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[06.1] On T, show that u” = 7 has no solution u € D*.

Discussion: Let v, (z) = e*™*. We can use Fourier expansions for every element of D* = D(T)*, because
by Sobolev imbedding D* = H~°°. Also, because differentiation is a continuous map on H ~°°, Fourier series
can always be differentiated termwise. Thus, the equation

(C;’if(zn:a(n)%) = =&y = ;1-%

is equivalent to coefficient-wise equality, which is (2min)2%(n) = 1. This is impossible for n = 0. ///

[06.2] Define translation Ty, u of a distribution u by an amount z, € R by

(Teu)(¢) = w(T-z,9) (for ¢ € D)

The sign is for compatibility with distributions arising as integrate-against test functions. For tempered u,
express T, u in terms of «. ///

Discussion: Given the compatibility with ordinary Fourier transform on nice functions, taking into account
the integration-against aspect, it suffices to determine the relation on those nice functions: by changing
variables, replacing x by x — x,,

e~ (o g ) dy = /e—mg(x—zo)f(x) dz = i€ . 7(g)
R

fa+a)1€) = |

R

Because we want distributions to extend integrating-against-functions, and since

/RTzof(m)F(x)da: = /Rf(x—&-mo)F(w)dw = /Rf(x)F(x—xo)dx

so the correct definition of T, u is
(Tz,u)(p) = u(T-z,9)

Thus, in these conventions, there is a sign flip: for tempered distributions w,

—

Tru — 67271'259:0 .U

This confusion about signs seems to be inescapable. ///

[06.3] Compute cosz.

Discussion: Using the previous example, letting T, be translation by x,,
2cosz = 2T .| 42T | = 2T § om2min, § 1/}\5 +i;6
By Fourier inversion (on tempered distributions, and using the fact that cosine is even),
&R = %(Txé + T,zd) — "L(5(E—2) + (¢ + )
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where the latter expresses the intent/idea of the thing, though is slightly imprecise. Note also the sign flips,
which happen to have no impact on the outcome, since cosine is an even function. ///
[06.4] On R™, show that |z|? - Ad = 2n - 4.
Discussion: First, for ¢ € D,

(1o - 26) (¢) = d(A(2*- )
By direct computation,

Do 07
A ¢) = 3 (20 +4x37 tr ag;p)
J

Upon application of §, that is, evaluation at 0, all the terms vanish except the 2 - ¢, which is summed from
1 to n, giving 2n - (0) = 2n - §(p). ///

[06.5] Compute the Fourier transform of the sign function

-1 (z<0)

sgn(z) =
+1 (z>0)

Discussion: The sign function is odd, and of positive-homogeneous degree 0. Thus, by computations about
the interaction of Fourier transform and Euler operator, its Fourier transform is also odd, and of degree
—(1 —0), where the 1 is the dimension, and the 0 is the degree of the sign function.

We have seen that the principal value integral against 1/x is odd and of degree —1. The uniqueness theorem
for homogeneous distributions of a given parity implies that the Fourier transform of the sign function must
be a constant multiple of the principal value integral against 1/z.

To determine the constant, apply both to an odd Schwartz function whose Fourier transform we understand,
such as the iconic ze~™", whose Fourier transform is —i times it. (Maybe later: determination of the
constant is secondary.)

I

[06.6] Compute the two-dimensional Fourier transform of (z & iy)™ - e *@*+¥")  (Hint: It is useful to
rewrite things in terms of a complex variable z = x + iy and its complex conjugate z = = — iy.)

Discussion: Using the complex coordinates, Fourier transform is

J?(w) _ /6727riRc(zE)f(z) dedy = /efwi(zﬁ+5w)f(z) dz dy
C C

Thus, with the plus sign in the 4, since the Fourier transform of (a suitably normalized) Gaussian is itself,

RS _ 1 n RS _
/ e~ TI(FUAZW) 0 —T2Z 1. dy = : / <i) e TiFWHEW) ,—T2Z g, dy
C (—=mi)™ Jo \Ow

= (—717,)” (aaw)n/(ce_ﬂi(zw+zw)e_ﬂzz dxdy = (—;i)Tl(aaqU)ne_mvw
1

n —Tww -—n n  —mww

= (—mw)™ e = ¢ "-we
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as claimed. Yes, one might take a moment to check that the usual symbol manipulation does extend correctly
to this complex-variables variation. ///
[06.7] The Cauchy-Riemann operator on C ~ R? is

= 0 0 g

- L= (e id)
oz~ 2\az oy

Let up s(2) = (l—;)n - |z|® for n € Z and s € C. Determine the requirements on n, s such that wu,,_ s is locally

integrable (and, thus, because it is of moderate growth, gives a tempered distributions). Compute gun’s,
and explain how to interpret the outcome in case the outcome is no longer locally integrable.

Discussion: The local integrability for Re(s) > —2 is immediate, upon changing to polar coordinates.

Just in symbols (which, with well-chosen symbols, surely suggest the correct outcomes),

— nts__ —n+s -n—+ S8 nts __—nts g —n-+s ( z )TL-‘rl | |S—1
= zZ 2z 2 = . JE— -z
2 2 |z

As with |2|* on R", we can regularize these distributions outside the range of local integrability by examining
their behavior under A = 400. Namely,

2 2
Aty s = (5 —=n%) Ups—2
Replacing s by s + 2 and rearranging,
w _ Aun,s+2
n,s 82 _ n2

Thus, while we have local integrability in Re(s) > —2, the right-hand side of the latter expression gives a
(tempered) distribution for Re(s + 2) > —2, that is, for Re(s) > —4. Iterating this process unambiguously
defines a distribution for all s € C away from —2, —4, —6,. . .. ///

[06.8] On R™, for fixed ¢ € D, show that the function fy(s) = [p. ¢(z) |z|* dz blows up as s — —n™, in
particular, there is a constant C, such that

fo(s) = s+n

+ (continuous at —n)

(Thus, if we understand that s — integration-against |x|® is a meromorphic distribution-valued function, its
residue at s = —n is a constant multiple of 4.)

Discussion: Let 1(z) = e=™". Then

o0

o) = [ @l de = 157 [T ey < (g g [ty
R~ 0 0

oo
Il A A I T AR Ce
0

The Gamma function I'(z) has a simple pole at z = 0, so the latter expression blows up (in that sense) at
s +n = 0, which is s = —n. More precisely,

1
T'(s) = B + (holomorphic at s = 0)

SO

) = + (holomorphic at s = —n)
n
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and

2 Sn—l
fols) = [S"7H- % - —— + (holomorphic at s = —n) = u T

(holomorphic at s = —n)
s+n s+n

Certainly ¢ — f,(s) is linear in the argument ¢. Since F' = ¢ — (0) - ¢ is 0 at 0, the integral for fr(s)
converges absolutely in Re(s) > —n — 1. Thus,

571
s+n

fo(s) = fr(s) +¢(0)- fy(s) = (holo at s = —n) + ¢(0) - ( + (holo at s = —n))

. n—1
ORI
s+n

This holds for every ¢, so the residue at s = —n is |S™ 71| times 4. ///

holo at s = —n)

[06.9] The Riemann-equation characterizing holomorphic functions f is df = 0. Show that

0 — = (constant multiple of) §
z

Discussion: Yes, this fact mirrors the Cauchy formulas. Taking Fourier transform,

—iTw - =1

IS

The function/distribution 1/z is positive homogeneous of degree —1, and rotation-equivariant by p — u= 1.

Thus, its Fourier transform is homogeneous of degree —(2 — 1) = —1, and it has the same rotation
equivariance. Applying O gives it rotation invariance, and homogeneity degree (—1) —1 = —2. By the
uniqueness theorem, up to constants, this Fourier transform must be 4.

To determine the constant, apply both to a convenient test function. ///
[06.10] On R? = C, show that Tf(2) = f(z)/z} is a continuous map of the subspace .73 = {f € .7(R?) :
f(uz) = p- f(2)V|u| =1} to C°(R?). (Hint: Use Taylor-Maclaurin series.)

Discussion: [... jou ...]

[06.11] On R? ~ C, show that the principal-value integral
) z
u(f) = E1_1%1+ . f(2) P dx dy (for f € .¥)

gives a tempered distribution.

Discussion: As in other examples, and the one-dimensional principal-value integral against 1/x, this integral
is interesting because it is at the edge of the region of local integrability of functions z/|z|®, with s € C.
Understanding of it can be construed as an instance of reqularization.

Integrating by parts twice, using A = 400, doing the requisite subordinate estimates, this functional is

lim f(z)@ drdy = —4 lim Af(z)i dedy = —4/(CAf(z)‘—z| dx dy

e—0+ |z|>e e—0+ |z|>e |Z|

since z/|z| is locally integrable. Thus, it gives a distribution. Also, it is (pointwise) bounded, so certainly of
suitably moderate growth to give a tempered distribution. ///
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[06.12] Compute the Fourier transform of the distribution in the previous example.

Discussion: By either its direct definition or the equivalent regularized characterization from the previous
example, this distribution is of homogeneous degree —2, and has rotation-equivariance (using the model
R?2 = C) u — p'. From earlier discussion of behavior of rotation-equivariance and homogeneity under
Fourier transform, up to a constant, its Fourier transform has the same rotational equivariance, and is of
homogeneity degree —(—2 — (—2)) = 0. By the uniqueness theorem, this Fourier transform is a constant
multiple of the (unique-up-to-constants) degree-zero distribution z/|z| with the same rotation-equivariance.

To determine the constant, evaluate things at a Schwartz function with the same rotation-equivariance, and
whose Fourier transform is understood, such as z"e~™** for n > 0. ... [.. jou ...] ///




