(October 25, 2018)

Examples 02

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is http://www.math.umn.edu/~garrett/m/real/examples_2018-19/real-ex-02.pdf]

For feedback on these examples, please get your write-ups to me by Wednesday, October 24, 2018.

[02.1] The space of continuous functions on \mathbb{R} going to 0 at infinity is

 $C_o^o(\mathbb{R}) = \{ f \in C^o(\mathbb{R}) : \text{for every } \varepsilon > 0 \text{ there is } T \text{ such that } |f(x)| < \varepsilon \text{ for all } |x| \ge T \}$

Show that the closure of $C_c^o(R)$ in the space $C_{bdd}^o(\mathbb{R})$ of bounded continuous functions with sup norm, is $C_o^o(\mathbb{R})$.

[02.2] Show that $|\int_a^b f|^2 \le |b-a| \cdot \int_a^b |f|^2$.

[02.3] In ℓ^2 , show that the unique point in the closed unit ball closest to a point v not inside that ball is $v/|v|_{\ell^2}$.

[02.4] One form of the sawtooth function is $f(x) = x - \pi$ on $[0, 2\pi]$. Compute the Fourier coefficients $\hat{f}(n)$. From Plancherel-Parseval's theorem for this function, show that

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{6}$$

[02.5] Show that there is no $f_o \in C^o[0,1]$ so that, for all $g \in C^o[0,1]$, $\int_0^1 f_o(x) g(x) dx = g(\frac{1}{2})$.

[02.6] For $c_1 > c_2 > c_3 > \ldots > 0$ a monotone-decreasing sequence of positive reals, with $\lim_n c_n = 0$, show that, for every $0 < x < 2\pi$, $\sum_n c_n e^{inx}$ converges.

[02.7] Let $b = \{b_n\}$ be a sequence of complex numbers, such that there is a bound B such that, for every $c = \{c_n\} \in \ell^2$, $|\sum_n b_n c_n| \leq B \cdot |c|_{\ell^2}$. Show that $b \in \ell^2$.

[02.8] For a vector subspace W of a Hilbert space V, show that $(W^{\perp})^{\perp}$ is the topological closure of W.

[02.9] Find two dense vector subspaces X, Y of ℓ^2 such that $X \cap Y = \{0\}$. (And, if you need further entertainment, can you find countably-many dense vector subspaces X_n such that $X_m \cap X_n = \{0\}$ for $m \neq n$?)