(September 17, 2022)

Examples 03

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is http://www.math.umn.edu/~garrett/m/real/examples_2022-23/real-ex-03.pdf]

For feedback on these examples, please get your write-ups to me by Monday, 07 Nov 2022.

[03.1] For a vector subspace W of a Hilbert space V, show that $(W^{\perp})^{\perp}$ is the topological closure of W.

[03.2] Find two dense vector subspaces X, Y of ℓ^2 such that $X \cap Y = \{0\}$. (And, if you need further entertainment, can you find countably-many dense vector subspaces X_n such that $X_m \cap X_n = \{0\}$ for $m \neq n$?)

[03.3] For measurable $E \subset [0,1]$, show that $\lim_{n \to \infty} \int_{E} e^{-2\pi i nx} dx = 0$ as $n \to \infty$ ranging over integers.

[03.4] Let $f_n(x) = \sin \pi nx$ on [0, 1], extended by \mathbb{Z} -periodicity, for $n = 1, 2, 3, \ldots$ Given $g \in L^1[0, 1]$, show that $\int_0^1 f_n \cdot g \to 0$.

[03.5] Compute the Fourier coefficients of the sawtooth function $s(x) = x - \frac{1}{2}$ on [0,1], extended by \mathbb{Z} -periodicity. Use this to show that $\sum_{n\geq 1} 1/n^2 = \pi^2/6$.

[03.6] Let E be a Lebesgue measurable set in \mathbb{R} with finite Lebesgue measure. Show that

$$\lim_{t \to +\infty} \int_E \sin tx \, dx = 0 \qquad (\text{over real } t)$$

[03.7] Compute $\int_{\mathbb{R}} \left(\frac{\sin x}{x}\right)^2 dx$. (*Hint:* do not attempt to do this directly, nor by complex analysis.)

[03.8] (Collecting Fourier transform pairs) Compute the Fourier transforms of

$$\chi_{[a,b]}$$
 $e^{-\pi x^2}$ $f(x) = \begin{cases} e^{-x} & (\text{for } x > 0) \\ 0 & (\text{for } x \le 0) \end{cases}$

[03.9] Give an explicit non-zero function f such that $\int_{\mathbb{R}} x^n f(x) dx = 0$, for all n = 0, 1, 2, ...

[03.10] Show that $\chi_{[a,b]} * \chi_{[c,d]}$ is a piecewise-linear function, and express it explicitly.

[03.11] For $f \in \mathscr{S}$, show that

$$\lim_{\varepsilon \to 0^+} f(x) * \frac{e^{-\pi x^2/\varepsilon}}{\sqrt{\varepsilon}} = f(x)$$

[03.12] (Corrected!) For $f \in \mathscr{S}$, show that

$$\lim_{t \to +\infty} f(x) * \frac{\sin 2\pi tx}{\pi x} = f(x)$$

 $[03.13] \ \, {\rm Evaluate \ the \ } {\it Borwein \ integral}$

$$\int_{\mathbb{R}} \frac{\sin x}{x} \cdot \frac{\sin x/3}{x/3} \cdot \frac{\sin x/5}{x/5} \, dx$$