(November 14, 2018)

Examples 03

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/ [This document is http://www.math.umn.edu/~garrett/m/real/examples_2018-19/real-ex-03.pdf]

For feedback on these examples, please get your write-ups to me by Wednesday, November 28, 2018.

[03.1] Show that the characteristic function of a measurable set is a measurable function.

[03.2] For measurable $E \subset [0, 2\pi]$, show that $\lim_{n \to \infty} \int_{E} e^{-inx} dx = 0$ as $n \to \infty$ ranging over integers.

[03.3] For $f \in L^2(\mathbb{R})$ and $t \in \mathbb{R}$, show that there is a constant C (depending on f) such that

$$\left|\int_{t-\delta}^{t+\delta} f(x) \, dx\right| < C \cdot \sqrt{\delta}$$

[03.4] For $f \in L^1(\mathbb{R})$ and $t \in \mathbb{R}$, show that, given $\varepsilon > 0$, there $\delta > 0$ such that

$$\Big|\int_{t-\delta}^{t+\delta} f(x) \, dx\Big| \, < \, \varepsilon$$

[03.5] For non-negative real-valued f, show that

$$\lim_{\varepsilon \to 0^+} \int_{\mathbb{R}} f(x) e^{-\varepsilon x^2} dx = \int_{\mathbb{R}} f(x) dx$$

(whether or not the integrals are finite).

[03.6] For $f \in L^1(\mathbb{R})$, show that

$$\lim_{\varepsilon \to 0^+} \int_{\mathbb{R}} f(x) \ e^{-\varepsilon x^2} \ dx = \int_{\mathbb{R}} f(x) \ dx$$

[03.7] (Comparing L^p spaces) Let $1 \leq p, p' < \infty$. When is $L^p[a, b] \subset L^{p'}[a, b]$ for finite intervals [a, b] and Lebesgue measure? When is $L^p(\mathbb{R}) \subset L^{p'}(\mathbb{R})$? When is $\ell^p \subset \ell^{p'}$?

[03.8] For positive real numbers w_1, \ldots, w_n such that $\sum_i w_i = 1$, and for positive real numbers a_1, \ldots, a_n , show that

$$a_1^{w_1} \dots a_n^{w_n} \leq w_1 a_1 + \dots + w_n a_n$$

[03.9] (Collecting Fourier transform pairs) Compute the Fourier transforms of

$$\chi_{[a,b]}$$
 $e^{-\pi x^2}$ $f(x) = \begin{cases} e^{-x} & (\text{for } x > 0) \\ 0 & (\text{for } x \le 0) \end{cases}$

[03.10] Compute $\int_{\mathbb{R}} \left(\frac{\sin x}{x}\right)^2 dx$. (*Hint:* do not attempt to do this directly, nor by complex analysis.)

[03.11] Let $E \subset \mathbb{R}$ be a measurable set with finite measure. Show that $\int_E \cos(tx) \, dx \to 0$ as $t \to +\infty$.