at
least) another batch of eigenvalues at least as numerous (asymptotically) as the previous.

This can be anticipated on general principles, if we observe that any function f expressible as a superposition

of functions x→ |x− y| on [0, 1] satisfies the boundary conditions f ′(0) + f ′(1) = 0 and
∫ 1

0
f = f(0) + f(1),

since x→ |x− y| has those properties. That is, rather than having no conditions on a function on the circle
R/Z, giving eigenfunctions e2πinx, with eigenvalues (2πin)2 with multiplicity two (for n 6= 0), the eigenvalues
get pushed farther from 0 by the implicit boundary conditions.

Variant: To see what happens without the complications entailed by restricting to a finite interval, we can
consider

Tf(x) =

∫
R
|x− y| · f(y) dy (for f ∈ Coc (R))

Certainly something is required for convergence, since y → |x− y| is not in L2(R). Again, this is

Tf(x) =

∫
y≤x

(x− y) · f(y) dy −
∫
y≤x

(x− y) · f(y) dy

= x

∫
y≤x

f(y) dy −
∫
y≤x

yf(y) dy − x
∫
y≥x

f(y) dy +

∫
y≥x

yf(y) dy

3



Paul Garrett: Examples 07 (April 23, 2019)

The continuity of f assures that both integrals are continuously differentiable, by the fundamental theorem
of calculus. Thus,

(Tf)′(x) =

∫
y≤x

f(y) dy + xf(x)− xf(x)−
∫
y≥x

f(y) dy + xf(x)− xf(x) =

∫
y≤x

f(y) dy −
∫
y≥x

f(y) dy

and the second derivative is 2f(x). Although there are no eigenfunctions, this shows that, given f ∈ Coc (R),
we can solve the equation u′′ = f by u(x) =

∫
R |x− y| · f(y) dy. ///

[07.4] Let K(x, y) ∈ L2([a, b]× [a, b]), and attempt to define a map T : L2[a, b]→ L2[a, b] by

Tf(x) =

∫ b

a

K(x, y) f(y) dy

Show that Tf is well-defined a.e. as a pointwise-valued function. Show that T really does map L2 to itself
by showing that

|Tf |L2[a,b] ≤ |K|L2([a,b]×[a,b]) · |f |L2[a,b]

(One would say that K(, ) is a Schwartz kernel for the map T . Yes, this use is in conflict with the use of
kernel of a map to refer to things that map to 0.) In the previous situation, show that the Hilbert-space
adjoint T ∗ of T has Schwartz kernel K(y, x).

Discussion: By Fubini-Tonelli, y → K(x, y) is measurable for almost all x, so Tf(x) is defined almost
everywhere (assuming convergence of the integral). By Cauchy-Schwarz-Bunyakowsky, and Fubini-Tonelli
as needed,∫ b

a

|Tf(x)|2 dx =

∫ b

a

∣∣∣ ∫ b

a

K(x, y) f(y) dy
∣∣∣2 dx ≤ ∫ b

a

∫ b

a

|K(x, y)|2 dy ·
∫ b

a

|f(y′)|2 dy′ dx

= |f |2L2 ·
∫ b

a

∫ b

a

|K(x, y)|2 dx dy = |f |2L2[a,b] · |K|
2
L2([a,b]×[a,b]) < +∞

Thus, T is bounded, so is a continuous linear map of L2[a, b] to itself. ///

[0.2] Remark: In fact, in the latter example the map T is a Hilbert-Schmidt operator, and is therefore
compact.

[07.5] Prove that the Volterra operator V f(x) =

∫ x

0

f(t) dt on Co[0, 1] or on L2[0, 1] has no (not-identically-

zero) eigenvalues/eigenvectors.

Discussion: It suffices to consider f ∈ L2[0, 1], since Co[0, 1] ⊂ L2[0, 1]. First consider λ 6= 0. The initial
step is a sort of bootstrapping process to see that any eigenfunction f ∈ L2[0, 1] would have to be in C1[0, 1]
(and, in fact, in C∞[0, 1]). For f ∈ L2[0, 1] and 0 ≤ x < y ≤ 1, by Cauchy-Schwarz-Bunyakowsky,

|f(y)− f(x)| =
∣∣∣ 1
λ

∫ y

x

f(t) dt
∣∣∣ ≤ 1

|λ|

(∫ y

x

|f |2
) 1

2 ·
(∫ y

x

1
) 1

2 ≤ 1

|λ|
|f |L2 · |y − x| 12

giving continuity. For continuous f such that λ · f(x) =
∫ x
0
f(t) dt, since the integrand is continuous, the

integral is C1 as a function of x, by the fundamental theorem of calculus. Differentiating both sides of the
equation, λ · f ′(x) = f(x) for all x. Also, the integral is 0 at x = 0, so f(0) = 0. We claim that the constant-
coefficient differential equation λ · f ′ − f = 0 with condition f(0) = 0 has only the zero solution. Indeed, all
the solutions are of the form f(x) = c · ex/λ for some constant c. (We can prove this widely-believed fact via
the Mean Value Theorem: write a solution f as f(x) = ex · g(x) for g(x) = f(x)/ex. Then the differential

4
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equation becomes λ(ex/λ · g)′ − (ex · g) = 0, which simplifies to g′ = 0. The Mean Value Theorem assures us
that g is constant.) Thus, f(0) = 0 implies c = 0, and f must be identically 0.

For λ = 0, the equation 0 =
∫ x
0
f(t) dt holds identically in x, so

∫ y
x
f = 0 for all 0 ≤ x < y ≤ 1. That is, such

f ∈ L2[0, 1] is orthogonal to all characteristic functions of intervals. It is plausible that this implies that f = 0
(in the L2[0, 1] sense). We can take advantage of the fact that we know that 1, . . . sin 2πnx, cos 2πnx, . . .
for n = 1, 2, 3, . . . is an orthonormal basis for L2[0, 1]: if we can show that the L2-closure of the span of
characteristic functions of intervals contains all functions sin 2πnx, cos 2πnx, then f would be orthogonal to
all these, hence 0. Indeed, the usual discussion of Riemann integrals of continuous functions is more than
enough to show that continuous functions can be approximated arbitrarily well by linear combinations of
characteristic functions of intervals. ///

[07.6] Determine the spectrum of the left-shift L : (c1, c2, . . .) → (c2, . . .) on `2, and of the right-shift
R : (c1, c2, . . .)→ (0, c1, c2, . . .) on `2. Show that these are mutual adjoints.

Discussion: The adjoint characterization is 〈Tv,w〉 = 〈v, T ∗w〉. That means that, for (w1, w2, . . .) in `2,
we want

〈(z1, z2, . . .), R∗(w1, w2, . . .)〉 = 〈R(z1, z2, . . .), (w1, w2, . . .)〉 = 〈(0, z1, z2, . . .), (w1, w2, . . .)〉

= z1w2 + z2w3 + z3w4 + . . . = 〈(z1, z2, . . .), (w2, w3, . . .)〉 = 〈(z1, z2, . . .), L(w1, w2, . . .)〉

Thus, we see that R∗ = L. ///

To determine the spectrum of R, first identify the discrete spectrum (eigenvalues) of R. An eigenvalue
assumption

(0, z1, z2, . . .) = R(z1, z2, . . .) = λ · (z1, z2, . . .) = (λz1, λz2, . . .)

gives λz1 = 0, λz2 = z1, λz3 = z2, . . .. If λ 6= 0, then λz1 = 0 implies z1 = 0, and, by induction, zn = 0 for
all indices n. For λ = 0, λzn+1 = zn implies zn = 0 for all n. Thus, the right shift has no discrete spectrum.

For the left shift, the eigenfunction condition gives λz1 = z2, λz2 = z3, . . .. Let i be the smallest index such
that zi 6= 0. Then zn = λn−i · zi for n ≥ i. For |λ| < 1, this produces an eigenvector in `2. For |λ| ≥ 1 this
is impossible except for the 0-vector.

[0.3] Remark: Note that even though `2 is a separable Hilbert space, meaning that it has a countable
orthonormal basis, the left shift has uncountably many distinct eigenvalues and eigenvectors.

To determine the whole spectrum of the left-shift, we can use general properties: the spectrum σ(T ) of a
(continous linear) operator T is a compact set, and is inside the ball of radius |T |op. Both left and right
shift do not make any vector larger, so their operators norms are both ≤ 1. Thus, since the left shift L has
eigenvalues {λ ∈ C : |λ| <}, σ(L) contains at least the closure of this open ball. On the other hand, it cannot
be larger than that (by the operator norm estimate). Thus, σ(L) is exactly the closed unit ball.

To understand the whole spectrum of the right-shift R, we can prove a more broadly useful result:

[0.4] Claim: For λ ∈ σd(T ) and λ 6∈ σd(T ∗), λ is in the residual spectrum of T ∗.

Proof: Let vo 6= 0 be a λ-eigenvector for T . We claim that the image of T ∗ − λ is orthogonal to vo: for any
v,

〈(T ∗ − λ)v, vo〉 = 〈v, (T − λ)vo〉 = 〈v, 0〉 = 0

Since T ∗ − λ is injective by assumption, λ is in the residual spectrum of T ∗. ///

Thus, since {λ ∈ C : |λ| < 1} = σd(L) and σd(R) = σd(L
∗) = φ, the residual spectrum of R contains at least

the open unit disk. Since it is closed, and bounded by the operator norm 1, the spectrum of R is the closed
unit disk. ///
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[07.7] (Approximate eigenvectors and continuous spectrum, Weyl’s criterion) Let T : V → V be a self-
adjoint linear operator on a Hilbert space V . For λ ∈ C, a sequence {vn} of vectors (normalized so that all
their lengths are 1 or at least bounded away from 0) such that (T −λ)vn → 0 as n→ +∞ is an approximate
eigenvector for λ. Show that for λ not an eigenvalue for T , λ has an approximate eigenvector if and only if
λ is in the spectrum of T .

Discussion: In fact, this criterion is not reliable for detecting some types of residual spectrum, which is
why we impose self-adjointness to exclude it. [1] We give an example at the end of the discussion. Certainly
if λ is an eigenvector, with non-zero eigenvalue v, the constant sequence v, v, v, . . . fits the requirement.

For general spectrum, let S = T − λ. For v1, v2, . . . with |vn| = 1 and Svn → 0, any alleged (continuous [2] )
S−1 would give, interchanging S−1 and the limit by continuity,

0 = S−1(lim
n
Svn) = lim

n
S−1Svn = lim

n
vn

contradiction. Thus, existence of an approximate eigenvector for T − λ implies that T − λ is not invertible.

Conversely, for S = T −λ not invertible, but λ not an eigenvector, then S is injective but not surjective. We
do need a further assumption: suppose that the image of S is not closed. [3]

[0.5] Theorem: For T self-adjoint, for λ not an eigenvalue for T , and for (T − λ)V not closed, λ is in the
spectrum of T if and only if λ has an approximate eigenvector.

[0.6] Remark: This criterion is not uniformly reliable for detecting residual spectrum, which is why we must

impose a further condition. [4] For example, we have seen that, for T : V → V a norma linear operator, for
λ in the spectrum but not an eigenvalue, (T −λ)V is dense in V but is not all of V . Thus, the hypothesis of
the theorem is met for normal T . We give an example of failure to detect residual spectrum after the proof.

Proof: Certainly if λ is an eigenvector, with non-zero eigenvalue v, the constant sequence v, v, v, . . . fits the
requirement.

For general spectrum, let S = T − λ. For v1, v2, . . . with |vn| = 1 and Svn → 0, any alleged (continuous [5] )
S−1 would give, interchanging S−1 and the limit by continuity,

0 = S−1(lim
n
Svn) = lim

n
S−1Svn = lim

n
vn

contradiction. Thus, existence of an approximate eigenvector for T − λ implies that T − λ is not invertible.

Conversely, for S = T − λ not invertible, but λ not an eigenvector, then S is injective but not surjective.
We further assume that the image of S is not closed. [6] In that case, there is vo (with |vo| = 1) not in the

[1] Recall that residual spectrum of T is λ such that T − λ is injective, but does not have dense image.

[2] Recall that when there is an everywhere-defined, linear inverse S−1 to S, necessarily S is a continuous bijection,

and by the open mapping theorem S is open. That is, there is δ > 0 such that |Sv| ≥ δ · |v| for all v. This exactly

asserts the boundedness of S−1, so S−1 is continuous.

[3] The image is not closed, for example, when T (hence S) has no residual spectrum, which is the case when T

(hence S) is normal, or self-adjoint.

[4] Recall that residual spectrum of T is λ such that T − λ is injective, but does not have dense image.

[5] Recall that when there is an everywhere-defined, linear inverse S−1 to S, necessarily S is a continuous bijection,

and by the open mapping theorem S is open. That is, there is δ > 0 such that |Sv| ≥ δ · |v| for all v. This exactly

asserts the boundedness of S−1, so S−1 is continuous.

[6] The image is not closed, for example, when T (hence S) has no residual spectrum, which is the case when T

(hence S) is normal, or self-adjoint.

6
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image of S, and v1, v2, . . . such that Sv1, Sv2, . . .→ vo. If {vn} were a Cauchy sequence, then it would have
a limit, and by continuity of S

vo = lim
n
Svn = S(lim

n
vn)

and vo would be in the image of S, contradicting our assumption. Thus, {vn} is not Cauchy. In particular,
we can replace {vn} by a subsequence such that there is δ > 0 such that |vm − vn| ≥ δ for all m 6= n. Then
wn = vn − vn+1 forms an approximate 0-eigenvector, since their lengths are bounded away from 0, and

Swn = S(vn − vn+1) = Svn − Svn+1 −→ vo − vo = 0

as desired. ///

As noted, the case that λ is not an eigenvector, T − λ is not surjective, and/but the image of S = T − λ is
closed, can only occur for non-normal T . For example, T : `2 → `2 by

T (c1, c2, . . .) = (c1, 0, c2, 0, c3, 0, . . .)

is injective, not surjective, and has closed image. It is not invertible, but there is no approximate eigenvector
for 0, so the criterion fails in this (non-normal) example. ///

[07.8] Show that the multiplication operator T : L2(R)→ L2(R) by Tf(x) = f(x) · sinx has empty discrete
spectrum. Show that it is self-adjoint. Show that T has continuous spectrum the interval [−1, 1]. (We know
that self-adjoint (or merely normal) operators have only point spectum and continuous spectrum, that is,
no left-over residual spectrum.)

Discussion: This operator is self-adjoint, since sinx is real-valued:

〈Tf, g〉 =

∫
R
f(x) · sinx · g(x) dx =

∫
R
f(x) · g(x) · sinx dx = 〈f, Tg〉

For a function f and fixed λ ∈ C such that f(x) · sinx = λ · f(x) for almost all x, for x such that f(x) 6= 0,
necessarily sinx = λ. Since sinx assumes any particular value at most countably many times, f = 0 almost
everywhere. Thus, there are no eigenvalues.

Since T is self-adjoint, it is normal, so there is no residual spectrum. Thus, Weyl’s criterion via approximate
eigenvectors suffices to determine the remainder of the spectrum, which will be continuous. Given a value
λ ∈ [−1, 1], let xo ∈ R be such that sinxo = λ. We claim that an approximate eigenvector for λ can be
formed by functions concentrated ever-more-closely at xo, such as

vn(x) =


√
n (for |x− xo| ≤ 1

2n )

0 (otherwise)

By design, |vn| = 1. Since sinx is continuous, given ε > 0 there is δ > 0 such that | sinx − sinxo| < ε for
|x− xo| < δ. For n large enough so that 1/2n < δ,

|Tvn − λvn|2L2 = |vn · sinx− λ · vn|2L2 =

∫ xo+
1
2n

xo− 1
2n

n · | sinx− sinxo|2 dx <

∫ xo+
1
2n

xo− 1
2n

n · ε2 dx = ε2

Thus, Tvn − λvn → 0, and {vn} is an approximate identity for λ, so every λ ∈ [−1, 1] is in the continuous
spectrum. ///

[07.9] Let r1, r2, r3, . . . be an enumeration of the rational numbers inside the interval [0, 1]. Define
T : `2 → `2 by T (c1, c2, . . .) = (r1c1, r2c2, . . .). Show that T is a continuous/bounded linear operator,
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is self-adjoint, has eigenvalues exactly the r1, r2, . . ., and continuous spectrum the whole interval [0, 1] (with
rationals removed, if one insists on disjointness of discrete and continuous spectrum).

Discussion: Since the set {|r1|, |r2|, . . .} is bounded by 1, the operator norm of T is at most 1, so it is
bounded, hence continuous. Since the rn are all real, the operator is self-adjoint:

〈T (a1, a2, . . .), (b1, b2, . . .)〉 = 〈(r1a1, r2a2, . . .), (b1, b2, . . .)〉 =
∑
n

rnan · bn

=
∑
n

an · rnbn = 〈(a1, a2, . . .), T (b1, b2, . . .)〉

When λ · (c1, c2, . . .) = T (c1, c2, . . .) = (r1c1, r2c2, . . .), necessarily λ · cn = rn · cn for all n. When cn 6= 0,
this implies λ = rn. Since the rn are distinct, there can be (at most) one index n for which cn 6= 0, and then
λ = rn. Conversely, every rn is obviously an eigenvalue.

Since we know that the whole spectrum is closed in C, it contains at least the closure of the rationals in
[0, 1], namely, [0, 1] itself. Since T is self-adjoint, its spectrum is contained in R. [7] Since the spectrum is
bounded by |T |op = 1, it is contained in [−1, 1].

To see that λ ∈ [−1, 0) is not in the spectrum, in that (T − λ)(c1, c2, . . .) = ((r1 − λ)c1, (r2 − λ)c2, . . .), we
have |rn − λ| ≥ |λ| > 0, so the inverse (T − λ)−1 can be written down immediately: (T − λ)−1(c1, c2, . . .) =

((r1 − λ)−1c1, (r2 − λ)−1c2, . . .) and there is a uniform upper bound |(rn − λ)−1| ≤ |λ|−1. [8] Finally, given
irrational λ ∈ [0, 1], let rn1

, rn2
, . . . be rationals such that rni

→ λ. With standard basis {en} for `2, we claim
that {eni

} is an approximate eigenvector for λ: given ε > 0, let N be sufficiently large so that |rni
− λ| < ε

for i ≥ N . For ni ≥ N ,

|(T − λ)eni
| = |(rni

− λ)eni
| = |rni

− λ|C · |eni
|`2 = |rni

− λ|C < ε

Thus, indeed, (T − λ)eni
→ 0, and the eni

give an approximate identity for λ, so λ is in the spectrum.
///

[07.10] Let r1, r2, r3, . . . be a bounded sequence of complex numbers. Define T : `2 → `2 by
T (c1, c2, . . .) = (r1c1, r2c2, . . .). Show that T is compact if and only if rn → 0.

Discussion: Let e1, e2, . . . be the standard (Hilbert-space) basis for `2. If the rn do not go to 0, then there
is a subsequence rn1

, rn2
, . . . bounded away from 0. Since T is compact, the images Teni

= rni
eni

must have
a convergent subsequence. But |rni

eni
− rnj

enj
|2 = |rni

|2 + |rnj
|2 for i 6= j, and this is bounded away from

0, so there is no convergent subsequence, contradicting the compactness of T . Thus, in fact, rn → 0.

[7] The proof that self-adjoint operators T have spectrum inside R has more content than just the analogous assertion

about eigenvectors. For Tv = λv with v 6= 0, of course

λ〈v, v〉 = 〈λv, v〉 = 〈Tv, v〉 = 〈v, Tv〉 = 〈v, λv〉 = λ〈v, v〉

shows that any eigenvalues are real. Since self-adjoint operators have no residual spectrum, to find the rest of the

spectrum it suffices to identify approximate eigenvectors. Note that for self-adjoint T always 〈Tv, v〉 = 〈v, Tv〉 =

〈Tv, v〉, so 〈Tv, v〉 is real. Then for (T − λ)vn → 0, certainly 〈(T − λ)vn, vn〉 → 0, so the imaginary parts go to 0.

These are

Im〈(T − λ)vn, vn〉 = Im〈Tvn, vn〉+ Im(λ · 〈vn, vn〉) = 0 + Im(λ) · 〈vn, vn〉

Since |vn| are bounded away from 0, there can be an approximate identity only for λ ∈ R. ///

[8] For such a simple operator, a similar device shows that λ 6∈ R is not in the spectrum.
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For the converse, perhaps the most economical approach is to observe that T is an operator-norm limit of
finite-rank operators, hence compact:

Tn(c1, c2, . . . , cn, cn+1, . . .) = (c1, c2, . . . , cn, 0, 0, . . .)

The estimate on the operator norms is

|T − Tn|op = sup
|v|≤1

|(0, . . . , 0, rn+1vn+1, . . .)| = sup
k≥n
|rk| To 0

Less efficiently, we can refer to definitions, and use the total boundedness criterion for compact closure. Given
ε > 0, let N be large enough so that |rn| < ε for n ≥ N . Write v = (v1, v2, . . .) ∈ `2 as

v = (v1, . . . , vN , 0, 0, . . .)︸ ︷︷ ︸
v′

+ (0, . . . , 0︸ ︷︷ ︸
N

, vN+1, . . . , vN+2, . . .)

︸ ︷︷ ︸
v′′

Let B′ be the intersection of the unit ball B ⊂ `2 with the copy of CN ⊂ `2 with non-zero components only
at the first N places. Let B′′ be the intersection of B with the subspace of `2 with 0 entries at the first N
places. Certainly B′ +B′′ ⊃ B and B′ ⊥ B′′.

By design, |Tv′′| ≤ ε for v′′ ∈ B′′. Since TB′ is a bounded subset of a finite-dimensional space CN , it
has compact closure, so is totally bounded, so can be covered by finitely-many ε-balls U1, . . . , Uk. Then
TB ⊂ TB′ + TB′′ ⊂ (U1 + TB′′) ∪ . . . ∪ (Uk + TB′′), and every Ui + TB′′ is contained in a 2ε-ball. Thus,
TB is totally bounded, hence, has compact closure. ///

[07.11] Let T be a compact operator T : V → W for Hilbert spaces V,W . For S a continuous/bounded
operator on V , show that T ◦ S : V → W is compact. For R a continuous/bounded operator on W , show
that R ◦ T : V →W is compact.

Discussion: For T ◦ S, the image of the unit ball under S is contained in some ball c · B, where B is
the unit ball, because S is bounded. Since T is linear, T (c · B) = c · TB. Since TB is pre-compact, its
continuous image under multiplication by c is also pre-compact. Proof: for c = 0, we’re done. For c > 0,
given a finite cover of TB by balls wi + Bε where Bε is the ball of radius ε > 0 centered at 0. The images
c · (wi+Bε) = cwi+cBi cover c ·TB, and have radius c ·ε. Replacing ε by ε/c gives balls of radius ε covering
c · TB. ///

For R ◦ T , similarly as in the previous case, given a finite cover of TB by balls wi +Bε of radius ε > 0, the
images R(wi +Bε) = Rwi +RBε are contained in balls Rwi + cBε, where c = |R|op will suffice. ///

[07.12] Let S, T be two compact, self-adjoint operators on a Hilbert space, and ST = TS. Show that there
is an orthonormal basis for V consisting of simultaneous eigenfunctions for S, T .

Discussion: The Hilbert space V is the closure of the orthogonal direct sum of eigenspaces Vλ for T . For
λ 6= 0, Vλ is finite-dimensional, so is necessarily closed, and V0 is the orthogonal complement of the sum of
all other eigenspaces, so is closed. Since ST = TS, we find that S stabilizes each Vλ:

T (Sv) = (TS)v = (ST )v = S(Tv) = S(λv) = λ · Sv (for all v ∈ Vλ)

[0.7] Claim: The restriction of a compact operator to a closed subspace W ⊂ V stabilized by it is still
compact.

Proof: With B′ the closed unit ball of W and B the closed unit ball of V , TB′ ⊂ TB. Using the total-
boundedness criterion for precompactness, given ε > 0, TB is covered by finitely-many ε-balls vi + Bε.
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Among the intersections W ∩ (vi + Bε), the non-empty ones are open balls of radius at most ε. Thus, TB′

is a precompact set, and T |W is a compact operator. ///

Thus, S is a compact operator on each Vλ, so evey Vλ has an orthonormal basis of S-eigenvectors. These
are also λ-eigenvectors for T , so they are simultaneous eigenvectors. ///

[07.13] Let r1, r2, r3, . . . be a bounded sequence of complex numbers. Define T : `2 → `2 by
T (c1, c2, . . .) = (r1c1, r2c2, . . .). Show that T is Hilbert-Schmidt if and only if

∑
|rn|2 <∞.

Discussion: [... iou ...]

[07.14] Let r1, r2, r3, . . . be a bounded sequence of complex numbers. Define T : `2 → `2 by
T (c1, c2, . . .) = (r1c1, r2c2, . . .). Show that T is trace class if and only if

∑
|rn| <∞.

Discussion: [... iou ...]
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