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[06.1] On T, show that u′′ = δZ has no solution u ∈ D∗.

Discussion: Let ψn(x) = e2πinx. We can use Fourier expansions for every element of D∗ = D(T)∗, because
by Sobolev imbedding D∗ = H−∞. Also, because differentiation is a continuous map on H−∞, Fourier series
can always be differentiated termwise. Thus, the equation( d

dx

)2(∑
n

û(n)ψn

)
= u′′ = δZ =

∑
n

1 · ψn

is equivalent to coefficient-wise equality, which is (2πin)2û(n) = 1. This is impossible for n = 0. ///

[06.2] Define translation Txo
u of a distribution u by an amount xo ∈ R by

(Txo
u)(ϕ) = u(T−xo

ϕ) (for ϕ ∈ D)

The sign is for compatibility with distributions arising as integrate-against test functions. For tempered u,
express T̂xo

u in terms of û. ///

Discussion: Given the compatibility with ordinary Fourier transform on nice functions, taking into account
the integration-against aspect, it suffices to determine the relation on those nice functions: by changing
variables, replacing x by x− xo,

f(x+ xo) (̂ξ) =

∫
R
e−2πiξx f(x+ xo) dx =

∫
R
e−2πiξ(x−xo) f(x) dx = e2πiξxo · f̂(ξ)

Because we want distributions to extend integrating-against-functions, and since∫
R
Txof(x)F (x) dx =

∫
R
f(x+ xo)F (x) dx =

∫
R
f(x)F (x− xo) dx

so the correct definition of Txou is
(Txou)(ϕ) = u(T−xoϕ)

Thus, in these conventions, there is a sign flip: for tempered distributions u,

T̂xu = e−2πiξxo · û

This confusion about signs seems to be inescapable. ///

[06.3] Compute ĉosx.

Discussion: Using the previous example, letting Txo
be translation by xo,

2 cosx = e2πix · 1 + e−2πix · 1 = e2πix · δ̂ + e−2πix · δ̂ = T̂xδ + T̂−xδ

By Fourier inversion (on tempered distributions, and using the fact that cosine is even),

ĉosx = 1
2

(
Txδ + T−xδ

)
= ” 1

2 (δ(ξ − x) + δ(ξ + x))”
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where the latter expresses the intent/idea of the thing, though is slightly imprecise. Note also the sign flips,
which happen to have no impact on the outcome, since cosine is an even function. ///

[06.4] On Rn, show that |x|2 ·∆δ = 2n · δ.

Discussion: First, for ϕ ∈ D, (
|x|2 ·∆δ

)
(ϕ) = δ(∆(|x|2 · ϕ)

)
By direct computation,

∆(|x|2 · ϕ) =
∑
j

(
2 · ϕ+ 4xj

∂ϕ

∂xj
+ r2

∂2ϕ

∂x2j

)
Upon application of δ, that is, evaluation at 0, all the terms vanish except the 2 · ϕ, which is summed from
1 to n, giving 2n · ϕ(0) = 2n · δ(ϕ). ///

[06.5] Compute the Fourier transform of the sign function

sgn(x) =

−1 (x < 0)

+1 (x > 0)

Discussion: The sign function is odd, and of positive-homogeneous degree 0. Thus, by computations about
the interaction of Fourier transform and Euler operator, its Fourier transform is also odd, and of degree
−(1− 0), where the 1 is the dimension, and the 0 is the degree of the sign function.

We have seen that the principal value integral against 1/x is odd and of degree −1. The uniqueness theorem
for homogeneous distributions of a given parity implies that the Fourier transform of the sign function must
be a constant multiple of the principal value integral against 1/x.

To determine the constant, apply both to an odd Schwartz function whose Fourier transform we understand,
such as the iconic xe−πx

2

, whose Fourier transform is −i times it. (Maybe later: determination of the
constant is secondary.)

///

[06.6] Compute the two-dimensional Fourier transform of (x ± iy)n · e−π(x2+y2). (Hint: It is useful to
rewrite things in terms of a complex variable z = x+ iy and its complex conjugate z = x− iy.)

Discussion: Using the complex coordinates, Fourier transform is

f̂(w) =

∫
C
e−2πiRe(zw)f(z) dx dy =

∫
C
e−πi(zw+zw)f(z) dx dy

Thus, with the plus sign in the ±, since the Fourier transform of (a suitably normalized) Gaussian is itself,∫
C
e−πi(zw+zw)zne−πzz dx dy =

1

(−πi)n

∫
C

( ∂

∂w

)n
e−πi(zw+zw)e−πzz dx dy

=
1

(−πi)n
( ∂

∂w

)n ∫
C
e−πi(zw+zw)e−πzz dx dy =

1

(−πi)n
( ∂

∂w

)n
e−πww

=
1

(−πi)n
(−πw)n · e−πww = i−n · wne−πww
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as claimed. Yes, one might take a moment to check that the usual symbol manipulation does extend correctly
to this complex-variables variation. ///

[06.7] The Cauchy-Riemann operator on C ≈ R2 is

∂ =
∂

∂z
= 1

2

( ∂
∂x

+ i
∂

∂y

)
Let un,s(z) =

(
z
|z|
)n · |z|s for n ∈ Z and s ∈ C. Determine the requirements on n, s such that un,s is locally

integrable (and, thus, because it is of moderate growth, gives a tempered distributions). Compute ∂un,s,
and explain how to interpret the outcome in case the outcome is no longer locally integrable.

Discussion: The local integrability for Re(s) > −2 is immediate, upon changing to polar coordinates.

Just in symbols (which, with well-chosen symbols, surely suggest the correct outcomes),

∂un,s = ∂z
n+s
2 z

−n+s
2 =

−n+ s

2
· z

n+s
2 z

−n+s
2 −1 =

−n+ s

2
·
( z
|z|

)n+1

· |z|s−1

As with |x|s on Rn, we can regularize these distributions outside the range of local integrability by examining
their behavior under ∆ = 4∂∂. Namely,

∆un,s = (s2 − n2) · un,s−2

Replacing s by s+ 2 and rearranging,

un,s =
∆un,s+2

s2 − n2

Thus, while we have local integrability in Re(s) > −2, the right-hand side of the latter expression gives a
(tempered) distribution for Re(s + 2) > −2, that is, for Re(s) > −4. Iterating this process unambiguously
defines a distribution for all s ∈ C away from −2,−4,−6, . . .. ///

[06.8] On Rn, for fixed ϕ ∈ D, show that the function fϕ(s) =
∫
Rn ϕ(x) |x|s dx blows up as s → −n+, in

particular, there is a constant Cn such that

fϕ(s) =
Cn · ϕ(0)

s+ n
+ (continuous at −n)

(Thus, if we understand that s→ integration-against |x|s is a meromorphic distribution-valued function, its
residue at s = −n is a constant multiple of δ.)

Discussion: Let ψ(x) = e−πx
2

. Then

fψ(s) =

∫
Rn

ψ(x) |x|s dx = |Sn−1| ·
∫ ∞
0

e−πr
2

rs rn−1 dr = |Sn−1| · 12
∫ ∞
0

e−πr r
s+n
2 −1 dr

= |Sn−1| · 12π
− s+n

2

∫ ∞
0

e−r r
s+n
2 −1 dr = |Sn−1| · 12π

− s+n
2 · Γ(

s+ n

2
)

The Gamma function Γ(z) has a simple pole at z = 0, so the latter expression blows up (in that sense) at
s+ n = 0, which is s = −n. More precisely,

Γ(s) =
1

s
+ (holomorphic at s = 0)

so

Γ(
s+ n

2
) =

2

s+ n
+ (holomorphic at s = −n)
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and

fψ(s) = |Sn−1| · 12 ·
2

s+ n
+ (holomorphic at s = −n) =

|Sn−1|
s+ n

+ (holomorphic at s = −n)

Certainly ϕ → fϕ(s) is linear in the argument ϕ. Since F = ϕ − ϕ(0) · ψ is 0 at 0, the integral for fF (s)
converges absolutely in Re(s) > −n− 1. Thus,

fϕ(s) = fF (s) + ϕ(0) · fψ(s) = (holo at s = −n) + ϕ(0) ·
( |Sn−1|
s+ n

+ (holo at s = −n)
)

=
ϕ(0) · |Sn−1|

s+ n
+ (holo at s = −n)

This holds for every ϕ, so the residue at s = −n is |Sn−1| times δ. ///

[06.9] The Riemann-equation characterizing holomorphic functions f is ∂f = 0. Show that

∂
1

z
= (constant multiple of) δ

Discussion: Yes, this fact mirrors the Cauchy formulas. Taking Fourier transform,

−iπw · 1̂

z
= 1

The function/distribution 1/z is positive homogeneous of degree −1, and rotation-equivariant by µ→ µ−1.
Thus, its Fourier transform is homogeneous of degree −(2 − 1) = −1, and it has the same rotation
equivariance. Applying ∂ gives it rotation invariance, and homogeneity degree (−1) − 1 = −2. By the
uniqueness theorem, up to constants, this Fourier transform must be δ.

To determine the constant, apply both to a convenient test function. ///

[06.10] On R2 ≈ C, show that Tf(z) = f(z)/z} is a continuous map of the subspace S1 = {f ∈ S (R2) :
f(µz) = µ · f(z)∀|µ| = 1} to Co(R2). (Hint: Use Taylor-Maclaurin series.)

Discussion: [... iou ...]

[06.11] On R2 ≈ C, show that the principal-value integral

u(f) = lim
ε→0+

∫
|z|≥ε

f(z)
z

|z|3
dx dy (for f ∈ S )

gives a tempered distribution.

Discussion: As in other examples, and the one-dimensional principal-value integral against 1/x, this integral
is interesting because it is at the edge of the region of local integrability of functions z/|z|s, with s ∈ C.
Understanding of it can be construed as an instance of regularization.

Integrating by parts twice, using ∆ = 4∂∂, doing the requisite subordinate estimates, this functional is

lim
ε→0+

∫
|z|≥ε

f(z)
z

|z|3
dx dy = −4 lim

ε→0+

∫
|z|≥ε

∆f(z)
z

|z|
dx dy = −4

∫
C

∆f(z)
z

|z|
dx dy

since z/|z| is locally integrable. Thus, it gives a distribution. Also, it is (pointwise) bounded, so certainly of
suitably moderate growth to give a tempered distribution. ///
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[06.12] Compute the Fourier transform of the distribution in the previous example.

Discussion: By either its direct definition or the equivalent regularized characterization from the previous
example, this distribution is of homogeneous degree −2, and has rotation-equivariance (using the model
R2 = C) µ → µ1. From earlier discussion of behavior of rotation-equivariance and homogeneity under
Fourier transform, up to a constant, its Fourier transform has the same rotational equivariance, and is of
homogeneity degree −(−2 − (−2)) = 0. By the uniqueness theorem, this Fourier transform is a constant
multiple of the (unique-up-to-constants) degree-zero distribution z/|z| with the same rotation-equivariance.

To determine the constant, evaluate things at a Schwartz function with the same rotation-equivariance, and
whose Fourier transform is understood, such as zne−πzz, for n ≥ 0. ... [... iou ...] ///
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