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1. Examples: spaces Lp

2. Convexity and inequalities

1. Examples: spaces Lp

Given a measure space X, for 1 ≤ p <∞ the usual Lp spaces are

Lp(X) = {measurable f : |f |Lp <∞} modulo ∼

with the usual Lp norm

|f |Lp =

(∫
X

|f |p
)1/p

and associated metric
d(f, g) = |f − g|Lp

taking the quotient by the equivalence relation

f ∼ g if f − g = 0 off a set of measure 0

[1.1] Remark: These Lp functions have inevitably ambiguous pointwise values, in conflict with the naive
formal definition of function.

A simple instance of this construction is

`p = {complex sequences {ci} with
∑
i

|ci|p <∞}

with norm |(c1, c2, . . .)|`p = (
∑

i |ci|p)
1/p

. The analogue of the following theorem for `p is more elementary.

[1.2] Theorem: The space Lp(X) is a complete metric space.

[1.3] Remark: In fact, as used in the proof, a Cauchy sequence fi in Lp(X) has a subsequence converging
pointwise off a set of measure 0 in X.

Proof: The triangle inequality here is Minkowski’s inequality. To prove completeness, choose a subsequence
fni such that

|fni − fni+1 |p < 2−i

and put

gn(x) =
∑

1≤i≤n

|fni+1
(x)− fni

(x)|

and
g(x) =

∑
1≤i<∞

|fni+1
(x)− fni

(x)|

The infinite sum is not necessarily claimed to converge to a finite value for every x. The triangle inequality
shows that |gn|p ≤ 1. Fatou’s Lemma asserts that for [0,∞]-valued measurable functions hi∫

X

(
lim inf

i
hi

)
≤ lim inf

i

∫
X

hi
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Thus, |g|p ≤ 1, so is finite. Thus,

fn1
(x) +

∑
i≥1

(fni+1
(x)− fni

(x))

converges for almost all x ∈ X. Let f(x) be the sum at points x where the series converges, and on the
measure-zero set where the series does not converge put f(x) = 0. Certainly

f(x) = lim
i
fni

(x) (for almost all x)

Now prove that this almost-everywhere pointwise limit is the Lp-limit of the original sequence. For ε > 0
take N such that |fm − fn|p < ε for m,n ≥ N . Fatou’s lemma gives∫

|f − fn|p ≤ lim inf
i

∫
|fni
− fn|p ≤ εp

Thus f − fn is in Lp and hence f is in Lp. And |f − fn|p → 0. ///

[1.4] Theorem: For a locally compact Hausdorff topological space X with positive regular Borel measure
µ, the space C0

c (X) of compactly-supported continuous functions is dense in Lp(X,µ).

Proof: From the definition of integral attached to a measure, an Lp function is approximable in Lp metric
by a simple function, that is, a measurable function assuming only finitely-many values. That is, a simple
function is a finite linear combination of characteristic functions of measurable sets E. Thus, it suffices to
approximate characteristic functions of measurable sets by continuous functions. The assumed regularity of
the measure gives compact K and open U such that K ⊂ E ⊂ U and µ(U−E) < ε, for given ε > 0. Urysohn’s
lemma says that there is continuous f identically 1 on K and identically 0 off U . Thus, f approximates the
characteristic function of E. ///

[1.5] Corollary: For locally compact Hausdorff X with regular Borel measure µ, Lp(X,µ) is the Lp-metric
completion of Co

c (X), the compactly-supported continuous functions. ///

[1.6] Remark: Defining Lp(X,µ) to be the Lp completion of Co
c (X) avoids discussion of ambiguous values

on sets of measure zero.

2. Convexity and inequalities

A function f on an interval (a, b) ⊂ R is convex when its graph bends upward, in the sense that a line
segment connecting two points on the graph lies above the graph. That is,

f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y) (for 0 ≤ t ≤ 1 and a < x < y < b)

The prototype is the exponential function x→ ex.

[2.1] Claim: Convex R-valued functions on an open interval (a, b) (allowing a = −∞ and/or b = +∞) are
continuous.

Proof: Let g be continuous on (a, b) and take x ∈ (a, b). Fix any s, t such that a < s < x < t < b. For y in
the range x < y < t, the point (y, g(y)) is on or above the line through (s, g(s)) and (x, g(x)), and is below
the line through (x, g(x)) and (t, g(t)), so g(y)→ g(x) as y → x+. For s < y < x, the same argument gives
left-continuity. ///

[2.2] Theorem: (Jensen’s inequality) Let X be a measure space with positive measure of total measure 1.
Let f ∈ L1(X) be an R-valued function on X with a < f(x) < b for all x ∈ X, where a, b can also be −∞
and +∞. For convex g on (a, b),

g
(∫

X

f
)
≤
∫
X

g · f
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Proof: First, a < f(x) < b gives a <
∫
X
f < b. The convexity condition can be rewritten as the condition

that slopes of secants increase from left to right. Thus, for example,

g(y)− g(x)

y − x
≤ g(z)− g(y)

z − y
(for x < y < z inside (a, b))

Applying this with y =
∫
X
f ,

g(
∫
f)− g(x)∫
f − x

≤
g(z)− g(

∫
f)

z −
∫
f

(for all a < x <
∫
X
f and for all

∫
X
f < z < b)

With

S = sup
a<x<

∫
f

g(
∫
f)− g(x)∫
f − x

we have

g(
∫
f)− g(x)∫
f − x

≤ S ≤
g(z)− g(

∫
f)

z −
∫
f

(for all a < x <
∫
X
f and for all

∫
X
f < z < b)

Thus, from the left half of the latter inequality,

g(x) ≥ g(

∫
X

f) + S · (x−
∫
X

f) (for a < x <
∫
X
f)

and from the right half

g(z) ≥ g(

∫
X

f) + S · (z −
∫
X

f) (for
∫
X
f < z < b)

Thus,

g(w) ≥ g(

∫
X

f) + S · (w −
∫
X

f) (for all w in the range a < w < b)

In particular, letting w = f(x) now with x ∈ X,

g(f(x)) ≥ g(

∫
X

f) + S · (f(x)−
∫
X

f) (for all w in the range a < w < b)

Since the convex function g is continuous, g ◦ f is measurable. Integrating in x ∈ X, using the fact that the
total measure is 1, ∫

X

g ◦ f ≥ g(

∫
X

f) + S · (
∫
X

f −
∫
X

f) = g(

∫
X

f) + S · 0

as claimed. ///

[2.3] Corollary: (Arithmetic-geometric mean inequality) For positive real numbers a1, . . . , an,

(a1a2 . . . an)1/n ≤ a1 + a2 + . . .+ an
n

Proof: In Jensen’s inequality, take g(x) = ex, take X a finite set with n (distinct) elements {x1, . . . , xn},
with each point having measure 1/n, and f(xi) = log ai. Jensen’s inequality gives

exp
( log a1 + . . .+ log an

n

)
≤ elog a1 + . . .+ elog an

n
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which gives the assertion. ///

Conjugate exponents are numbers p, q > 1 such that

1

p
+

1

q
= 1

For example, p and p
p−1 are conjugate exponents.

Generalizing the Cauchy-Schwarz-Bunyakowsky inequality,

[2.4] Corollary: (Hölder) For conjugate exponents p, q and [0,+∞]-valued measurable functions f, g,∫
X

f · g ≤
(∫

X

fp
) 1

p ·
(∫

X

gq
) 1

q

Proof: The assertion is trivial if either integral on the right-hand side is +∞ or 0, so suppose the two
quantities

I =
(∫

X

fp
) 1

p

J =
(∫

X

gq
) 1

q

are finite and non-zero. Renormalize by taking ϕ = f/I and ψ = g/J , so that
∫
ϕp = 1 =

∫
ψq. For x ∈ X

with 0 < ϕ(x) <∞ and 0 < ψ(x) <∞, there are real numbers u, v such that eu/p = ϕ(x) and ev/q = ψ(x).
Invoking Jensen’s inequality on a measure space with just two points with measures 1

p and 1
q , using the

convexity of the exponential function,

ϕ(x)ψ(x) = e
u
p+ v

q ≤ eu

p
+
ev

q
=

ϕ(x)p

p
+
ψ(x)q

q

Integrating, ∫
X

ϕ · ψ ≤
∫
X

ϕ(x)p

p
+
ψ(x)q

q
=

1

p
+

1

q
= 1

From the renormalization, we are done. ///

For the triangle inequality in Lp spaces for general p, we need

[2.5] Corollary: (Minkowski) For 1 < p < +∞ and [0,+∞]-valued measurable functions f, g,(∫
X

(f + g)p
) 1

p ≤
(∫

X

fp
) 1

p

+
(∫

X

gp
) 1

p

Proof: We prove Minkowski’s inequality from Hölder’s, using the conjugate exponents p and q = p
p−1 .∫

(f + g)p =

∫
f · (f + g)p−1 +

∫
g · (f + g)p−1

≤
(∫

fp
) 1

p ·
(∫

(f + g)(p−1)q
) 1

q

+
(∫

gp
) 1

p ·
(∫

(f + g)(p−1)q
) 1

q

=
[( ∫

fp
) 1

p

+
(∫

gp
) 1

p
]
·
(∫

(f + g)p
) p−1

p

Dividing through by
( ∫

(f + g)p
) p−1

p gives Minkowski’s inequality. ///
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