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[03.1] For a vector subspace W of a Hilbert space V , show that (W⊥)⊥ is the topological closure of W .

Discussion: Let λx(v) = 〈v, x〉 for x, v ∈ V . Then W⊥ =
⋂
w∈W kerλw. Similarly, (W⊥)⊥ =

⋂
x∈W⊥ kerλx.

From the discussion in the Riesz-Fréchet theorem, or directly via Cauchy-Schwarz-Bunyakowsky, each λx is
continuous, so kerλx = λ−1x ({0}) is closed, since {0} is closed. (One might check that the kernel of a linear
map is a vector subspace.) An arbitrary intersection of closed sets is closed, so (W⊥)⊥ is closed.

Certainly (W⊥)⊥ ⊃ W , because for each w ∈ W , 〈x,w〉 = 0 for all x ∈ W⊥. Thus, (W⊥)⊥ is a closed
subspace, containing W . Being a closed subspace of a Hilbert space, (W⊥)⊥ is a Hilbert space itself. If
(W⊥)⊥ were strictly larger than the topological closure W of W , then there would be 0 6= y ∈ (W⊥)⊥

orthogonal to W . Then y would be orthogonal to W itself, so 0 6= y ∈ W⊥, contradicting 0 6= y ∈ (W⊥)⊥.
///

[03.2] Find two dense vector subspaces X,Y of `2 such that X ∩ Y = {0}. (And, if you need further
entertainment, can you find countably-many dense vector subspaces Xn such that Xm ∩ Xn = {0} for
m 6= n?)

Discussion: First, as a variant that refers to more natural constructions, but requires non-trivial proofs to
fully validate it, we can make two dense subspaces of L2[0, 1] which intersect just at {0}. Namely, the vector
space of all finite Fourier series, and the vector space of all polynomials (restricted to [0, 1]). We need to
know that the appropriate exponentials (or sines and cosines) give a Hilbert space basis of L2[0, 1], and also
Weierstraß’ result on the density of polynomials in Co[0, 1], hence (depending on our definitional set-up) in
L2[0, 1].

A more elementary, but trickier, approach is the following. Let X be the vector space of finite linear
combinations of the standard Hilbert space basis {en}. This is a natural subspace. For the other subspace
Y , some sort of trickery seems to be needed, either in specification of Y itself so as to make verification of
X ∩ Y = {0} easy, or a simpler specification of Y but with complicated verification that X ∩ Y = {0}, or
both.

One possibility involves Sun-Ze’s theorem (sometimes called the Chinese Remainder Theorem), namely, that
for a finite collection of mutually relatively prime integers N1, . . . , Nk, and for integers b1, . . . , bk there exists
x ∈ Z such that x = bkmod Nk. Further, this x can be arbitrarily large, by adding multiples of the product
N1...Nk to it. Let pn be the nth prime number, and put

vn = en +
∑
k≥1

1

kpn
· ekpn

Of course, we claim that no (non-zero) finite linear combination y =
∑
n cn · vn is in X. That is, we claim

that for any such non-zero linear combination, there are arbitrarily large indices ` such that 〈y, e`〉 6= 0.
Let no be the largest index n such that cn 6= 0. Invoking Sun-Ze’s theorem, there exist ` ≥ no such that
` = 1mod pi for i < no and ` = 0mod pno . Then

〈y, e`〉 =
∑
n

( 1

n
〈en, e`〉+

∑
k

1

kpn
〈ekpn , e`〉

)
=

∑
n<no

0 +
1

`
6= 0

This proves that X ∩ Y = {0}.

Certainly X is dense, because every vector in `2 is an infinite sum of vectors from X, that is, an `2 limit of
finite linear combinations of vectors from X.
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To see that Y is dense, observe that applying an infinite version of Gram-Schmidt to the vectors vn produces
the standard basis en. That is, the en’s are infinite linear combinations of the vn’s, so Y is dense. (Yes,
there is an issue about convergence in an infinite version of Gram-Schmidt, in general!) ///

[03.3] For measurable E ⊂ [0, 1], show that limn

∫
E
e−2πinx dx = 0 as n→∞ ranging over integers.

Discussion The characteristic function χE is in L2[0, 1], and∫
E

e−2πinx dx =

∫ 1

0

e−2πinxχE(x) dx

which goes to 0, by the abstract/easy Riemann-Lebesgue Lemma. ///

[03.4] Let fn(x) = sinπnx on [0, 1], extended by Z-periodicity, for n = 1, 2, 3, . . .. Given g ∈ L1[0, 1], show

that
∫ 1

0
fn · g → 0.

Discussion If in fact g ∈ L2[0, 1], then the more elementary/abstract Riemann-Lebesgue Lemma
immediately gives the assertion, because the functions fn are orthonormal. (We do not need completeness
to reach this conclusion.)

But L1[0, 1] is not contained in L2[0, 1], because of functions like g(x) = 1/
√
x. Nevertheless, we can extend

g by 0 to a function h ∈ L1(R). Then∫ 1

0

fn · g =

∫
R

sinπnx · h(x) dx

which goes to 0 by the more substantive, less abstract, Riemann-Lebesgue Lemma. ///

[03.5] Compute the Fourier coefficients of the sawtooth function s(x) = x − 1
2 on [0, 1], extended by

Z-periodicity. Use this to show that
∑
n≥1 1/n2 = π2/6.

Discussion: We have the orthonormal basis en(x) = 1√
2π
einx with n ∈ Z for the Hilbert space L2[0, 2π].

The Fourier coefficients are determined by Fourier’s formula

f̂(n) =

∫ 2π

0

f(x)
e−inx√

2π
dx

For n = 0, this is 0. For n 6= 0, integrate by parts, to get

f̂(n) =
[
f(x) · e−inx√

2π · (−in)

]2π
0
−
∫ 2π

0

1 · e−inx√
2π · (−in)

dx

=
(

(π · 1√
2π · (−in)

)− (−π · 1√
2π · (−in)

)
)
− 0 =

2π√
2π · (−in)

=

√
2π

−in

The L2 norm of f is ∫ 2π

0

(x− π)2 dx =
[ (x− π)3

3

]2π
0

=
π3 − (−π)3

3
=

2π3

3

Thus, by Parseval, ∑
n6=0

∣∣∣√2π

−in

∣∣∣2 =
2π3

3
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This simplifies first to

2
∑
n≥1

2π

n2
=

2π3

3

and then to ∑
n≥1

1

n2
=

π2

6

That is, Parseval applied to the sawtooth function evaluates ζ(2). ///

[03.6] Let E be a Lebesgue measurable set in R with finite Lebesgue measure. Show that

lim
t→+∞

∫
E

sin tx dx = 0 (over real t)

Discussion The characteristic function χE of E is in L1(R) since E has finite measure, and∫
E

sin tx dx =

∫
R
χE(x) · sin tx dx

which goes to 0 by the Riemann-Lebesgue Lemma. ///

[03.7] Compute

∫
R

( sinx

x

)2
dx. (Hint: do not attempt to do this directly, nor by complex analysis.)

Discussion: From a standard stock of easy Fourier transforms, the Fourier transform of a characteristic
function of a symmetrical interval is very close to the given function:

̂ch[−1,1](ξ) =

∫ 1

−1
e−2πiξx dx =

e−2πiξ − e2πiξ

−2πiξ
=

sin 2πξ

πξ

Applying Plancherel, we have

2 =

∫
R
|ch[−1,1]|2 =

∫
R

( sin 2πξ

πξ

)2
dξ

The change of variables replacing ξ by ξ/2π gives

2 =

∫
R

( sin ξ

ξ/2

)2 dξ
2π

=
2

π

∫
R

( sin ξ

ξ

)2
dξ

Thus, the desired integral is π. ///

[03.8] (Collecting Fourier transform pairs) Compute the Fourier transforms of

χ[a,b] e−πx
2

f(x) =

 e−x (for x > 0)

0 (for x ≤ 0)

Discussion: The first of these is direct:

χ̂[a,b](ξ) =

∫
R
e−2πiξxχ[a,b](x) dx =

∫ b

a

e−2πiξx dx =


e−2πiξb − e2πiξa

−2πiξ
(for ξ 6= 0)

b− a (for ξ = 0)
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In particular, for a = −b, away from the removable singularity at ξ = 0, this is

̂χ[−b,b](ξ) =
e−2πiξb − e−2πiξ(−b)

−2πiξ
=

e2πiξb − e−2πiξ

2i
· 1

πξ
=

sin 2πbξ

πξ

Since sin 2πbξ
πξ is not in L1(R), but is in L2(R), we define its Fourier transform (or inverse Fourier transform)

indirectly, via either the inversion theorem, or by extending-by-continuity via Plancherel, expressing the
function as an L2 limit of L1 functions.

The third is similarly direct:

f̂(ξ) =

∫ ∞
0

e−2πiξx e−x dx =

∫ ∞
0

e−(2πiξ+1)x dx =
[ e−(2πiξ+1)x

−(2πiξ + 1)

]∞
0

=
1

2πiξ + 1

Again, the latter function is not in L1, but is in L2, so its Fourier transform is most conveniently defined
indirectly.

The Gaussian’s Fourier transform is less trivial to evaluate, but is a very important example to have in hand,
with many different applications throughout mathematics. One approach is as follows. Letting f(x) = e−πx

2

,

f̂(ξ) =

∫
R
e−2πiξx e−πx

2

dx =

∫
R
e−π(x

2+2iξx) dx =

∫
R
e−π(x

2+iξ)2−πξ2 dx = e−πξ
2

∫
R
e−π(x+iξ)

2

dx

by completing the square. The unobvious claim is that the integral does not depend on ξ, and, in fact, has
value 1. Perhaps the optimal approach here is to observe that the integral is equal to a complex contour
integral: ∫

R
e−π(x

2+iξ)2 dx =

∫ iξ+∞

iξ−∞
e−πz

2

dz

along the line Im(z) = iξ. Given the good decay of the integrand as |Re(z)| → ∞, by Cauchy-Goursat
theory, the contour can be moved to integration along the real line, giving∫

R
e−π(x

2+iξ)2 dx =

∫ iξ+∞

iξ−∞
e−πz

2

dz =

∫ ∞
−∞

e−πx
2

dx = 1

The fact that the latter integral has value 1 comes from the usual trick involving polar coordinates:(∫ ∞
−∞

e−πx
2

dx
)2

=

∫
R2

e−π(x
2+y2) dx dy =

∫ 2π

0

∫ ∞
0

e−πr
2

r dr dθ = 2π

∫ ∞
0

e−πr
2

r dr

Replacing r by
√
t, this is

π

∫ ∞
0

eπt dt = π · 1

π
= 1

Thus, with the present normalization of Fourier transform and corresponding normalization of Gaussian, the
Gaussian is its own Fourier transform. ///

[03.9] Give an explicit non-zero function f such that
∫
R x

n f(x) dx = 0, for all n = 0, 1, 2, . . ..

Discussion: We choose to find a Schwartz function f meeting the condition, since success in finding such f
in such a relatively small class of nice functions will be a stronger result than find such f in a larger class of
less-nice functions.

For Schwartz (and other) functions g,
∫
R g(x) dx = ĝ(0). Thus, the requirement on f is that

0 = ̂(xnf)(0) = (−2πi)−n
( d
dx

)n
f̂(0)

4



Paul Garrett: Examples:discussion 03 (November 19, 2019)

Thus, the requirement on f ∈ S is equivalent to the vanishing of all derivatives of f̂ at 0. Taking f̂ to be a
smooth bump function with support not including 0 would suffice, for example,

f̂(x) =

 e1/(x−1)(x−3) (for 1 < x < 3)

0 (otherwise)

and then f is the inverse Fourier transform of f̂ :

f(x) =

∫ 3

1

e2πiξxe1/(ξ−1)(ξ−3) dξ

Note that f cannot be compactly supported and meet the requirement, because in that case f̂ is an entire
(holomorphic) function (in the Paley-Wiener space), which cannot vanish to infinite order at any point
(without being identically 0). ///

[03.10] Show that χ[a,b] ∗ χ[c,d] is a piecewise-linear function, and express it explicitly.

Discussion: Once enunciated, this fact (and the explicit expression) should be just a matter of book-
keeping. We do assume that a ≤ b and c ≤ d. Also, by symmetry, without loss of generality we can suppose
that |b− a| ≥ |d− c|. This is used in the treatment of cases below.

(χ[a,b] ∗ χ[c,d])(x) =

∫
R
χ[a,b](x− y) · χ[c,d](y) dy =

∫ d

c

χ[a,b](x− y) dy

=

∫ d

c

χ[a−x,b−x](−y) dy =

∫ −c
−d

χ[a−x,b−x](y) dy = meas
(

[−d,−c] ∩ [a− x, b− x]
)

Looking at the cases of overlap, using b− a ≥ d− c, this is

0 (for b− x ≤ −d, that is, [a− x, b− x] is to the left of [−d,−c])

(b− x)− (−d) (for a− x ≤ −d ≤ b− x ≤ −c)

(−c)− (−d) (for a− x ≤ −d ≤ −c ≤ b− x, that is, [−d,−c] ⊂ [a− x, b− x])

(−c)− (a− x) (for −d ≤ a− x ≤ −c ≤ b− x)

0 (for a− x ≥ −c, that is, [a− x, b− x] is to the right of [−d,−c])

=



0 (for x ≥ b+ d)

b+ d− x (for max(a+ d, b+ c) ≤ x ≤ b+ d)

d− c (for a+ d ≤ x ≤ b+ c)

−a− c+ x (for a+ c ≤ x ≤ min (b+ c, a+ d))

0 (for x ≤ a+ c)

We used the fact that b − a ≥ d − c implies a − c ≤ b − d. It is useful to consider the special configuration
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[a, b] = [−A,A] and [c, d] = [−B,B] with A ≥ B ≥ 0: the convolution is

0 (for x ≥ A+B)

A+B − x (for A−B ≤ x ≤ A+B)

2B (for −A+B ≤ x ≤ A−B)

A+B + x (for −A−B ≤ x ≤ −A+B)

0 (for x ≤ −A−B)

In particular, the convolution is supported inside [−A−B,A+B]. Similarly, for f and g supported in [−a, a]
and [−b, b], the convolution is supported in [−a− b, a+ b]. ///

[03.11] For f ∈ S , show that

lim
ε→0+

f(x) ∗ e
−πx2/ε

√
ε

= f(x)

Discussion: It suffices to show that the functions ϕε(x) = e−πx
2/ε form an approximate identity, in a

not-quite-strictest sense that their masses bunch up at 0, although it’s not true that their supports shrink
to {0}.

We know that
∫
R e
−πx2

dx = 1, so the integrals of the ϕε are all 1. They are non-negative. Elementary
estimates do show that, for fixed δ > 0,

∫
|x|≥δ ϕε → 0 as ε → 0+. This verifies that the ϕε form an

approximate identity in a slightly less-than-strictest sense, so the assertion holds. ///

For convenience, recall the general proof that this larger class of approximate identity ψε (or sequence version
ψn) has the property that

∫
R f · ψn → 0 for every Schwartz function f .

Proof: First, the integral is absolutely convergent. Second, given ε > 0, there is δ > 0 such that
|f(x) − f(0)| < ε for |x − 0| < δ. For that ε and δ, take n large enough such that |

∫
|x|≥δ ψn(x)| < ε.

Using
∫
R ψn = 1,∫

R
f ·ψn−f(0) =

∫
R
f ·ψn−

∫
R
f(0) ·ψn =

∫
R

(f−f(0)) ·ψn =

∫
|x|<δ

(f−f(0)) ·ψn+

∫
|x|≥δ

(f−f(0)) ·ψn

Estimate ∫
|x|≥δ

|f − f(0)| · ψn ≤ (sup |f |+ |f(0)|) ·
∫
|x|≥δ

ψn < (sup |f |+ |f(0)|) · ε

and ∫
|x|<δ

|f − f(0)| · ψn ≤ δ ·
∫
|x|<δ

ψn < ε · (1− ε) ≤ ε

Since ε > 0 was arbitrary,
∫
f · ψn → f(0). ///

[03.12] (Corrected!) For f ∈ S , show that

lim
t→+∞

f(x) ∗ sin 2πtx

πx
= f(x)

Discussion: In contrast to the previous example, the functions ϕn(x) = sin 2πnx
πx (related to the Fourier-

Dirichlet kernel) do not form an approximate identity in a straightforward sense, since they are not non-
negative. And they are not in L1(R), so the integrals for their Fourier transforms do not converge absolutely.
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But they are in L2(R), so do have Fourier transforms in the extended Fourier-Plancherel sense, and the

identity ̂f ∗ ϕn = f̂ · ϕ̂n still holds. By Fourier inversion, ϕ̂n = χ[−t,t]. In particular, f̂ · χ[−t,t] converges in

L2(R) to f̂ (and f̂ is certainly in L2, because it is in S ).

Plancherel shows that the Fourier(-Plancherel) map and inverse are isometric isomorphisms L2(R)→ L2(R),
so

f = ( f̂ )∨ =
(
L2 − lim

n
f̂ · χ[−t,t]

)∨
= L2 − lim

n

((
f̂ · χ[−t,t]

)∨)
= L2 − lim

n

(
( f̂ )∨ ∗ χ∨[−t,t]

)
= f ∗ sin 2πtx

πx

as claimed. ///

[03.13] Evaluate the Borwein integral∫
R

sinx

x
· sinx/3

x/3
· sinx/5

x/5
dx

Discussion: View this as an inner product and invoke Plancherel:∫
R

sinx

x
· sinx/3

x/3
· sinx/5

x/5
dx =

〈 sinx

x
,

sinx/3

x/3
· sinx/5

x/5

〉
=
〈( sinx

x

)̂
,
( sinx/3

x/3
· sinx/5

x/5

)̂〉
Since Fourier transform converts pointwise multiplication to convolution, this is〈( sinx

x

)̂
,
( sinx/3

x/3

)̂
∗
( sinx/5

x/5

)̂〉
We have computed that ̂χ[−a,a](ξ) =

sin 2πaξ

πξ
= 2a · sin 2πaξ

2πaξ

That is, by linearity of Fourier transform,( 1

2a
χ[−a,a]

)̂
(ξ) =

sin(2πa)ξ

(2πa)ξ

By Fourier inversion, noting that sin x
x is not in L1, only in L2, so the inverse transform is not necessarily

the literal integral, ( sin(2πa)ξ

(2πa)ξ

)̂
(x) =

1

2a
χ[−a,a](x)

Replacing a by a/2π gives ( sin aξ

aξ

)̂
(x) =

π

a
χ[− a

2π ,
a
2π ]

(x)

We will use a = 1, 13 , and 1
5 . The relevant convolution was also computed above, but all we need is the fact

that the support of
3π χ[− 1

6π ,
1
6π ]
∗ 5π χ[− 1

10π ,
1

10π ]

is inside the interval [− 1
6π −

1
10π ,

1
6π + 1

10π ]. Thus, the integral of three sinc functions is equal to∫
R
πχ[−1

2π ,
1
2π ]

(x) ·
(

3πχ[− 1
6π ,

1
6π ]
∗ 5π χ[− 1

10π ,
1

10π ]

)
(x) dx = π · 3π · 5π

∫ 1/π

−1/π

(
χ[− 1

6π ,
1
6π ]
∗ χ[− 1

10π ,
1

10π ]

)
(x) dx

= π · 3π · 5π
∫
R

(
χ[− 1

6π ,
1
6π ]
∗ χ[− 1

10π ,
1

10π ]

)
(x) dx

7
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since [−1/2π, 1/2π] contains the support of the convolution. Observing that (invoking Fubini-Tonelli as
necessary),∫

R
(f ∗ g)(x) dx =

∫
R

∫
R
f(x− y)g(y) dx dy =

∫
R

∫
R
f(x)g(y) dx dy =

∫
R
f(x) dx ·

∫
R
g(x) dy

the integral of the convolution is ∫
R
χ[− 1

6π ,
1
6π ]
·
∫
R
χ[− 1

10π ,
1

10π ]
=

1

3π
· 1

5π

Thus, the whole is

π · 3π · 5π · 1

3π
· 1

5π
= π

Similarly, the integral of f1 ∗ . . . fn is the product of the integrals
∫
fi. With the support of fi inside [−ai, ai],

the support of the convolution is inside [−a1− . . .− an, a1 + . . .+ an]. Thus, since 1
3 + 1

5 + . . .+ 1
13 < 1, the

same argument shows that∫
R

sinx

x
· sinx/3

x/3
· sinx/5

x/2n+ 1
dx = π (for 2n+ 1 = 3, 5, 7, 9, 11, 13)

but for 2n + 1 = 15, the support of the Fourier transform of sin x
x no longer contains the support of the

convolution. ///
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