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1. Banach spaces Ck[a, b]
2. Non-Banach limit C∞[a, b] of Banach spaces Ck[a, b]

We specify natural topologies, in which differentiation or other natural operators are continuous, and so that
the space is complete.

Many familiar and useful spaces of continuous or differentiable functions, such as Ck[a, b], have natural
metric structures, and are complete. In these cases, the metric d(, ) comes from a norm | · |, on the functions,
giving Banach spaces.

Other natural function spaces, such as C∞[a, b], are not Banach, but still do have a metric topology and
are complete: these are Fréchet spaces, appearing as (projective) limits of Banach spaces, as below. These
lack some of the conveniences of Banach spaces, but their expressions as limits of Banach spaces is often
sufficient.

1. Banach spaces Ck[a, b]

We give the vector space Ck[a, b] of k-times continuously differentiable functions on an interval [a, b] a metric
which makes it complete. Mere pointwise limits of continuous functions easily fail to be continuous. First
recall the standard

[1.0.1] Claim: The set Co(K) of complex-valued continuous functions on a compact set K is complete with
the metric |f − g|Co , with the Co-norm |f |Co = supx∈K |f(x)|.

Proof: This is a typical three-epsilon argument. To show that a Cauchy sequence {fi} of continuous
functions has a pointwise limit which is a continuous function, first argue that fi has a pointwise limit at every
x ∈ K. Given ε > 0, choose N large enough such that |fi− fj | < ε for all i, j ≥ N . Then |fi(x)− fj(x)| < ε
for any x in K. Thus, the sequence of values fi(x) is a Cauchy sequence of complex numbers, so has a limit
f(x). Further, given ε′ > 0 choose j ≥ N sufficiently large such that |fj(x)− f(x)| < ε′. For i ≥ N

|fi(x)− f(x)| ≤ |fi(x)− fj(x)|+ |fj(x)− f(x)| < ε+ ε′

This is true for every positive ε′, so |fi(x) − f(x)| ≤ ε for every x in K. That is, the pointwise limit is
approached uniformly in x ∈ [a, b].

To prove that f(x) is continuous, for ε > 0, take N be large enough so that |fi − fj | < ε for all i, j ≥ N .
From the previous paragraph |fi(x)−f(x)| ≤ ε for every x and for i ≥ N . Fix i ≥ N and x ∈ K, and choose
a small enough neigborhood U of x such that |fi(x)− fi(y)| < ε for any y in U . Then

|f(x)− f(y)| ≤ |f(x)− fi(x)|+ |fi(x)− fi(y)|+ |f(y)− fi(y)| ≤ ε+ |fi(x)− fi(y)|+ ε < ε+ ε+ ε

Thus, the pointwise limit f is continuous at every x in U . ///

Unsurprisingly, but significantly:

[1.0.2] Claim: For x ∈ [a, b], the evaluation map f → f(x) is a continuous linear functional on Co[a, b].

Proof: For |f − g|Co < ε, we have

|f(x)− g(x)| ≤ |f − g|Co < ε
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proving the continuity. ///

As usual, a real-valued or complex-valued function f on a closed interval [a, b] ⊂ R is continuously
differentiable when it has a derivative which is itself a continuous function. That is, the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

exists for all x ∈ [a, b], and the function f ′(x) is in Co[a, b]. Let Ck[a, b] be the collection of k-times
continuously differentiable functions on [a, b], with the Ck-norm

|f |Ck =
∑

0≤i≤k

sup
x∈[a,b]

|f (i)(x)| =
∑

0≤i≤k

|f (i)|∞

where f (i) is the ith derivative of f . The associated metric on Ck[a, b] is |f − g|Ck .

Similar to the assertion about evaluation on Co[a, b],

[1.0.3] Claim: For x ∈ [a, b] and 0 ≤ j ≤ k, the evaluation map f → f (j)(x) is a continuous linear functional
on Ck[a, b].

Proof: For |f − g|Ck < ε,
|f (j)(x)− g(j)(x)| ≤ |f − g|Ck < ε

proving the continuity. ///

We see that Ck[a, b] is a Banach space:

[1.0.4] Theorem: The normed metric space Ck[a, b] is complete.

Proof: For a Cauchy sequence {fi} in Ck[a, b], all the pointwise limits limi f
(j)
i (x) of j-fold derivatives exist

for 0 ≤ j ≤ k, and are uniformly continuous. The issue is to show that limi f
(j) is differentiable, with

derivative limi f
(j+1). It suffices to show that, for a Cauchy sequence fn in C1[a, b], with pointwise limits

f(x) = limn fn(x) and g(x) = limn f
′
n(x) we have g = f ′. By the fundamental theorem of calculus, for any

index i,

fi(x)− fi(a) =

∫ x

a

f ′i(t) dt

Since the f ′i uniformly approach g, given ε > 0 there is io such that |f ′i(t)− g(t)| < ε for i ≥ io and for all t
in the interval, so for such i∣∣∣ ∫ x

a

f ′i(t) dt−
∫ x

a

g(t) dt
∣∣∣ ≤ ∫ x

a

|f ′i(t)− g(t)| dt ≤ ε · |x− a| −→ 0

Thus,

lim
i
fi(x)− fi(a) = lim

i

∫ x

a

f ′i(t) dt =

∫ x

a

g(t) dt

from which f ′ = g. ///

By design, we have

[1.0.5] Theorem: The map d
dx : Ck[a, b]→ Ck−1[a, b] is continuous.

Proof: As usual, for a linear map T : V → W , by linearity Tv − Tv′ = T (v − v′) it suffices to check
continuity at 0. For Banach spaces the homogeneity |σ · v|V = |α| · |v|V shows that continuity is equivalent
to existence of a constant B such that |Tv|W ≤ B · |v|V for v ∈ V . Then

| d
dx
f |Ck−1 =

∑
0≤i≤k−1

sup
x∈[a,b]

|( df
dx

)(i)(x)| =
∑

1≤i≤k

sup
x∈[a,b]

|f (i)(x)| ≤ 1 · |f |Ck
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as desired. ///

2. Non-Banach limit C∞[a, b] of Banach spaces Ck[a, b]

The space C∞[a, b] of infinitely differentiable complex-valued functions on a (finite) interval [a, b] in R is

not a Banach space. [1] Nevertheless, the topology is completely determined by its relation to the Banach
spaces Ck[a, b]. That is, there is a unique reasonable topology on C∞[a, b]. After explaining and proving
this uniqueness, we also show that this topology is complete metric.

This function space can be presented as

C∞[a, b] =
⋂
k≥0

Ck[a, b]

and we reasonably require that whatever topology C∞[a, b] should have, each inclusion C∞[a, b] −→ Ck[a, b]
is continuous.

At the same time, given a family of continuous linear maps Z → Ck[a, b] from a vector space Z in some
reasonable class, with the compatibility condition of giving commutative diagrams

Ck[a, b]
⊂ // Ck−1[a, b]

Z

ffMMMMMMMMMMM

OO

the image of Z actually lies in the intersection C∞[a, b]. Thus, diagrammatically, for every family of
compatible maps Z → Ck[a, b], there is a unique Z → C∞[a, b] fitting into a commutative diagram

C∞[a, b]
** ((

. . . // C1[a, b] // Co[a, b]

Z

;;w
w

w
w

w

∀
44jjjjjjjjjj

∃!

cc

We require that this induced map Z → C∞[a, b] is continuous.

When we know that these conditions are met, we would say that C∞[a, b] is the (projective) limit of the
spaces Ck[a, b], written

C∞[a, b] = lim
k
Ck[a, b]

with implicit reference to the inclusions Ck+1[a, b]→ Ck[a, b] and C∞[a, b]→ Ck[a, b].

[2.0.1] Claim: Up to unique isomorphism, there exists at most one topology on C∞[a, b] such that to every
compatible family of continuous linear maps Z → Ck[a, b] from a topological vector space Z there is a unique
continuous linear Z → C∞[a, b] fitting into a commutative diagram as just above.

Proof: Let X,Y be C∞[a, b] with two topologies fitting into such diagrams, and show X ≈ Y , and for a
unique isomorphism. First, claim that the identity map idX : X → X is the only map ϕ : X → X fitting
into a commutative diagram

[1] It is not essential to prove that there is no reasonable Banach space structure on C∞[a, b], but this can be readily

proven in a suitable context.
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X
** ''

. . . // C1[a, b] // Co[a, b]

X

ϕ

OO

44 77
. . . // C1[a, b] // Co[a, b]

Indeed, given a compatible family of maps X → Ck[a, b], there is unique ϕ fitting into

X
** ''

. . . // C1[a, b] // Co[a, b]

X

;;w
w

w
w

w

∀
44jjjjjjjjjj

ϕ

``

Since the identity map idX fits, necessarily ϕ = idX . Similarly, given the compatible family of inclusions
Y → Ck[a, b], there is unique f : Y → X fitting into

X
** ''

. . . // C1[a, b] // Co[a, b]

Y

;;wwwwwwwww

44jjjjjjjjjjjjjjjjjjj
f

``

Similarly, given the compatible family of inclusions X → Ck[a, b], there is unique g : X → Y fitting into

Y
** ''

. . . // C1[a, b] // Co[a, b]

X

;;wwwwwwwww

44jjjjjjjjjjjjjjjjjjj
g

__

Then f ◦ g : X → X fits into a diagram

X
** ''

. . . // C1[a, b] // Co[a, b]

X

;;wwwwwwwww

44jjjjjjjjjjjjjjjjjjj
f◦g

``

Therefore, f ◦ g = idX . Similarly, g ◦ f = idY . That is, f, g are mutual inverses, so are isomorphisms of
topological vector spaces. ///

Existence of a topology on C∞[a, b] satisfying the condition above will be proven by identifying C∞[a, b] as
the obvious diagonal closed subspace of the topological product of the limitands Ck[a, b]:

C∞[a, b] = {{fk : fk ∈ Ck[a, b]} : fk = fk+1 for all k}

An arbitrary product of topological spaces Xα for α in an index set A is a topological space X with
(projections) pα : X → Xα, such that every family fα : Z → Xα of maps from any other topological
space Z factors through the pα uniquely, in the sense that there is a unique f : Z → X such that fα = pα ◦ f
for all α. Pictorially, all triangles commute in the diagram

Z

fβ
++XXXXXXXXXXXXXXXX

fα
((P

PPPPPPP
f // X

pβ

!!B
BB

BB
BB

B
pα

}}||
||
||
||

. . . Xα . . . Xβ . . .
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A similar argument to that for uniqueness of limits proves uniqueness of products up to unique isomorphism.
Construction of products is by putting the usual product topology with basis consisting of products

∏
α Yα

with Yα = Xα for all but finitely-many indices, on the Cartesian product of the sets Xα, whose existence we
grant ourselves. Proof that this usual is a product amounts to unwinding the definitions. By uniqueness,
in particular, despite the plausibility of the box topology on the product, it cannot function as a product
topology since it differs from the standard product topology in general.

[2.0.2] Claim: Giving the diagonal copy of C∞[a, b] inside
∏
k C

k[a, b] the subspace topology yields a
(projective) limit topology.

Proof: The projection maps pk :
∏
j C

j [a, b] → Ck[a, b] from the whole product to the factors Ck[a, b]
are continuous, so their restrictions to the diagonally imbedded C∞[a, b] are continuous. Further, letting
ik : Ck[a, b] → Ck−1[a, b] be the inclusion, on that diagonal copy of C∞[a, b] we have ik ◦ pk = pk−1 as
required.

On the other hand, any family of maps ϕk : Z → Ck[a, b] induces a map ϕ̃ : Z →
∏
Ck[a, b] such that

pk ◦ ϕ̃ = ϕk, by the property of the product. Compatibility ik ◦ ϕk = ϕk−1 implies that the image of ϕ̃ is
inside the diagonal, that is, inside the copy of C∞[a, b]. ///

A countable product of metric spaces Xk with metrics dk has no canonical single metric, but is metrizable.
One of many topologically equivalent metrics is the usual

d({xk}, {yk}) =

∞∑
k=0

2−k
dk(xk − yk)

dk(xk − yk) + 1

When the metric spaces Xk are complete, the product is complete. A closed subspace of a complete metrizable
space is complete metrizable, so we have

[2.0.3] Corollary: C∞[a, b] is complete metrizable. ///

Abstracting the above, for a (not necessarily countable) family

. . .
ϕ2 // B1

ϕ1 // Bo

of Banach spaces with continuous linear transition maps as indicated, not recessarily requiring the continuous
linear maps to be injective (or surjective), a (projective) limit limiBi is a topological vector space with
continuous linear maps limiBi → Bj such that, for every compatible family of continuous linear maps
Z → Bi there is unique continuous linear Z → limiBi fitting into

limiBi
!!   

. . .
ϕ2 // B1

ϕ1 // Bo

Z

==|
|

|
|

66mmmmmmmm

cc

The same uniqueness proof as above shows that there is at most one topological vector space limiBi. For
existence by construction, the earlier argument needs only minor adjustment. The conclusion of complete
metrizability would hold when the family is countable.

Before declaring C∞[a, b] to be a Fréchet space, we must certify that it is locally convex, in the sense that
every point has a local basis of convex opens. Normed spaces are immediately locally convex, because open
balls are convex: for 0 ≤ t ≤ 1 and x, y in the ε-ball at 0 in a normed space,

|tx+ (1− t)y| ≤ |tx|+ |(1− t)y| ≤ t|x|+ (1− t)|y| < t · ε+ (1− t) · ε = ε
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Product topologies of locally convex vectorspaces are locally convex, from the construction of the product.
The construction of the limit as the diagonal in the product, with the subspace topology, shows that it is
locally convex. In particular, countable limits of Banach spaces are locally convex, hence, are Fréchet. All
spaces of practical interest are locally convex for simple reasons, so demonstrating local convexity is rarely
interesting.

[2.0.4] Theorem: d
dx : C∞[a, b]→ C∞[a, b] is continuous.

Proof: In fact, the differentiation operator is characterized via the expression of C∞[a, b] as a limit. We
already know that differentiation d/dx gives a continuous map Ck[a, b] → Ck−1[a, b]. Differentiation is
compatible with the inclusions among the Ck[a, b]. Thus, we have a commutative diagram

C∞[a, b]
)) **

. . . Ck[a, b] // Ck−1[a, b] // . . .

C∞[a, b]
55 55

. . . Ck[a, b] //

d
dx

99rrrrrrrrrr
Ck−1[a, b] //

d
dx

::vvvvvvvvvv
. . .

Composing the projections with d/dx gives (dashed) induced maps from C∞[a, b] to the limitands, inducing
a unique (dotted) continuous linear map to the limit, as in

C∞[a, b]
)) **

. . . Ck[a, b] // Ck−1[a, b] // . . .

C∞[a, b]

55kkkkkkkk

33gggggggggggggg

22eeeeeeeeeeeeeeeeeeeee

d
dx

OO

55 55
. . . Ck[a, b] //

99rrrrrrrrrr
Ck−1[a, b] //

::vvvvvvvvvv
. . .

This proves the continuity of differentiation in the limit topology. ///

In a slightly different vein, we have

[2.0.5] Claim: For all x ∈ [a, b] and for all non-negative integers k, the evaluation map f → f (k)(x) is a
continuous linear map C∞[a, b]→ C.

Proof: The inclusion C∞[a, b]→ Ck[a, b] is continuous, and the evaluation of the kth derivative is continuous.
///
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