Examples 07

For feedback on these examples, please get your write-ups to me by Monday, April 03, 2023.

[07.1] Recall the proof of the spectral theorem for self-adjoint operators on a finite-dimensional complex vector space V with hermitian inner product.

[07.2] Recall the proof of a spectral theorem for two self-adjoint operators S, T on a finite-dimensional complex vector space V under the assumption that $ST = TS$.

[07.3] Let $K(x, y) = |x - y|$, and let

$$Tf(x) = \int_a^b K(x, y) f(y) \, dy \quad \text{(for } f \in L^2[a, b])$$

Find some eigenvalues/eigenfunctions for the operator T. (Hint: consider $\frac{d^2}{dx^2}(Tf)$ and use the fundamental theorem of calculus.)

[07.4] Let $K(x, y) \in L^2([a, b] \times [a, b])$, and attempt to define a map $T : L^2[a, b] \to L^2[a, b]$ by

$$Tf(x) = \int_a^b K(x, y) f(y) \, dy$$

Show that Tf is well-defined a.e. as a pointwise-valued function. Show that T really does map L^2 to itself by showing that

$$|Tf|_{L^2[a, b]} \leq |K|_{L^2([a, b] \times [a, b])} \cdot |f|_{L^2[a, b]}$$

(One would say that $K(\cdot, \cdot)$ is a Schwartz kernel for the map T. Yes, this use is in conflict with the use of kernel of a map to refer to things that map to 0.) In the previous situation, show that the Hilbert-space adjoint T^* of T has Schwartz kernel $K(y, x)$. In fact, the map T is a Hilbert-Schmidt operator, and is therefore compact.

[07.5] Prove that the Volterra operator $Vf(x) = \int_0^x f(t) \, dt$ on $C^0[0, 1]$ or on $L^2[0, 1]$ has no (not-identically-zero) eigenvalues/eigenfunctions (despite being compact!)

[07.6] Determine the spectrum of the left-shift $L : (c_1, c_2, \ldots) \to (c_2, \ldots)$ on ℓ^2, and of the right-shift $R : (c_1, c_2, \ldots) \to (0, c_1, c_2, \ldots)$ on ℓ^2. Show that these are mutual adjoints.

[07.7] (Approximate eigenvectors and continuous spectrum, Weyl’s criterion) Let $T : V \to V$ be a self-adjoint linear operator on a Hilbert space V. For $\lambda \in \mathbb{C}$, a sequence $\{v_n\}$ of vectors (normalized so that all their lengths are 1 or at least bounded away from 0) such that $(T - \lambda)v_n \to 0$ as $n \to +\infty$ is an approximate eigenvector for λ. Show that for λ not an eigenvalue for T, λ has an approximate eigenvector if and only if λ is in the spectrum of T.

[07.8] Show that the multiplication operator $T : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ by $Tf(x) = f(x) \cdot \sin x$ has empty discrete spectrum. Show that it is self-adjoint. Show that T has continuous spectrum the interval $[-1, 1]$. (We know that self-adjoint (or merely normal) operators have only point spectrum and continuous spectrum, that is, no left-over residual spectrum.)
[07.9] Let \(r_1, r_2, r_3, \ldots \) be an enumeration of the rational numbers inside the interval \([0, 1]\). Define \(T : \ell^2 \to \ell^2 \) by \(T(c_1, c_2, \ldots) = (r_1 c_1, r_2 c_2, \ldots) \). Show that \(T \) is a continuous/bounded linear operator, is self-adjoint, has eigenvalues exactly the \(r_1, r_2, \ldots \), and continuous spectrum the whole interval \([0, 1]\) (with rationals removed, if one insists on disjointness of discrete and continuous spectrum).

[07.10] Let \(r_1, r_2, r_3, \ldots \) be a bounded sequence of complex numbers. Define \(T : \ell^2 \to \ell^2 \) by \(T(c_1, c_2, \ldots) = (r_1 c_1, r_2 c_2, \ldots) \). Show that \(T \) is compact if and only if \(r_n \to 0 \).

[07.11] Let \(T \) be a compact operator \(T : V \to W \) for Hilbert spaces \(V, W \). For \(S \) a continuous/bounded operator on \(V \), show that \(T \circ S : V \to W \) is compact. For \(R \) a continuous/bounded operator on \(W \), show that \(R \circ T : V \to W \) is compact.

[07.12] Let \(S, T \) be two compact, self-adjoint operators on a Hilbert space, and \(ST = TS \). Show that there is an orthonormal basis for \(V \) consisting of simultaneous eigenfunctions for \(S, T \).

[07.13] Let \(r_1, r_2, r_3, \ldots \) be a bounded sequence of complex numbers. Define \(T : \ell^2 \to \ell^2 \) by \(T(c_1, c_2, \ldots) = (r_1 c_1, r_2 c_2, \ldots) \). Show that \(T \) is Hilbert-Schmidt if and only if \(\sum |r_n|^2 < \infty \).

[07.14] Let \(r_1, r_2, r_3, \ldots \) be a bounded sequence of complex numbers. Define \(T : \ell^2 \to \ell^2 \) by \(T(c_1, c_2, \ldots) = (r_1 c_1, r_2 c_2, \ldots) \). Show that \(T \) is trace class if and only if \(\sum |r_n| < \infty \).