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1. What is the issue? What obstacles to overcome?
2. Limits and integrals
3. Measures: an attempt at greater generality

(Everything below admits substantial generalization beyond what is literally asserted. Determining the
extent of various possible generalizations is often a task in itself, and is often tangential to the main
enterprise.)

1. What is the issue? What obstacles to overcome?

For most purposes, up until 1800 and even afterward, function meant formula. Also, it was often assumed
without comment that decent functions could be represented by power series.

[1.1] Euler and the wave equation Many people had considered the (linear) wave equation

(∆x −
∂2

∂t2
)u = 0

where the spatial variable x ∈ Rn (mostly n = 1, 2, 3) and time t ∈ R, and Laplace’s operator is

∆x =
∂2

∂x21
+ . . .+

∂2

∂x2n

For one-dimensional spatial variable, the wave operator factors:

∂2

∂x2
− ∂2

∂t2
=
( ∂
∂x

+
∂

∂t

)
◦
( ∂
∂x
− ∂

∂t

)
=
( ∂
∂x
− ∂

∂t

)
◦
( ∂
∂x

+
∂

∂t

)
Thus, apparently, any function u of the form

u(x, t) = f(x− t) + g(x+ t)

is a solution. The two pieces are incoming and outgoing components of the solution.

The cognitive dissonance arises when one imagines, as apparently Euler did, that such a formula makes sense
even when f and g are not differentiable (in a classical sense).

But there did not seem to be any natural or conceptual way to exclude problemmatical functions f, g from
this formula, and this heated up the discussion of what is a function?

[1.2] A success story: convergent power series By soon after 1800, Abel and others had carefully
proven that power series (real or complex) with a positive radius of convergence r really could be differentiated
correctly by doing the obvious thing, namely, differentiating term by term:

d

dz

∞∑
n=0

cn (z − zo)n =

∞∑
n=0

d

dz
cn (z − zo)n =

∞∑
n=0

cn n(z − zo)n−1 (still convergent in |z − zo| < r)

This completely justified what people had been doing all along.
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[1.3] Fourier 1811-22 and the heat equation The heat equation is

(∆x −
∂

∂t
)u = 0 (with initial condition prescribing u(x, 0))

Especially in the case of one-dimensional spatial variable x confined to a finite interval such as [0, 2π],
Fourier had the inspiration to express an alleged solution as a superposition of eigenfunctions for ∆x on
[0, 2π], namely, constants and sin(nx) and cos(nx) for n = 1, 2, 3, . . .:

u(x, t) = co(t) +
∑
n≥1

(
an(t) cos(nx) + bn(t) sin(nx)

)
This separated variables, and if we imagine we can apply the heat operator termwise,

0 = (∆x −
∂

∂t
)u = −c′o(t) +

∑
n≥1

(
− n2an − a′n) cos(nx) + (−n2bn − b′n) sin(nx)

)
If we believe in uniqueness of such expressions in x, this gives

−c′o = 0 − n2an − a′n = 0 − n2bn − b′n = 0 (for n = 1, 2, 3, . . .)

so co(t) is a constant, and an(t) and bn(t) are constant multiples of e−n
2t:

u(x, t) = −co +
∑
n≥1

e−n
2t
(
an cos(nx) + bn sin(nx)

)
(with constants co, an, bn)

The initial condition at time t presumably determines the constants, by

u(x, 0) = −co +
∑
n≥1

(
an cos(nx) + bn sin(nx)

)
The explicit claim that every function x → u(x, 0) could be represented by such a Fourier series was
appealing, since this device then gave a solution to the heat equation, and would prove uniqueness. But what
is a function?

Soon after his initial epiphany, Fourier also found the correct formulas determining coefficients:

co =
1

2π

∫ 2π

0

u(x, t) dx an =
1

2π

∫ 2π

0

u(x, t) · cos(nx) dx bn =
1

2π

∫ 2π

0

u(x, t) · sin(nx) dx

Further, under relatively mild hypotheses [1] on the smoothness-or-not of x → u(x, 0), Fourier proved that

the series converges pointwise to u(x, 0) and u(x, t) for t > 0. [2]

However, Fourier made much broader claim about the range of functions representable by such series,
revivifying the argument over what is a function?

More technically, there is the issue of the legitimacy of termwise differentiation. Indeed, functions meeting
the conditions for pointwise convergence could have derivatives not meeting the condition, yet termwise
differentiation would still make sense. For example, the periodic sawtooth function is

(sawtooth) =
∑
n≥1

sin(nx)

n

[1] For example, if a function is piecewise C1 except for finitely-many jumps in [0, 2π], where left and right derivatives

exist, then, away from the jumps, the Fourier series converges pointwise to the function.

[2] Apparently what is often called the Dirichlet kernel and used to prove this pointwise convergence was in fact used

by Fourier prior to Dirichlet’s 1829 paper proving convergence of Fourier series.
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This converges (not absolutely) to the sawtooth function’s values x − π for 0 < x < 2π. The sawtooth is
differentiable in (0, 2π), but termwise differentiation gives

d

dx
(sawtooth) =

∑
n≥1

sin(nx) (???)

For most values of x ∈ (0, 2π), the summands do not go to 0. Differentiating again should give 0 for
0 < x < 2π, but

d2

dx2
(sawtooth) =

∑
n≥1

n · sin(nx) (???)

and so on. These expressions do not converge pointwise, and cast reasonable doubt on the legitimacy of this
approach.

However, in fact, although these infinite sums of functions do not converge pointwise, they do converge
perfectly well in certain topological vector spaces of (generalized) functions, namely, the Sobolev spaces
discussed below. But this development would have to wait until the 1930s and 1940s.

Another tension arose when people subsequently discovered that the Fourier series of typical continuous
functions would fail to converge pointwise at infinitely many points. (For example, we will prove this via
Baire’s Theorem.)

Yet there is Parseval’s theorem, that for f such that
∫ 2π

0
|f |2 <∞, there is a nice relation between the this

integral of f and its Fourier coefficients:∫ 2π

0

|f |2 = |co|2 +
∑
n≥1

|an|2 + |bn|2

This implies that, even if the partial sums of the Fourier series of such a function do not converge to the
function pointwise, they do converge to the function in the mean-square or L2 metric

dL2(f, g) = |f − g|L2[0,2π] =
(∫ 2π

0

|f(x)− g(x)|2 dx
)1/2

That this is a metric on Co[0, 2π] uses the integral form of the Cauchy-Schwarz-Bunyakowsky inequality, due
to Bunyakowsky. But convergence of a sequence of continuous functions in this L2-metric does not imply
pointwise convergence, since the pointwise evaluation maps maps f → f(xo) are not continuous: there are
sequences {fn} of continuous functions that are Cauchy sequences in the L2 topology, but so that {fn(xo)}
is not a Cauchy sequence of real or complex numbers.

Also, simple pointwise convergence does not imply L2 convergence in general, and simple pointwise
convergence does not imply convergence in the sup-norm topology on Co[0, 2π], either.

The seemingly natural notion of pointwise convergence is not all that we had hoped it would be. As a corollary,
there are problems if we exclusive think of functions as producing pointwise values: there are L2 limits of
Cauchy sequences of continuous functions that lack well-defined pointwise limits.

[1.4] Sturm and Liouville 1830s eigenfunction expansions On the heels of Fourier’s ideas, Sturm and
Liouville had a similar idea about expressing functions f on [0, 2π] in terms of eigenfunctions for differential
operators of the form

Lu = −(pu′)′ + q (with p(x) > 0 on [0, 2π], real-valued q)

with various possible boundary conditions at 0 and 2π. For example, we might require u(0) = u(2π) and
u′(0) = u′(2π) (the periodic case), or we might require u(0) = 0 = u(2π) (the Dirichlet condition).
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That is, they argued first toward the conclusion that the eigenfunction equation

Lu = λ · u (with the boundary conditions)

should have a list 0 ≤ λ1 ≤ λ2 ≤ λ3, . . . of non-negative real numbers such that there would be non-trivial
(real-valued) solutions un to the equation Lu = λn · u and meeting the boundary conditions. Then, when

normalized so that
∫ 2

0
π|un(x)|2 dx = 1, an arbitrary (real-valued) function f on [0, 2π] should be expressible

as

f(x) =
∑
n≥1

(∫ 2π

0

f(t) · un(t) dx
)
· un(x)

Their difficulty at the time was that various notions of convergence were still unsettled, and the linear algebra
needed to express things this clearly had not yet been invented. Heuristics were not made into proofs (of
some assertions) until Steklov 1898-9, and Bocher 1895-6.

By now we know that for
∫ 2π

0
|f(x)|2 dx < +∞, that expansion does converge in the L2-metric, and we think

of the coefficients as being given by inner products of f with the exponentials in the space L2[0, 2π]:

〈f, g〉L2[0,2π] =
1

2π

∫ 2π

0

f(x) · g(x) dx

(with complex conjugation for complex-valued functions). One characterization of the whole space L2[0, 2π]
is as the completion of Co[0, 2π] with respect to the metric obtained from the L2-norm.

But pointwise convergence is potentially confusing: with the Dirichlet condition, the eigenfunctions are

un(x) = sin(nx/2)/
√

2π. But there are many reasonable functions meeting the condition
∫ 2π

0
|f(x)|2 dx <

+∞ that do not vanish at 0 and 2π, for example, the constant function 1. So, in an L2 (mean-square) sense,

1 =
1

2π

∑
n≥1

(∫ 2π

0

1 · sin(nt/2) dx
)
· sin(nx/2) =

1

2π

∑
n=1,3,5,...

sin(nx/2)

2n

but this certainly cannot converge pointwise as the endpoints. It does provably converge pointwise in the
interior.

[1.5] Green’s functions 1828 Another approach to solving linear differential equations Lu = f on Rn,
not only in one dimension like the Sturm-Liouville equations, was conceived by Green about 1828, and has
similar applications to partial differential equations like the heat equation and wave equation.

One way to talk about the method is to refer to a fundamental solution or Green’s function G(x, y) for the
given differential operator L, characterized by solving the differential equation Lu = f by

u(x) =

∫
Rn

G(x, y) f(y) dy

Green’s original idea and subsequent applications arose in physically meaningful situations, problems, so
the sensibility of solutions to problems obtained by such ideas could be confirmed to some degree by direct
observation of physical phenomena.

But, from a mathematical viewpoint, why should any such thing exist?

If we already believe from Sturm-Liouville that there is an orthonormal basis {un} for L2[0, 2π] consisting of
eigenfunctions un for L, in an equation Lu = f expand both u and f in terms of eigenfunctions, computing
coefficients by inner products, as in Fourier’s case:

L
(∑

n

〈u, un〉 · un
)

= Lu = f =
∑
n

〈f, un〉 · un
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Of course, we assume that we can apply L termwise (!), so this gives∑
n

〈f, un〉 · un =
∑
n

〈u, un〉 · Lun =
∑
n

〈u, un〉 · λn · un

Presumably these expansions are unique, so 〈u, un〉 · λn = 〈f, un〉 · un for all n. That is, apparently

u(x) =
∑
n

〈f, un〉
λn

· un(x) =
〈
f(y),

∑
n

un(y)

λn
· un(x)

〉
That is, apparently,

G(x, y) =
∑
n

1

λn
un(x) · un(y)

For that matter, a more scandalous description of G(x, y), but which makes considerable sense in a physical
context where Dirac’s δ idealizes a point-mass, is

LxG(x, y) = δ(x− y) (with a Dirac δ-function)

which would have been essentially impossible to make mathematically rigorous until well into the 20th
century. Nevertheless, if we apply Lx to the eigenfunction expansion, apparently

δ(x− y) = LxG(x, y) = Lx
∑
n

1

λn
un(x) · un(y) =

∑
n

1

λn
Lxun(x) · un(y) =

∑
n

un(x) · un(y)

If true, this would be very convenient. But pointwise it cannot make sense.

Still, in one dimension, reasonable second-order differential operators L on finite intervals have Green’s
functions obtained in a straightforward way from two linearly independent solutions, based on the idea that
d2

dx2 |x| = 2δ, as follows. Find one solution u to Lu = 0 with u(0) = 0, and a solution v to Lv = 0 with
v(2π) = 0, and splice them together so that their values match at a point x ∈ [0, 2π], but their derivatives
differ suitably, creating a corner.

For example, for the equation −u′′ = f on [0, 2π] with boundary conditions u(0) = 0 = u(2π), solutions of
u′′ = 0 are just linear functions, the solution vanishing at the left edge is x, and the solution vanishing at
the right edge is 2π − x. To find the linear combination agreeing at y and derivatives differing by 1, solve
for coefficients a, b in  a · y = b · (2π − y)

a+ 1 = −b

and obtain

G(x, y) =


(
y
2π − 1

)
· x (for 0 ≤ x ≤ y)

− y
2π · (2π − x) (for y ≤ x ≤ 2π)

In two dimensions or higher, the geometry is more complicated. Nevertheless, it has been appreciated for a
long time, in one way or another, that

∆ log |x| = (constant) · δ (in R2)

∆ 1
|x|n−2 = (constant) · δ (in Rn, n ≥ 3)

with elementary constants. An elementary computation certainly shows that the Laplacian annihilates those
functions away from 0, but we are lacking a persuasive or conceptual argument that at 0 we get δ.

5



Paul Garrett: Preview: Part 00, Real Analysis 2016-17 (September 15, 2016)

Looking at that one-dimensional situation further, apparently
(
y
2π − 1

)
· x (for 0 ≤ x ≤ y)

− y
2π · (2π − x) (for y ≤ x ≤ 2π)

= G(x, y) =
1

2π

∑
n≥1

sin
nx

2
·

sin ny
2

−n2/4

and applying ∆ gives

δ(x− y) =
1

2π

∑
n≥1

sin
nx

2
· sinny

2
(???)

But the other eigenfunction expansion similarly apparently gives

δ(x− y) =
1

2π
·
(

1 +
∑
n≥1

sinnx+ cosnx
)

(???)

and the two expressions are not easily comparable. The heuristic is attractive and useful, but a more refined
viewpoint is obviously needed to avoid seeming paradoxes.

[1.6] Heaviside 1880s Also used δ as an idealization of an impulse in electrical circuits and similar, with
great success. Despite his successes in predicting observable phenomena, mathematicians at the time were
apparently disdainful of the mathematics itself, which was unrigorizable at the time.

[1.7] Dirac 1928-9 In nascent quantum physics, Dirac not only used point-masses and point-charges,
but geometrically more complicated generalized functions, and did subtle computations that correctly
predicted physical phenomena. In contrast to Hilbert’s and Schmidt’s conversion of differential operators to
integral operators with better continuity properties, Dirac directly manipulated differential operators without
apparent concern for their not being everywhere defined or continuous.

Partly in reaction to Dirac’s physics success, careful rigorization of unbounded/discontinuous operators,
modelling differential operators, was accomplished by Stone and von Neumann by 1930, and more simply in
important special situations by Friedrichs in 1934. In 1934 and thereafter, Sobolev created a basic framework
adequate to deal with certain generalized functions.

[1.8] Kronig-Penney 1931, Bethe-Peierls 1935 ... but Dirac’s success prompted even-more-audacious
mathematics: idealizing δ as a very-short-range-acting potential, to model nuclear foces (as opposed to
electromagnetism or gravity), physicists considered singular potential equations

(−∆ + δ)u = f

The intention is fairly clear, but it is not obvious how to be sure one is manipulating such a thing correctly
from a mathematical viewpoint. Still, testable physical conclusions were correctly reached, and Nobel prizes
were won.

[1.9] Fourier transforms, Plancherel 1910, Wiener 1933, Bochner 1932 In 1910, Plancherel proved
the basic fact that Fourier transform on reasonable functions f with

∫
R |f | < ∞ gave an L2(R)-isometry.

That is, with

f̂(ξ) =
1√
2π

∫
R
e−iξx f(x) dx

the L2 norm of f̂ is equal to that of f . This allows the Fourier transform to be extended by continuity to
give a map of L2(R) to itself, although the literal integral does not converge well for general functions in L2

but not in L1. Part of the lesson is that maps given by integrals cannot be taken literally, but, happily, need
not be taken literally.
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Fourier inversion is that f can be reconstructed from its Fourier transform:

f(x) =
1√
2π

∫
R
eiξx f̂(ξ) dξ

There is a non-trivial issue of the sense of convergence of the integral! A naive but reasonable attempt to
prove Fourier inversion is the obvious interchange of the order of integration:

1√
2π

∫
R
eiξx f̂(ξ) dξ = f(x) =

1√
2π

∫
R
eiξx

(∫
R
e−iξuf(v) dv

)
dξ =

1

2π

∫
R
f(v)

(∫
R
eiξ(x−v) dξ

)
dv

If we could believe various heuristics that the inner integral is 2πδ(x− v), we’d be done. Indeed, this can be
justified later, but Fourier inversion is prior.

These examples and others raise basic questions:

What kind of functions can be integrated?

What kind of infinite-sum expansions of functions are legitimate?

What kind of convergence do infinite-sum expansions have?

2. Limits and integrals

Archetypical issue: integrating on a finite interval [a, b] on the real line,

when is lim
n

∫ b

a

fn =

∫ b

a

lim
n
fn ???

And limit in what sense? And what kind of functions can be integrated?

As a positive example, if the functions fn are continuous, and if the limit is uniformly pointwise, meaning
that for every ε > 0 there is no such that for every m,n ≥ no and for every x ∈ [a, b], the limit limn fn is
itself a continuous function, and, indeed, the integral of the limit is the limit of the integrals. For continuous
functions on finite intervals, the Riemann integral behaves well with uniformly pointwise limits, and gives
us a description of integral that allows us to prove the previous assertion.

However, even when the functions fn are very nice, if the limit is merely pointwise, but not uniformly so,
then the limit function need not be continuous, and the limit of the integrals need not be the integral of the
limit.

Also, a pointwise limit of continuous functions need not be continuous! But we can salvage a little, even
though the issue will not go away:

[2.1] Theorem: (Dini) For a pointwise monotone (increasing or decreasing) sequence of real-valued
continuous functions fn on a finite interval [a, b], if the limit is continuous, then the limit is uniform pointwise.

The classic example of failure of the integral of the (pointwise) limit to be the limit of the integrals is the
sequence of tent functions fn just to the right of 0: fn(x) = 0 on [ 2n , 1], and on [0, 2

n ] is a triangular tent of
height n, to make the area under it be 1:

fn(x) =



0 (for x ≤ 0)

n2 · x (for 0 ≤ x ≤ 1
n )

n− n2 · (x− 1
n ) (for 1

n ≤ x ≤
2
n )

0 (for x ≥ 2
n )
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For every individual x ∈ R, the pointwise limit is limn fn(x) = 0, but the integral of the zero function is not
1.

On the other hand, for g ∈ Co(R), while the pointwise limit of these tent functions fn is 0 everywhere,

lim
n

∫
R
fn(x) g(x) dx = g(0) = δ(g)

That is, in a very tangible sense, fn −→ δ, where δ is the Dirac delta function at 0, which we imagine
produces g(0) when integrated against a continuous function g.

Measure theory can accommodate the Dirac delta, because it is a kind of measure. But its derivative [3] is
not a measure. Nevertheless, using tent-functions, we can make a sequence of continuous functions hn that
go to 0 everywhere pointwise, but so that

lim
n

∫
R
hn(x) g(x) dx = g′(0)

for differentiable g with continuous derivative g′. Specifically, let hn be a downward-pointing tent to the left
together with an upward-pointing tent to the right, with each tent having area n/2 (rather than 1):

hn(x) =



0 (for x ≤ − 1
n )

−2n3 · (x+ 1
n ) (for − 1

n ≤ x ≤ −
1
2n )

2n3 · x (for − 1
2n ≤ x ≤

1
2n )

n2 − 2n3 · (x− 1
2n ) (for 1

2n ≤ x ≤
1
n )

0 (for x ≥ 1
n )

Among other things, such examples are further evidence for the unfortunate limitations of the notion of
pointwise values and limits.

3. Measures: one attempt at greater generality

Motivated by 19th century difficulties related to Fourier series, eigenfunction expansions, and related matters,
soon after 1900 several people developed ideas to deal with pointwise limits of sequences of somewhat larger
classes of functions.

The Borel subsets of R is the smallest collection of subsets of R closed under taking countable unions, under
countable intersections, under complements, and containing all open and closed subsets of R. This is also
called the Borel σ-algebra in R.

There is traditional terminology for certain simple types of Borel sets. For example a Gδ is a countable
intersection of open sets, while an Fσ is a countable union of closed sets. The notation can be iterated: a
Gδσ is a countable union of countable intersections of opens, and so on. We will not need this.

A Borel measure µ is a way of assigning (often positive) real numbers (measures) to Borel sets, in a fashion
that is countably additive for disjoint unions:

µ(E1 ∪ E2 ∪ E3 ∪ . . .) = µ(E1) + µ(E2) + µ(E3) + . . . (for disjoint Borel sets E1, E2, E3, . . .)

[3] And we do not mean derivative of Dirac delta in the measure-theory context of Radon-Nikodym derivative, either.
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A prototype is Lebesgue (outer) measure of a Borel set E ⊂ R, described by

µ(E) = inf{
∞∑
n=1

|bn − an| : E ⊂
∞⋃
n=1

(an, bn)}

That is, it is the inf of the sums of lengths of the intervals in a countable cover of E by open intervals. For
example, any countable set has (Lebesgue) measure 0.

We can consider larger classes of real-valued or complex-valued functions than just continuous ones, for
example, various classes of measurable functions. The simplest useful choice is: A real-valued or complex-
valued function f on R is Borel-measureable when the inverse image f−1(U) is a Borel set for every open set
U in the target space.

It is occasionally useful to also allow the target space for functions to be the two-point compactification
Y = {−∞}∪R∪+∞ of the real line, with neighborhood basis −∞∪ (−∞, a) at −∞ and (a,+∞)∪ {+∞}
at +∞ when we need to allow functions to blow up in some fashion.

A positive indicator:

[3.1] Theorem: Every pointwise limit of Borel-measurable functions fn is Borel-measurable.

Verifying that we have not inadvertently needlessly included functions wildly unrelated to continuous
functions:

[3.2] Theorem: (Lusin) Continuous functions approximate Borel-measurable functions well: given Borel-
measurable real-valued or complex-valued f on R, for every ε > 0 and for every Borel subset Ω ⊂ R of finite
Lebesgue measure, there is a relative closed E ⊂ Ω such that µ(Ω− E) < ε, and f |E is continuous.

Not much better can be done than Lusin’s theorem says: for example, continuous approximations to the
Heaviside step function

H(x) =

 0 for x < 0

1 for x ≥ 0

have to go from 0 to 1 somewhere, by the Intermediate Value Theorem, so will be in ( 1
4 ,

3
4 ) on an open set

of strictly positive measure.

[3.3] Remark: It turns out that the everyday use of measure theory, measurable functions, and so on, does
not proceed by way of Lusin’s theorem or similar direct connections with continuous functions, but, rather,
by direct interaction with the more general ideas.

A sequence {fn} of Borel-measurable functions on R converges (pointwise) almost everywhere when there is
a Borel set N ⊂ R of measure 0 such that {fn} converges pointwise on R−N .

[3.4] Theorem: (Severini, Egoroff) Pointwise convergence of sequences of Borel-measurable functions is
approximately uniform convergence: given a almost-everywhere pointwise-convergent sequence {fn} of Borel-
measurable functions on R, for every ε > 0 and for every Borel subset Ω ⊂ R of finite Lebesgue measure,
there is a Borel subset E ⊂ Ω such that {fn} converges uniformly pointwise on E.

[3.5] Remark: Again, despite the connection that the Severini-Egoroff theorem makes between pointwise
and uniform pointwise convergence, this idea turns out not to be the way to understand convergence
of measurable functions. Instead, the game becomes ascertaining additional conditions that guarantee
convergence of integrals, as just below.

With such notion of measure, there is a corresponding integrability and integral, due to Lebesgue. It amounts
to replacing the literal rectangles used in Riemann integration by more general rectangles, with bases not
just intervals, but measurable sets, as follows.
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The characteristic function or indicator function chE or χE of a measurable subset E ⊂ R is 1 on E and
0 off. A simple function is a finite, positive-coefficiented, linear combination of characteristic functions of
bounded measurable sets, that is, is of the form

(simple function) s =

n∑
i=1

ci · chEi (with ci ≥ 0)

The integral of s is what one would expect:∫
s dµ =

∫ ( n∑
i=1

ci · chEi

)
dµ =

∑
i

ci · µ(Ei)

Next, the measure of a non-negative function f is the sup of the integrals of all simple functions between f
and 0: ∫

f dµ = sup
0≤s≤f

∫
s dµ (sup over simple s with 0 ≤ s(x) ≤ f(x) for all x)

After proving that the positive and negative parts f+ and f− of Borel measurable real-valued f are again
Borel measurable, ∫

f dµ =

∫
f+ dµ−

∫
(−f−) dµ

Similarly, for complex-valued f , break f into real and imaginary parts.

There are details to be checked:

[3.6] Theorem: Borel-measurable functions f, g taking values in [0,+∞] are integrable, in the sense that
the previous prescription yields an assignment f →

∫
R f ∈ [0,+∞] such that for positive constants a, b∫

R
(af + bg) = a

∫
R
f + b

∫
R
g (for all a, b ≥ 0)

For complex-valued Borel-measurable f, g, the absolute values |f | and |g| are Borel-measurable. Assuming∫
R |f | <∞ and

∫
R |g| <∞, for any complex a, b∫

R
(af + bg) = a

∫
R
f + b

∫
R
g

Now we have practical criteria for the integral of a pointwise sequence to be the limit of the integrals:

[3.7] Theorem: (Lebesgue’s dominated convergence) For Borel-measurable fn with pointwise limit f , if
there is non-negative Borel-measurable real-valued g such that |fn(x)| ≤ g(x) for all x, and if g is integrable
in the sense that

∫
R g < +∞, then the pointwise limit is integrable, and

lim
n

∫
R
fn =

∫
R

lim
n
fn

[3.8] Theorem: (Monotone convergence) For measurable extended-real-valued fn with (extended-real)
pointwise limit f , if fn(x) ≤ fn+1(x) for all x and for all indices n, then

lim
n

∫
R
fn =

∫
R

lim
n
fn

(although the limit may be +∞).
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Less decisive-appearing, but in fact background for the previous two results, is

[3.9] Theorem: (Fatou’s lemma) For Borel-measurable fn with values in [0,+∞], the pointwise f(x) =
lim infn fn(x) is Borel-measurable, and∫

lim inf
n
fn(x) dx ≤ lim inf

n

∫
fn

More interesting, and more useful: after figuring out how to characterize measure on product spaces,

[3.10] Theorem: (Fubini-Tonelli) For complex-valued measurable f, g, if any one of
∫
R
∫
R |f(x, y)| dx dy,∫

R
∫
R |f(x, y)| dy dx, or

∫
R×R |f(x, y)| dvol is finite, then the all are finite, and are equal. For [0,+∞]-valued

functions f , we have ∫
R

∫
R
f(x, y) dx dy =

∫
R

∫
R
f(x, y) dy dx =

∫
R×R

f(x, y) dvol

although the values may be +∞.
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