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1. Euclidean spaces

Let Rn be the usual Euclidean n-space, that is, ordered n-tuples x = (x1, . . . , xn) of real numbers. In
addition to vector addition (termwise) and scalar multiplication, we have the usual distance function on Rn,
in coordinates x = (x1, . . . , xn) and y = (y1, . . . , yn), defined by

d(x, y) =
√

(x1 − y1)2 + . . .+ (xn − yn)2

Of course there is visible symmetry d(x, y) = d(y, x), and positivity: d(x, y) = 0 only for x = y. The triangle
inequality

d(x, z) ≤ d(x, y) + d(y, z)

is not trivial to prove. In the one-dimensional case, the triangle inequality is an inequality on absolute values,
and can be proven case-by-case. In Rn, it is best to use the following set-up. The usual inner product (or
dot-product) on Rn is

x · y = 〈x, y〉 = 〈(x1, . . . , xn), (y1, . . . , yn)〉 = x1y1 + . . .+ xnyn

and |x|2 = 〈x, x〉. Context distinguishes the norm |x| of x ∈ Rn from the usual absolute value |c| on real or
complex numbers c. The distance is expressible as

d(x, y) = |x− y|

The inner product 〈x, y〉 is linear in both arguments: in the first argument

〈x+ x′, y〉 = 〈x, y〉+ 〈x′, y〉 〈cx, y〉 = c · 〈x, y〉 (for x, x′, y ∈ Rn and scalar c)

and similarly for the second argument. The triangle inequality will be a corollary of the following universally-
useful inequality:

[1.1] Claim: (Cauchy-Schwarz-Bunyakowsky inequality) For x, y ∈ Rn,

|〈x, y〉| ≤ |x| · |y|

Assuming that neither x nor y is 0, strict inequality holds unless x and y are scalar multiples of each other.

Proof: If |y| = 0, the assertions are trivially true. Thus, take y 6= 0. With real t, consider the quadratic
polynomial function

f(t) = |x− ty|2 = |x|2 − 2t〈x, y〉+ t2|y|2
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Certainly f(t) ≥ 0 for all t ∈ R, since |x − ty| ≥ 0. Its minimum occurs where f ′(t) = 0, namely, where
−2〈x, y〉+ 2t|y|2 = 0. This is where t = 〈x, y〉/|y|2. Thus,

0 ≤ (minimum) ≤ f(〈x, y〉/|y|2) = |x|2 − 2
〈x, y〉
|y|2

〈x, y〉+
( 〈x, y〉
|y|2

)2
· |y|2 = |x|2 −

( 〈x, y〉
|y|2

)2
· |y|2

Multiplying out by |y|2,
0 ≤ |x|2 · |y|2 − 〈x, y〉2

which gives the inequality. Further, for the inequality to be an equality, it must be that |x− ty| = 0, so x is
a multiple of y. ///

[1.2] Remark: We did not use properties of Rn, only of the inner product!

[1.3] Corollary: (Triangle inequality) For x, y, z ∈ Rn,

|x+ y| ≤ |x|+ |y|

Therefore,

d(x, z) = |x− z| = |(x− y)− (z − y)| ≤ |x− y|+ |z − y| = d(x, y) + d(y, z)

Proof: With the Cauchy-Schwarz-Bunyakowsky inequality in hand, this is a direct computation:

|x+ y|2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉 = |x|2 + 2〈x, y〉+ |y|2 ≤ |x|2 + 2|〈x, y|〉+ |y|2

≤ |x|2 + 2|x| · |y|+ |y|2 = (|x|+ |y|)2

Taking positive square roots gives the result. ///

The open ball B of radius r > 0 centered at a point y is

B = {x ∈ Rn : d(x, y) < r}

The closed ball B of radius r > 0 centered at a point y is

B = {x ∈ Rn : d(x, y) ≤ r}

Obviously in many regards the two are barely different from each other. However, the fact that the closed
ball includes its boundary (in both an intuitive an technical sense as below) the sphere

Sn−1 = {x ∈ Rn : d(x, y) = r}

while the open ball does not. A different distinction is what we’ll exploit most directly:

[1.4] Corollary: For any point x in an open ball B in Rn, for sufficiently small radius ε > 0 the open ball
of radius ε centered at x is contained in B.

Proof: This is essentially the triangle inequality. Let B be the open ball of radius r centered at y. Then
x ∈ B if and only if |x− y| < r. Thus, we can take ε > 0 such that |x− y|+ ε < r. For |z − x| < ε, by the
triangle inequality

|z − y| ≤ |z − x|+ |x− y| < ε+ |x− y| < r

That is, the open ball of radius ε at x is inside B. ///
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An open set in Rn is any set with the property observed in the latter corollary, namely a set U in Rn is open
if for every x in U there is an open ball centered at x contained in U .

This definition allows us to rewrite the epsilon-delta definition of continuity in a useful form:

[1.5] Claim: A function f : Rm → Rn is continuous if and only if the inverse image

f−1(U) = {x ∈ Rm : f(x) ∈ U}

of every open set U in Rn is open in Rm. (We prove this below for general metric spaces.) ///

Some properties of open sets in Rn that will be abstracted:

[1.6] Claim: The union of an arbitrary set of open subsets of Rn is open. The intersection of a finite set of
open subsets of Rn is open.

Proof: A point x ∈ Rn is in the union U of an arbitrary set {Uα : α ∈ A} of open subsets of Rn exactly
when there is some Uα so that x ∈ Uα. Then a small-enough open ball B centered at x is inside Uα, so
B ⊂ Uα ⊂ U .

For x in the intersection I = U1 ∩ . . .∩Um of a finite number of opens, let εj > 0 such that the open εj-ball
at x is contained in Uj . Let ε be the minimum of the εj . The minimum of a finite set of (strictly) positive
real numbers is still (strictly) positive, so ε > 0, and the ε-ball at x is contained inside every εj-ball at x, so
is contained in the intersection. ///

One of many equivalent ways to say that a set E in Rn is bounded is that it is contained in some (sufficiently

large) ball. [1] At various technical points in advanced calculus, we find ourselves caring about closed and

bounded sets, and perhaps proving the Heine-Borel property or Bolzano-Weierstraß property [2]

[1.7] Theorem: A set E in Rn is closed and bounded if and only if every sequence of points in E has a
convergent subsequence. ///

2. Metric spaces

By design, the previous discussion of Euclidean spaces made minimal use of particular features of Euclidean
space. This allows abstraction of some relevant features in a manner that uses our intuition about Euclidean
spaces to suggest things about less familiar spaces. The process of abstraction has several different stopping
places, and this section looks at one of the first.

We can abstract the distance function on Rn usefully, as follows. For a set X be a set, a non-negative-real-
valued function

d : X ×X −→ R

is a distance function if it satisfies the conditions
d(x, y) ≥ 0 (with equality only for x = y) (positivity)

d(x, y) = d(y, x) (symmetry)

d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

[1] A few moments’ thought show that it does not matter where the ball is centered, nor whether the ball is closed

or open.

[2] This property is not at all trivial to prove, especially from an elementary viewpoint.
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for all points x, y, z ∈ X. Such a distance function is also called a metric. The set X with the metric d is a
metric space.

In analogy with the situation for R and Rn, a sequence {xn} in a metric space X is convergent to x ∈ X
when, for every ε > 0, there is no such that, for all n ≥ no, |xn − x| < ε. Likewise, a sequence {xn} in X
is a Cauchy sequence when, for all ε > 0, there is no such that for all m,n ≥ no, |xm − xn| < ε. A metric
space is complete if every Cauchy sequence is convergent.

The following standard lemma makes a bit of intuition explicit:

[2.1] Lemma: Let {xi} be a Cauchy sequence in a metric space X, d converging to x in X. Given ε > 0,
let N be sufficiently large such d(xi, xj) < ε for i, j ≥ N . Then d(xi, x) ≤ ε for i ≥ N .

Proof: Let δ > 0 and take j ≥ N also large enough such that d(xj , x) < δ. Then for i ≥ N by the triangle
inequality

d(xi, x) ≤ d(xi, xj) + d(xj , x) < ε+ δ

Since this holds for every δ > 0 we have the result. ///

[2.2] Example: Variants of the usual Euclidean metric on Rn also make sense:

d1(x, y) = |x1 − y1|+ . . .+ |xn − yn| d∞(x, y) = max
i
|xi − yi|

In fact, the triangle inequality for these metrics are easy to prove, needing just the triangle inequality for
the absolute value on R. Later, we will see [3] that

dp(x, y) =
(
|x1 − y1|p + . . .+ |xn − yn|p

)1/p
(for 1 ≤ p <∞)

also gives a metric.

[2.3] Example: A discrete set or discrete metric space X is one in which (roughly) no two distinct points
are close to each other. That is, for each x ∈ X there should be a bound δx > 0 such that d(x, y) ≥ δx for
all y 6= x in X. For example, the set Z of integers, with the natural distance

d(x, y) = |x− y| (with usual absolute value)

has the property that |x− y| ≥ 1 for distinct integers. Every discrete metric space is complete.

[2.4] Example: Any set X can be made into a discrete metric space by defining

d(x, y) =

{
1 (for x 6= y)
0 (for x = y)

This is obviously positive and symmetric, and satisfies the triangle inequality condition for silly reasons.
Little is learned from this example except that it is possible to do such things.

[2.5] Example: The collection Co[a, b] of continuous functions [4] ) on an interval [a, b] on the real line can
be given the metric

d(f, g) = sup
x∈[a,b]

|f(x)− g(x)|

[3] The triangle inequality for such metrics is an instance of the Hölder inequality.

[4] Throughout discussion of these examples, it doesn’t matter much whether we think of real-valued functions or

complex-valued functions.
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Positivity and symmetry are easy, and the triangle inequality is not hard, either. This metric space is
complete, because a Cauchy sequence is a uniformly pointwise convergent sequence of continuous functions.

[2.6] Example: The collection Co(R) of continuous functions [5] on the whole real line does not have an
obvious candidate for a metric, since the sup metric of the previous example may give infinite values. Yet
there is the metric

d(f, g) =

∞∑
n=1

2−n
sup|x|≤n |f(x)− g(x)|

1 + sup|x|≤n |f(x)− g(x)|

This metric space is complete, for similar reasons as Co[a, b].

[2.7] Example: A sort of infinite-dimensional analogue of the standard metric on Rn is the space `2, the
collection of all sequences α = (α1, α2, . . .) of complex numbers such that

∑
n≥1 |αn|2 < +∞. The metric is

d(α, β) =

√∑
n≥1

|αn − βn|2

In fact, `2 is a vector space, being closed under addition and under scalar multiplication, with inner product

〈α, β〉 =
∑
n≥1

αn · βn

Cauchy-Schwarz-Bunyakowsky shows that the latter sum converges absolutely. The associated norm is
|α| = 〈α, α〉 12 , and d(α, β) = |α− β|. The Cauchy-Schwarz-Bunyakowsky holds for `2, by the same proof as
given earlier, and proves the triangle inequality. This metric space is complete, as we show a little later.

[2.8] Example: For 1 ≤ p <∞, the sequence space `p is

`p = {x = (x1, x2, . . .) :

∞∑
i=1

|xi|p <∞}

with metric

dp(x, y) =
( ∞∑
i=1

|xi − yi|p
)1/p

Proof of the triangle inequality needs Hölder’s inequality, and we will take care of this later. These metric
spaces are complete, as we see later. Unlike the case of varying metrics on Rn, the underlying sets `p are
not the same, and the topologies are all different. For example, `2 is strictly larger than `1.

[2.9] Example: Even before having a modern notion of measure and integral, an analogue of `2 can be
formulated: on Co[a, b], form an inner product

〈f, g〉 =

∫ b

a

f(x) g(x) dx

It is easy to check that this does give a hermitian inner product. The L2 norm is |f |L2 = 〈f, f〉 12 , and the
distance function is d(f, g) = |f−g|. The basic properties of a metric are immediate, except that the triangle
inequality needs the integral form of the Cauchy-Schwarz-Bunyakowsky inequality, whose proof is the same
as that given earlier. This metric space is not complete, because there are sequences of continuous functions
that are Cauchy in this L2 metric (but not in the Co[a, b] metric) and do not converge to a continuous

[5] Real-valued or complex-valued, for example.
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function. For example, we can make piecewise-linear continuous functions approaching the discontinuous
function that is 0 on [a, a+b2 ] and 1 on [a+b2 , b], by

fn(x) =


0 (for a ≤ x ≤ a+b

2 −
1
n )

n
2 · (x−

(
a+b
2 −

1
n

)
) (for a+b

2 −
1
n ≤ x ≤

a+b
2 + 1

n )

1 (for a+b
2 + 1

n ≤ x ≤ b)

(Draw a picture.) The pointwise limit is 0 to the left of the midpoint, and 1 to the right. Despite the fact
that the pointwise limit does not exist at the midpoint,

d2(fi, fj)
2 ≤

∫ a+b
2 + 1

n

a+b
2 −

1
n

1 dx ≤ 2

n
(for i, j ≥ n)

which goes to 0 as n→∞. That is, {fn} is Cauchy in the L2 metric, but does not converge to a continuous
function.

3. Completions of metric spaces

Again, a metric space X, d is complete when every Cauchy sequence is convergent. Completeness is a
convenient feature, because then we can take limits without leaving the space. As in the example of Co[a, b]
with the L2 inner product, we might want to imbed a non-complete metric space in a complete one in an
optimal and universal way.

A traditional notion of the completion of a metric space X is a construction of a complete metric space X̃
with a distance-preserving injection j : X → X̃ so that j(X) is dense in X̃, in the sense that every point of

X̃ is the limit of a Cauchy sequence in j(X).

The intention is that every Cauchy sequence has a limit, so we should (somehow!) adjoin points as needed
for these limits. However, different Cauchy sequences may happen to have the same limit.

Thus, we want an equivalence relation on Cauchy sequences that says they should have the same limit, even
without knowing the limit exists or having somehow constructed or adjoined the limit point.

Define an equivalence relation ∼ on the set C of Cauchy sequences in X, by

{xs} ∼ {yt} ⇐⇒ lim
s
d(xs, ys) = 0

Attempt to define a metric on the set C/∼ of equivalence classes by

d({xs}, {yt}) = lim
s
d(xs, ys)

We must verify that this is well-defined on the quotient C/∼ and gives a metric. We have an injection
j : X → C/∼ by

x→ {x, x, x, . . .} mod ∼

[3.1] Claim: j : X → C/∼ is a completion of X.

Proof: Grant for the moment that the distance function on X̃ = C/∼ is well-defined, and is complete, and
show that it has the property of a completion of X. To this end, let f : X → Y be a uniformly continuous
map to a complete metric space Y .
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Given z ∈ X̃, choose a Cauchy sequence xk in X with j(xk) converging to z, and try to define F : X̃ → Y
in the natural way, by

F (z) = lim
k
f(xk)

Since f is uniformly continuous, f(xk) is Cauchy in Y , and by completeness of Y has a limit, so F (z) exists,
at least if well-defined.

For well-definedness of F (z), for xk and x′k two Cauchy sequences whose images j(xk) and j(x′k) approach z,
since j is an isometry eventually xk is close to x′k, so f(xk) is eventually close to f(x′k) in Y , showing F (z)
is well-defined.

We saw that every element of X̃ is a limit of a Cauchy sequence j(xk) for xk in X, and any continuous

X̃ → Y respects limits, so F is the only possible extension of f to X̃.

The obvious argument will show that F is continuous. Namely, let z, z′ ∈ X̃, with Cauchy sequences xt
and x′t approaching z and z′. Given ε > 0, by uniform continuity of F , there is N large enough such that
dY (F (j(xr)), F (j(xs))) < ε and dY (F (j(x′r)), F (j(x′s))) < ε for r, s ≥ N . From the lemma above (!), for
such r even in the limit the strict inequalities are at worst non-strict inequalities:

dY (f(xr), F (z)) ≤ ε and dY (f(x′r), F (z′)) ≤ ε

By the triangle inequality, since f : X → Y is continuous, we can increase r to have dX(xr, x
′
r) small enough

so that dY (f(xr), f(x′r)) < ε, and then

dY (F (z), F (z′)) ≤ dY (F (z), f(xr)) + dY (f(xr), f(x′r)) + dY (f(x′r), F (z′)) ≤ ε+ ε+ ε

Since j : X → X̃ is an isometry,

dX(xr, x
′
r) = dX̃(j(xr), j(x

′
r)) ≤ dX̃(j(xr), z) + dX̃(z, z′) + dX̃(j(x′r), z

′)

so
dX(xr, x

′
r) ≤ dX̃(z, z′) + 2ε

Thus,
dY (F (z), F (z′)) ≤ dX̃(z, z′) + 4ε (for all ε > 0)

Thus, F is continuous. Granting that X̃ = C/∼ is complete, etc., it is a completion of X.

It remains to prove that the apparent metric on X̃ truly is a metric, and that X̃ is complete.

First, the limit in attempted definition

d({xs}, {yt}) = lim
s
d(xs, ys)

does exist: given ε > 0, take N large enough so that d(xi, xj) < ε and d(yi, yj) < ε for i, j ≥ N . By the
triangle inequality,

d(xi, yi) ≤ d(xi, xN ) + d(xN , yN ) + d(yN , yi) < ε+ d(xN , yN ) + ε

Similarly,
d(xi, yi) ≥ −d(xi, xN ) + d(xN , yN )− d(yN , yi) > −ε+ d(xN , yN )− ε

Thus, unsurprisingly, ∣∣∣d(xi, yi)− d(xN , yN )
∣∣∣ < 2ε

and the sequence of real numbers d(xi, yi) is Cauchy, so convergent.
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Similarly, when limi d(xi, yi) = 0, then limi d(xi, zi) = limi d(yi, zi) for any other Cauchy sequence zi, so the
distance function is well-defined on C/∼.

The positivity and symmetry for the alleged metric on C/∼ are immediate. For triangle inequality, given
xi, yi, zi and ε > 0, let N be large enough so that d(xi, xj) < ε, d(yi, yj) < ε, and d(zi, zj) < ε for i, j ≥ N .
As just above, ∣∣∣d({xs}, {ys})− d(xi, yi)

∣∣∣ < 2ε

Thus,

d({xs}, {ys}) ≤ 2ε+d(xN , yN ) ≤ 2ε+d(xN , zN )+d(zN , yN ) ≤ 2ε+d({xs}, {zs})+2ε+d({zs}, {ys})+2ε

This holds for all ε > 0, so we have the triangle inequality.

Finally, perhaps anticlimactically, the completeness. Given Cauchy sequences cs = {xsj} in X such that
{cs} is Cauchy in C/∼, for each s we will choose large-enough j(s) such that the diagonal-ish sequence
y` = x`,j(`) is a Cauchy sequence in X to which {cs} converges.

Given ε > 0, take i large enough so that d(cs, ct) < ε for all s, t ≥ i. For each i, choose j(i) large enough so
that d(xij , xij′) < ε for all j, j′ ≥ j(i). Let c = {xi,j(i) : i = 1, 2, . . .}. For s ≥ i,

d(cs, c) = lim
`
d(xs`, x`,j(`)) ≤ sup

`≥i
d(xs`, x`,j(`)) ≤ sup

`≥i

(
d(xs`, xs,j(`)) + d(xs,j(`), x`,j(`))

)
≤ 2ε

This holds for all ε > 0, so lims cs = c, and C/∼ is complete. ///

Many natural metric spaces are complete without any need to complete them. The historically notable
exception was Q itself, completed to R. A slightly more recent example:

[3.2] Example: One description of the space L2[a, b] is as the completion of Co[a, b] with respect to the
L2 norm above. The more common description depends on notions of measurable function and Lebesgue
integral, and presents the space as equivalence classes of functions, having somewhat ambiguous pointwise
values.

4. Topologies of metric spaces

The notion of metric space allows a useful generalization of the notion of continuous function via the obvious
analogue of the epsilon-delta definition:

A function or map f : X → Y from one metric space (X, dX) to another metric space (Y, dY ) is continuous
at a point xo ∈ X when, for every ε > 0 there is δ > 0 such that

dX(x, xo) < δ =⇒ dY (f(x), f(xo)) < ε

In a metric space (X, d), the open ball of radius r > 0 centered at a point y is

{x ∈ X : d(x, y) < r}

The closed ball of radius r > 0 centered at a point y is

{x ∈ X : d(x, y) ≤ r}

As in Rn, in many regards the two are barely different from each other. However, the closed ball includes
the sphere

{x ∈ X : d(x, y) = r}
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while the open ball does not. A different distinction is what we’ll exploit most directly:

[4.1] Claim: For any point x in an open ball B in X, for sufficiently small radius ε > 0 the open ball
of radius ε centered at x is contained in B. (As for Rn, this follows immediately by use of the triangle
inequality. ///

An open set in X is any set with the property observed in this proposition. That is, a set U in X is open if
for every x in U there is an open ball centered at x contained in U .

This definition allows us to rewrite the epsilon-delta definition of continuity in a form that will apply in more
general topological spaces:

[4.2] Claim: A function f : X → Y from one metric space to another is continuous in the ε-δ sense if and
only if the inverse image

f−1(U) = {x ∈ Rm : f(x) ∈ U}

of every open set U in Y is open in X.

Proof: On one hand, suppose f is continuous in the ε-δ sense. For U open in Y and x ∈ f−1(U), with
f(x) = y, let ε > 0 be small enough so that the ε-ball at y is inside U . Take δ > 0 small enough so
that, by the ε-δ definition of continuity, the δ-ball B at x has image f(B) inside the ε-ball at y. Then
x ∈ B ⊂ f−1(U). This holds for every x ∈ f−1(U), so f−1(U) is open.

On the other hand, suppose f−1(U) is open for every open U ⊂ Y . Given x ∈ X and ε > 0, let U be the
ε-ball at f(x). Since f−1(U) is open, there is an open ball B at x contained in f−1(U). Let δ > 0 be the
radius of B. ///

A set E in a metric space X is closed if and only its complement

Ec = X − E = {x ∈ X : x 6∈ E}

is open.

A set E in a metric space X is bounded when it is contained in some (sufficiently large) ball. This makes
sense in general metric spaces, but does not have the same implications.

5. General topological spaces

Many of the ideas and bits of terminology for metric spaces make sense and usefully extend to more general
situations. Some do not.

[5.1] A topology on a set X is a collection τ of subsets of X, called the open sets, such that X itself
and the empty set φ are in τ , arbitrary unions of elements of τ are in τ , and finite intersections of elements
of τ are in τ . A set X with an explicitly or implicitly specified topology is a topological space.

[5.2] A continuous map f : X → Y for topological spaces X,Y is a set-map so that inverse images
f−1(U) of opens U in Y are open in X.

Uniform continuity of functions or maps has no natural formulation in general topological spaces, in effect
because we have no device by which to compare the topology at varying points, unlike the case of metric
spaces, where there is a common notion of distance that does allow such comparisons.

[5.3] Closed sets in a topological space are exactly the complements of open sets. Arbitrary intersections
of closed sets are closed, and finite unions of closed sets are closed.

9



Paul Garrett: 01. Review of metric spaces and point-set topology (September 28, 2018)

[5.4] A basis for a topology is a collection of (open) subsets so that any open set is a union of the (open)
sets in the basis. In a metric space, the open balls of all possible sizes, at all points, are a natural basis.

[5.5] A neighborhood of a point is any set containing an open set containing the point. Often, one
considers only open neighborhoods, to avoid irrelevant misunderstandings.

[5.6] A local basis at a point x in a space X is a collection of open neighborhoods of x such that every
neighborhood of x contains a neighborhood from the collection. In a metric space, the collection of open
balls at a given point with rational radius is a countable local basis at that point.

[5.7] The closure of a set E (in a topological space X), sometimes denoted E, is the intersection of all
closed sets containing E. It is a closed set. Equivalently, it is the set of x ∈ X such that every neighborhood
of x meets [6] E. The closure of E contains E.

[5.8] The interior of a set E (in a topological space X) is the union of all open sets contained in it. It is
open. Equivalently, it is the set of x ∈ X such that there is a neighborhood of x inside E. The interior of E
is a subset of E.

[5.9] The boundary of a set E (in a topological space X), often denoted ∂E, is the intersection of the
closure of E and the closure of the complement of E. Equivalently, it is the set of x ∈ X such that every
neighborhood of x meets both E and the complement of E.

[5.10] A Hausdorff topology is one in which any two points x, y have neighborhoods U 3 x and V 3 y
which are disjoint: U ∩ V = φ. This is a reasonable condition to impose on a space on which functions
should live.

[5.11] Claim: Metric spaces are Hausdorff.

Proof: Given x 6= y in a metric space, let B1 be the open ball of radius d(x, y)/2, and let B2 the open ball
of radius d(x, y)/2 at y. For any z ∈ B1 ∩B2, by the triangle inequality,

d(x, y) ≤ d(x, z) + d(z, y) <
d(x, y)

2
+
d(x, y)

2
= d(x, y)

which is impossible. Thus, there is no z in the intersection of these two open neighborhoods of x and y.
///

[5.12] Claim: In Hausdorff spaces, singleton sets {x} are closed.

Proof: Fixing x, for y 6= x let Uy be an open neighborhood of y not containing x. (We do not use the open
neighborhood of x not meeting Uy.) Then E =

⋃
y 6=x Uy is open, does not contain x, and contains every

other point in the space. Thus, E is the complement of the singleton set {x} and is open, so {x} is closed.
///

[5.13] Convergence of sequences: In a topological space X, a sequence x1, x2, . . . converges to x∞ ∈ X,
written limn xn = x∞, if, for every neighborhood U of x∞, there is an index m such that for all n ≥ m,
xn ∈ U .

In more general, non-Hausdorff spaces, it is easily possible to have a sequence converge to more than one
point, which is fairly contrary to our intention for the notion of convergence.

[6] A set X meets another set Y if X ∩ Y 6= φ.
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In a metric space, the notion of Cauchy sequence has a sense, and in a complete metric space, the notions of
Cauchy sequence and convergent sequence are identical, and there is a unique limit to which such a sequence
converges.

In more general, non-Hausdorff spaces, and not-locally-countably-based spaces, things can go haywire in
several different ways, which are mostly irrelevant to the situations we care about. Still, one should be aware
that not all spaces are Haudorff, and may fail to be countably locally based.

[5.14] Sequentially compact sets E in a topological space X are those such that every sequence has a
convergent subsequence (with limit in E).

Although the definition of convergent does not directly mention potential difficulties and ambiguities, there
are indeed problems in non-Haudorff spaces, and in spaces that fail to have countable local bases.

[5.15] Accumulation points of a subset E of a topological space X are points x ∈ X such that every
neighborhood of x contains infinitely-many elements of E. Every accumulation point of E lies in the closure
of E, but not vice-versa.

[5.16] Claim: A closed set E is sequentially compact if and only if every sequence in E either has an
accumulation point in E, or contains only finitely-many distinct points.

Proof: First, the technicality: if a sequence contains only finitely-many distinct points, it cannot have any
accumulation points, but certainly contains convergent subsequences. For a sequence x1, x2, . . . including
infinitely-many distinct points, drop any repeated points, so that xi 6= xj for all i 6= j. For E sequentially
compact, there is a subsequence with limit x∞ in E. Relabel if necessary so that the subsequence is still
denoted x1, x2, . . .. The subsequence still consists of mutually distinct points. Since limn xn = x∞, given a
neighborhood U of x∞, there is m such that xn ∈ U for all n ≥ m. Since xm, xm+1, . . . is an infinite set of
distinct points, x∞ is an accumulation point of the subsequence, hence, of the original sequence.

Conversely, if a sequence has an accumulation point, it has a subsequence converging to that accumulation
point. ///

[5.17] Compact sets in topological spaces are subsets such that every open cover has a finite subcover.
That is, K is compact when, for any collection of open sets {Uα : α ∈ A} such that K ⊂

⋃
α∈A Uα, there is

a finite collection Uα1
, . . . , Uαn

such that K ⊂ Uα1
∪ . . . ∪ Uαn

.

[5.18] Claim: For f : X → Y continuous and K compact in X, the image f(K) is compact in Y .

Proof: Given an open cover {Uα : α ∈ A} of f(K), the inverse images f−1(Uα) give an open cover of K.
Thus, there is a finite subcover f−1(Uα1

), . . . , f−1(Uαn
). Then Uα1

, . . . , Uαn
is a (finite) cover of f(K).

///

Since singleton sets {x} are certainly compact, the following generalizes the earlier claim about closedness
of singleton sets in Hausdorff spaces:

[5.19] Claim: In Hausdorff spaces, compact sets are closed.

Proof: Let E be a compact subset of X. For y 6∈ E, for each x ∈ E, let Ux 3 y be open and Vx 3 x open
so that Ux ∩ Vx = φ. Then {Vx : x ∈ E} is an open cover of E, with finite subcover E ⊂ Vx1

∪ . . . ∪ Vxn
.

The finite intersection Wy = Ux1
∩ . . .∩Uxn

is open, and disjoint from Vx1
∪ . . .∪ Vxn

, so is disjoint from E.
Thus, Wy is open and contains y. The union W =

⋃
y 6∈EWy is open, and contains every y 6∈ E. Thus E is

the complement of an open set, so is closed. ///

[5.20] Claim: In Hausdorff spaces, a nested collection of compact sets has non-empty intersection.

11
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Proof: Let X be the ambient space, and Kα the compacts, with index set A totally ordered, in the sense A
has an order relation < such that for every distinct α, β ∈ A, either α < β or β < α. The nested condition
is that if α < β then Kα ⊃ Kβ . (It can equally well be the opposite direction of containment.) We claim
that

⋂
αKα is compact.

From above, each Kα is closed, so the complements Uα = X−Kα are open. If
⋂
αKα = φ, then

⋃
α Uα = X.

In particular,
⋃
α Uα ⊃ Kβ for all indices β. For fixed index αo, let Uα1 ∪ . . . ∪ Uαn be a finite subcover

of Kαo , so certainly a cover of Kα′ for all α′ > α. Because of the nested-ness, for β = max{α1, . . . , αn},
Uβ = Uα1

∪ . . . ∪Uαn
. But Uβ is the complement of Kβ , so certainly cannot cover it, contradiction. ///

[5.21] A locally compact topology is one in which every point has a neighborhood with compact closure.
This is a reasonable condition to impose on a space on which functions will live. Rn is locally compact, but
the metric space `2 is not. Later, we will see that no infinite-dimensional Hilbert space or Banach space is
locally compact. That is, natural spaces of functions are not usually locally compact, but the physical spaces
on which the functions live usually are locally compact.

[5.22] Separable topological spaces are those with countable dense subsets. For example, the countable
set Qn is dense in Rn. Nearly all topological spaces arising in practice are separable, but most basic results
do not directly use this property.

[5.23] Countably-based topological spaces are those with a countable basis. Sometimes such spaces
are called second-countable. Perhaps counter-intuitively, first-countable spaces are those in which every point
has a countable local basis. Many topological spaces arising in practice are countably-based, but most basic
results do not directly use this property.

[5.24] Claim: Separable metric spaces are countably-based. Specifically, for countable dense subset S of
metric space X, open balls of rational radius centered at points of S form a basis.

Proof: Since there are only countably-many s ∈ S and only countably many rational radiuses, the set of
such open balls is indeed countable.

Fix an open U ⊂ X. Given x ∈ U , let r > 0 be sufficiently small so that the open ball at x of radius r is
inside U . Let sx ∈ S be such that d(x, s) < r/2. By density of rational numbers in R, there is a rational
number qx such that d(x, s) < qx < r/2. Thus, by the triangle inequality, the ball Bx at sx of radius qx
contains x and lies inside the open ball at x of radius r, so Bx ⊂ U .

The union of all Bx over x ∈ U is a subset of U containing all x ∈ U , so is U itself. ///

6. Compactness versus sequential compactness

In general topological spaces, compactness is a stronger condition than sequential compactness. First, without
any further hypotheses on the spaces, however noting the point that sequential compactness easily fails to
be what we anticipate in topological spaces that are not necessarily Hausdorff or locally countably-based:

[6.1] Claim: Compact sets are sequentially compact.

Proof: Given a sequence, if some y ∈ E is an accumulation point, then there is a subsequence converging
to y, and we are done. If no y ∈ E is an accumulation point of the given sequence, then each y ∈ E has
an open neighborhood Uy such that Uy meets the sequence in only finitely-many points. The sets Uy cover
E. For E compact, there is a finite subcover Uy1 , . . . , Uyn . Each Uyi contains only finitely-many points
of the sequence, so the sequence contains only finitely-many distinct points, so certainly has a convergent
subsequence. ///
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[6.2] Claim: In a countably-based topological space X, sequentially compact sets are compact.

Proof: Let E ⊂ X be sequentially compact. The opens in an arbitrary cover of E are (necessarily countable)
unions of some of the countably-many opens in the countable basis for X. Thus, it suffices to show that a
countable cover E ⊂ U1 ∪ U2 ∪ . . . admits a finite subcover.

If no finite collection of the Un covers E, then for each n = 1, 2, . . . there is en ∈ E such that en 6∈ U1∪. . .∪Un.
Since every en does lie in some Ui, we can replace {en} by a subsequence so that ei 6= ej for all i 6= j, and
still en 6∈ U1 ∪ . . . ∪ Un.

By sequential compactness, e1, e2, . . . has a convergent subsequence, with limit e∞ ∈ E. The point e∞ lies
in some Um. Thus, there would be infinitely-many indices n such that en ∈ Um. This is impossible, since
en 6∈ U1 ∪ . . . ∪ Un. Thus, there must be a finite subcover. ///

The argument for the previous claim can be improved, to show

[6.3] Claim: In complete metric spaces, sequentially compact sets are compact.

Proof: Let {Uα : α ∈ A} be an open cover of a subset E of a complete metric space X, admitting no finite
subcover. Using an equivalent of the Axiom of Choice, we can arrange to have a minimal subcover, that is,
so that no Uβ can be removed an still cover E. We do this at the end of the argument.

Granting this, without loss of generality the open cover is minimal, and not finite. Using the minimality
(and again using the Axiom of Choice), for each index β ∈ A, let xβ be a point in E that is not in

⋃
α6=β Uα.

Since the cover is minimal, these xβ ’s must be distinct. Since the cover is not finite, there are infinitely-many
(distinct) xβ ’s. Since the are distinct, any countable subset of {xβ : β ∈ A} gives a sequence y1, y2, . . . of
distinct points. By sequential compactness, this sequence has at least one accumulation point y∞ ∈ E.

Let Uαo be an open in the cover containing y∞. Since limn yn = y∞, there is no such that for all n ≥ no we
have yn ∈ Uαo

. All those yn’s are among the xβ ’s, but the only xβ in Uαo
is xαo

. That is, there cannot be
infinitely-many distinct xβ ’s in Uno

. Thus, assuming that a minimal cover is infinite leads to a contradiction.

To obtain a minimal subcover from a given cover {Uα : α ∈ A}, well-order the index set A. We choose
a minimal subcover by transfinite induction, as follows. The idea is to ask, in the order chosen for A,
cumulatively, whether or not Uα can be removed from the current subcover while still having a cover of the
given set. That is, we inductively define a subset B of the index set A by transfinite induction: initially,
B = A. At the αth stage, remove α from B if Uα is unnecessary for maintaining the cover property. That
is, remove α if

E ⊂
⋃

β<α, β∈B

Uβ ∪
⋃
β>α

Uβ

otherwise keep α in B. By transfinite induction, B is an index set for a subcover of {Uα : α ∈ A}, and that
subcover is minimal in the sense that no open can be removed without the result failing to be a cover.
///

7. Total-boundedness criterion for compact closure

In general metric spaces, closed and bounded sets need not be compact (nor sequentially compact). For
example, the closed unit ball

B = {v ∈ B :
(∑

n

|vn|2
) 1

2 ≤ 1} ⊂ `2

13
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is not sequentially compact: the vectors

e1 = (1, 0, 0, . . .)
e2 = (0, 1, 0, . . .)
e3 = (0, 0, 1, 0, . . .)
. . .

have distance
√

2 from each other, so cannot have a convergent subsequence, since elements of a convergent
(sub-) sequence get closer and closer together. More is required, as follows.

A set E in a metric space is totally bounded if, given ε > 0, there are finitely-many open balls of radius ε
covering E. The property of total boundedness in a metric space is generally stronger than mere boundedness.
It is immediate that any subset of a totally bounded set is totally bounded.

[7.1] Theorem: A set E in a metric space X has compact closure if and only if it is totally bounded.

[7.2] Remark: Sometimes a set with compact closure is said to be pre-compact.

Proof: Certainly if a set has compact closure then it admits a finite covering by open balls of arbitrarily
small (positive) radius, by the compactness.

On the other hand, suppose that a set E is totally bounded in a complete metric space X. To show that E
has compact closure it suffices to show sequential compactness, namely, that any sequence {xi} in E has a
convergent subsequence.

We choose such a subsequence as follows. Cover E by finitely-many open balls of radius 1, invoking the total
boundedness. In at least one of these balls there are infinitely-many elements from the sequence. Pick such
a ball B1, and let i1 be the smallest index so that xi1 lies in this ball.

The set E ∩B1 is still totally bounded (and contains infinitely-many elements from the sequence). Cover it
by finitely-many open balls of radius 1/2, and choose a ball B2 with infinitely-many elements of the sequence
lying in E ∩ B1 ∩ B2. Choose the index i2 to be the smallest one so that both i2 > i1 and so that xi2 lies
inside E ∩B1 ∩B2.

Proceeding inductively, suppose that indices i1 < . . . < in have been chosen, and balls Bi of radius 1/i, so
that

xi ∈ E ∩B1 ∩B2 ∩ . . . ∩Bi
Then cover E∩B1∩. . .∩Bn by finitely-many balls of radius 1/(n+1) and choose one, call it Bn+1, containing
infinitely-many elements of the sequence. Let in+1 be the first index so that in+1 > in and so that

xn+1 ∈ E ∩B1 ∩ . . . ∩Bn+1

Then for m < n we have d(xim , xin) ≤ 1
m so this subsequence is Cauchy. ///

8. Baire’s theorem

This standard result is both indispensable and mysterious.

A set E in a topological space X is nowhere dense if its closure Ē contains no non-empty open set. A
countable union of nowhere dense sets is said to be of first category, while every other subset (if any) is
of second category. The idea (not at all clear from this traditional terminology) is that first category sets
are small, while second category sets are large. In this terminology, the theorem’s assertion is equivalent to
the assertion that (non-empty) complete metric spaces and locally compact Hausdorff spaces are of second
category.

14
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A Gδ set is a countable intersection of open sets. Concommitantly, an Fσ set is a countable union of closed
sets. Again, the following theorem can be paraphrased as asserting that, in a complete metric space, a
countable intersection of dense Gδ’s is still a dense Gδ.

[8.1] Theorem: (Baire) Let X be either a complete metric space or a locally compact Hausdorff topological
space. The intersection of a countable collection U1, U2, . . . of dense open subsets Ui of X is still dense in X.

Proof: Let Bo be a non-empty open set in X, and show that
⋂
i Ui meets Bo. Suppose that we have

inductively chosen an open ball Bn−1. By the denseness of Un, there is an open ball Bn whose closure Bn
satisfies

Bn ⊂ Bn−1 ∩ Un

Further, for complete metric spaces, take Bn to have radius less than 1/n (or any other sequence of reals
going to 0), and in the locally compact Hausdorff case take Bn to have compact closure.

Let
K =

⋂
n≥1

Bn ⊂ Bo ∩
⋂
n≥1

Un

For complete metric spaces, the centers of the nested balls Bn form a Cauchy sequence (since they are nested
and the radii go to 0). By completeness, this Cauchy sequence converges, and the limit point lies inside each
closure Bn, so lies in the intersection. In particular, K is non-empty. For locally compact Hausdorff spaces,
the intersection of a nested family of non-empty compact sets is non-empty, so K is non-empty, and Bo
necessarily meets the intersection of the Un. ///
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9. Appendix: mapping-property characterization of completion

Our intention is that, when a metric space X is not complete, there should be a complete metric space X̃
and an isometry (distance-preserving) j : X → X̃, such that every isometry f : X → Y to complete metric

space Y factors through j uniquely. That is, there are commutative diagrams [7] of continuous maps

X̃

∃!

��
X

j

OO

∀
//___ Y (for every isometry X → Y

Without describing any constructions of completions, we can prove some things about the behavior of any
possible completion. In particular, we prove that any two completions are naturally isometrically isomorphic
to each other. Thus, the outcome will be independent of construction.

[9.1] Claim: (Uniqueness) Let i : X → Y and j : X → Z be two completions of a metric space X. Then
there is a unique isometric homeomorphism h : Y → Z such that j = h ◦ i. That is, we have a commutative
diagram

Y
∃! // Z

X

i

``@@@@@@@@ j

>>~~~~~~~

Proof: First, take Y = Z and f : X → Y to be the inclusion i, in the characterization of i : X → Y . The
characterization of i : X → Y shows that there is unique isometry f : Y → Y fitting into a commutative
diagram

Y
∃! f

  
X

i

OO

i
// Y

Since the identity map Y → Y certainly fits into this diagram, the only map f fitting into the diagram is
the identity on Y .

Next, applying the characterizations of both i : X → Y and j : X → Z, we have unique f : Y → Z and
g : Z → Y fitting into

Y
∃! f

  
X

i

OO

j
// Z

Z
∃! g

  
X

j

OO

i
// Y

Then f ◦ g : Y → Y and g ◦ f : Z → Z fit into

Y
f◦g

  
X

i

OO

i
// Y

Z
g◦f

  
X

j

OO

j
// Z

[7] A diagram of maps is commutative when the composite map from one object to another within the diagram does

not depend on the route taken within the diagram.
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By the first observation, this means that f ◦ g is the identity on Y , and g ◦ f is the identity on Z, so f and
g are mutual inverses, and Y and Z are homeomorphic. ///

[9.2] Remark: A virtue of the characterization of completion is that it does not refer to the internals of
any completion.

Next, we see that the mapping-property characterization of a completion does not introduce more points
than absolutely necessary:

[9.3] Claim: Every point in a completion X̃ of X is the limit of a Cauchy sequence in X. That is, X is

dense in X̃.

Proof: Write d(, ) for both the metric on X and its extension to X̃. Let Y ⊂ X̃ be the collection of limits
of Cauchy sequences of points in X. We claim that Y itself is complete. Indeed, given a Cauchy sequence
{yi} in Y with limit z ∈ X̃, let xi ∈ X such that d(xi, yi) < 2−i. It will suffice to show that {xi} is Cauchy
with limit z. Indeed, given ε > 0, take N large enough so that d(yi, z) < ε/2 for all i ≥ N , and increase
N if necessary so that 2−i < ε/2. Then, by the triangle inequality, d(xi, z) < ε for all i ≥ N . Thus, Y is
complete.

By the defining property of X̃, every isometry f : X → Z to complete Z has a unique extension to an
isometry F : X̃ → Z fitting into

Y
⊂ // X̃

F

��
X

j

OO

f //

XX1111111111111

Z

Since Y is already complete and j(X) ⊂ Y , the restriction of F to Y gives a diagram

Y

F

  
X

j

OO

f // Z

That is, Y fits the characterization of a completion of X. By uniqueness, Y ⊂ X̃ is a homeomorphism, so
Y = X̃. ///
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