(October 2, 2018)

01b. Norms and metrics on vectorspaces

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is http://www.math.umn.edu/~garrett/m/real/notes_2018-19/01b_Banach.pdf]

- 1. Normed vector spaces
- 2. Inner-product spaces and Cauchy-Schwarz-Bunyakowsky
- 3. Normed spaces of continuous linear maps
- 4. Dual spaces of normed spaces
- 5. Extension by continuity

Many natural real or complex vector spaces of functions, such as $C^{o}[a, b]$ and $C^{k}[a, b]$, have (several!) natural metrics d(,) norming from norms $|\cdot|$ by the recipe

$$d(v,w) = |v-w|$$

A real or complex vector space with an inner product \langle , \rangle always has an associated norm

$$|v| = \langle v, v \rangle^{\frac{1}{2}}$$

If so, the vector space has much additional geometric structure, including notions of orthogonality and projections. However, very often the natural norm on a vector space of functions does *not* come from an inner product, which creates complications. When the vector space is *complete* with respect to the associated metric, the vector space is a *Banach space*. Abstractly, Banach spaces are less convenient than Hilbert spaces (complete *inner-product* spaces), and normed spaces are less convenient than inner-product spaces.

1. Normed vector spaces

A real or complex [1] vectorspace V with a non-negative, real-valued function, the norm,

$$|\cdot|:V \longrightarrow \mathbb{R}$$

with properties

$ x+y \le x + y $	(triangle inequality)
$ \alpha x = \alpha \cdot x $	$(\alpha \text{ real/complex}, x \in V)$
$ x = 0 \implies x = 0$	(positivity)

is a normed (real or complex) vectorspace, or simply normed space. Sometimes a normed space is called *pre-Banach*. Because of the triangle inequality, the associated function

$$d(x,y) = |x-y|$$

is a *metric*. The symmetry of d(,) comes from a special case of the homogeneity:

$$d(y,x) = |y-x| = |(-1) \cdot (x-y)| = |-1| \cdot |x-y| = |x-y| = d(x,y)$$

When V is *complete* with respect to the metric associated to the norm, V is a *Banach space*.

^[1] In fact, for many purposes, the scalars need not be \mathbb{R} or \mathbb{C} , need not be locally compact, and need not even be commutative. The basic results hold for Banach spaces over non-discrete, complete, normed division rings. This allows scalars like the *p*-adic field \mathbb{Q}_p , or Hamiltonian quaternions \mathbb{H} , and so on.

Metrics on vector spaces arising from norms have some special properties. First, they are degree-one homogeneous, in the sense that for scalars α and vectors x, y,

$$d(\alpha \cdot x, \alpha \cdot y) = |\alpha \cdot x - \alpha \cdot y| = |\alpha| \cdot |x - y| = |\alpha| \cdot d(x, y)$$

They are *translation invariant*, in the sense that for and vectors x, y, z,

$$d(x+z,y+z) = |(x+z) - (y+z)| = |x-y| = d(x,y)$$

The basic example of a normed vector space is $C^{o}[a, b]$, with sup-norm

$$|f|_{\sup} = |f|_{C^o} = \sup_{x \in [a,b]} |f(x)|$$

This is part of a larger family of vector spaces of functions: continuously k-fold differentiable functions $C^{k}[a, b]$, with norm

$$|f|_{C^{k}} = |f|_{C^{o}} + |f'|_{C^{o}} + |f''|_{C^{o}} + \dots + |f^{(k)}|_{C^{o}}$$

There is at least one other natural choice of norm on $C^{k}[a, b]$, namely,

$$|f|_{\text{alt}} = \max_{0 \le j \le k} |f^{(j)}|_{C^o}$$

But these two norms are *comparable*, in the sense that there are constants $0 < A, B < +\infty$ such that, for all $f \in C^k[a, b]$,

$$A \cdot |f|_{C^k} \leq |f|_{\operatorname{alt}} \leq B \cdot |f|_{C^k}$$

In particular, A = 1 and B = k + 1 work. This implies that a similar comparability holds for the associated metrics, so the associated topologies are *identical*.

2. Inner-product spaces and Cauchy-Schwarz-Bunyakowsky inequality

An *inner-product space* or *pre-Hilbert space* is a (real or) complex^[2] vector space V with $\langle,\rangle: V \times V \to$ scalars with properties

1	$\checkmark \langle x, y \rangle$	=	$\overline{\langle y,x angle}$	(the <i>hermitian-symmetric</i> property)
	$\langle x + x', y \rangle$	=	$\langle x, y \rangle + \langle x', y \rangle$	(additivity in first argument)
J	$\langle x, y + y' \rangle$	=	$\langle x,y \rangle + \langle x,y' \rangle$	(<i>additivity</i> in second argument)
Ì	$\langle x, x \rangle$	\geq	0	(and equality only for $x = 0$: <i>positivity</i>)
	$\langle \alpha x, y \rangle$	=	$lpha \langle x, y angle$	(<i>linearity</i> in first argument)
	$\langle x, \alpha y \rangle$	=	$\bar{lpha}\langle x,y angle$	(<i>conjugate-linearity</i> in second argument)

Among other easy consequences of these requirements, for all $x, y \in V$

$$\langle x, 0 \rangle = \langle 0, y \rangle = 0$$

where inside the angle-brackets the 0 is the zero-vector, and outside it is the zero-scalar.

The associated norm | | on V is

$$|x| = \langle x, x \rangle^{1/2}$$

^[2] Although *normed* spaces make sense over a wider range of scalars than just real or complex, *inner-product* spaces essentially need \mathbb{R} or \mathbb{C} .

of course with the non-negative square-root. Even though we use the same notation for the norm on V as for the usual complex value ||, context will make clear which is meant. The triangle inequality follows from the *Cauchy-Schwarz-Bunyakowsky inequality* just below.

Most norms on Banach spaces do *not* arise from inner products. Norms arising from inner products recover the inner product via the *polarization* identities

$$4\langle x, y \rangle = |x+y|^2 - |x-y|^2 \qquad (real vector space)$$

$$4\langle x, y \rangle = |x+y|^2 - |x-y|^2 + i|x+iy|^2 - i|x-iy|^2 \quad \text{(complex vector space)}$$

Given a norm on a vector space, *if* the polarization expression gives an inner product, *then* the norm is produced by that inner product. However, checking whether the polarization expression is bilinar or hermitian, may be awkward or non-intuitive.

For two vectors v, w in a pre-Hilbert space, if $\langle v, w \rangle = 0$ then v, w are orthogonal or perpendicular, sometimes written $v \perp w$. A vector v is a unit vector if |v| = 1.

[2.1] Theorem: (Cauchy-Schwarz-Bunyakowsky inequality)

 $|\langle x, y \rangle| \leq |x| \cdot |y|$

with strict inequality unless x, y are collinear, i.e., unless one of x, y is a multiple of the other.

Proof: Suppose that x is not a scalar multiple of y, and that neither x nor y is 0. Then $x - \alpha y$ is not 0 for any complex α . Consider

$$0 < |x - \alpha y|^2$$

We know that the inequality is indeed strict for all α since x is not a multiple of y. Expanding this,

$$0 < |x|^2 - \alpha \langle x, y \rangle - \bar{\alpha} \langle y, x \rangle + \alpha \bar{\alpha} |y|^2$$

 $\alpha = \mu t$

 $\mu \langle x, y \rangle = |\langle x, y \rangle|$

Let

with real t and with $|\mu| = 1$ so that

Then

$$< \ |x|^2 - 2t|\langle x,y\rangle| + t^2|y|^2$$

The *minimum* of the right-hand side, viewed as a function of the real variable t, occurs when the derivative vanishes, i.e., when

$$0 = -2|\langle x, y \rangle| + 2t|y|^2$$

Using this minimization as a *mnemonic* for the value of t to substitute, we indeed substitute

0

$$t = \frac{|\langle x, y \rangle|}{|y|^2}$$

into the inequality to obtain

$$0 < |x|^{2} + \left(\frac{|\langle x, y \rangle|}{|y|^{2}}\right)^{2} \cdot |y|^{2} - 2\frac{|\langle x, y \rangle|}{|y|^{2}} \cdot |\langle x, y \rangle|$$

which simplifies to

$$|\langle x,y\rangle|^2 < |x|^2 \cdot |y|^2$$

as desired.

///

[2.2] Corollary: (Triangle inequality) For v, w in an inner-product space V, we have $|v + w| \le |v| + |w|$. Thus, with distance function d(v, w) = |v - w|, we have the triangle inequality

$$d(x,z) = |x-z| = |(x-y) + (y-z)| \le |x-y| + |y-z| = d(x,y) + d(y,z)$$

Proof: Squaring and expanding, noting that $\langle v, w \rangle + \langle w, v \rangle = 2 \operatorname{Re} \langle v, w \rangle$,

$$(|v| + |w|)^{2} - |v + w|^{2} = \left(|v|^{2} + 2|v| \cdot |w| + |w|^{2} \right) - \left(|v|^{2} + \langle v, w \rangle + \langle w, v \rangle + |w|^{2} \right) \geq 2|v| \cdot |w| - 2|\langle v, w \rangle| \geq 0$$

///

giving the asserted inequality.

All inner product spaces are normed spaces, but many natural normed spaces are *not* inner-product, and may fail to have useful properties. The same holds for Hilbert and Banach spaces.

An iconic example of an inner-product space is $C^{o}[a, b]$ with inner product

$$\langle f,g\rangle \;=\; \int_a^b f(x)\cdot \overline{g(x)}\;dx\;=\; \int f\cdot \overline{g}$$

With the associated metric $C^{o}[a, b]$ is not complete. The completion of $C^{o}[a, b]$ with respect to that metric is called $L^{2}[a, b]$.

3. Normed spaces of linear maps

There is a *natural norm* on the vector space of continuous linear maps $T : X \to Y$ from one normed vector space X to another normed vector space Y. Even when X, Y are Hilbert spaces, the set of continuous linear maps $X \to Y$ is generally only a *Banach* space.

Let $\operatorname{Hom}^{o}(X, Y)$ denote^[3] the collection of continuous linear maps from the normed vectorspace X to the normed vectorspace Y. We may use the same notation $|\cdot|$ for the norms on both X and Y, since context will make clear which is which.

A linear (not necessarily continuous) map $T: X \to Y$ from one normed space to another has uniform operator norm

$$|T| = |T|_{\text{uniform}} = \sup_{|x|_X \le 1} |Tx|_Y = \sup_{|x| \le 1} |Tx|$$

where we momentarily allow the value $+\infty$. Such T is called *bounded* if $|T| < +\infty$. There are several obvious variants of the expression for the uniform norm:

$$|T| = \sup_{|x| \le 1} |Tx| = \sup_{|x| < 1} |Tx| = \sup_{|x| \ne 0} \frac{|Tx|}{|x|}$$

[3.1] Theorem: For a linear map $T: X \to Y$ from one normed space to another, the following conditions are equivalent:

- T is continuous at 0.
- T is bounded.

[•] T is continuous.

^[3] Another traditional notation for the collection of continuous linear maps from X to Y is B(X, Y), where B stands for *bounded*. But the Hom notation fits better into a larger pattern of notational conventions.

Proof: First, show that continuity at a point x_o implies continuity everywhere. For another point x_1 , given $\varepsilon > 0$, take $\delta > 0$ so that $|x - x_o| < \delta$ implies $|Tx - Tx_o| < \varepsilon$. Then for $|x' - x_1| < \delta$

$$|(x'+x_o-x_1)-x_o| < \delta$$

By linearity of T,

$$|Tx' - Tx_1| = |T(x' + x_o - x_1) - Tx_o| < \varepsilon$$

which is the desired continuity at x_1 .

Now suppose that T is continuous at 0. For $\varepsilon > 0$ there is $\delta > 0$ so that $|x| < \delta$ implies $|Tx| < \varepsilon$. For $x \neq 0$,

$$\left|\frac{\delta}{2|x|}x\right| < \delta$$

 \mathbf{SO}

 $\Big|T\frac{\delta}{2|x|}\cdot x\Big|\ <\ \varepsilon$

Multiplying out and using the linearity, boundedness is obtained:

$$|Tx| \ < \ \frac{2\varepsilon}{\delta} \cdot |x|$$

Finally, prove that boundedness implies continuity at 0. Suppose there is C such that |Tx| < C|x| for all x. Then, given $\varepsilon > 0$, for $|x| < \varepsilon/C$

$$|Tx| < C|x| < C \cdot \frac{\varepsilon}{C} = \varepsilon$$

which is continuity at 0.

The space $\operatorname{Hom}^{o}(X, Y)$ of continuous linear maps from one normed space X to another normed space Y has a natural structure of vectorspace by

$$(\alpha T)(x) = \alpha \cdot (Tx)$$
 and $(S+T)x = Sx + Tx$

for $\alpha \in \mathbb{C}$, $S, T \in \text{Hom}^{o}(X, Y)$, and $x \in X$.

[3.2] Proposition: With the uniform operator norm, the space $\text{Hom}^{o}(X, Y)$ of continuous linear operators from a normed space X to a *Banach* space Y is *complete*, whether or not X itself is complete. Thus, $\text{Hom}^{o}(X, Y)$ is a Banach space.

Proof: Let $\{T_i\}$ be a Cauchy sequence of continuous linear maps $T: X \to Y$. Try defining the limit operator T in the natural fashion, by

$$Tx = \lim_{i} Tx_i$$

First, check that this limit exists. Given $\varepsilon > 0$, take i_o large enough so that $|T_i - T_j| < \varepsilon$ for $i, j > i_o$. By the definition of the uniform operator norm,

$$|T_i x - T_j x| < |x|\varepsilon$$

Thus, the sequence of values $T_i x$ is Cauchy in Y, so has a limit in Y. Call the limit Tx.

We need to prove that the map $x \to Tx$ is *continuous* and *linear*. The arguments are inevitable. Given $c \in \mathbb{C}$ and $x \in X$, for given $\varepsilon > 0$ choose index i so that for j > i both $|Tx - T_jx| < \varepsilon$ and $|Tcx - T_jcx| < \varepsilon$. Then

$$|Tcx - cTx| \le |Tcx - T_jcx| + |cT_jx - cTx| = |Tcx - T_jcx| + |c| \cdot |T_jx - Tx| < (1 + |c|)\varepsilon$$

|||

This is true for every ε , so Tcx = cTx. Similarly, given $x, x' \in X$, for $\varepsilon > 0$ choose an index *i* so that for $j > i |Tx - T_jx| < \varepsilon$ and $|Ty - T_jy| < \varepsilon$ and $|T(x + y) - T_j(x + y)| < \varepsilon$. Then

$$|T(x+y) - Tx - Ty| \le |T(x+y) - T_j(x+y)| + |T_jx - Tx| + |T_jy - Ty| < 3\varepsilon$$

This holds for every ε , so T(x+y) = Tx + Ty.

For continuity, show that T is bounded. Choose an index i_o so that for $i, j \ge i_o$

$$|T_i - T_j| \le 1$$

This is possible since the sequence of operators is Cauchy. For such i, j

$$|T_i - T_j x| \leq |x|$$

for all x. Thus, for $i \ge i_o$

$$|T_i x| \leq |(T_i - T_{i_o})x| + |T_{i_o}x| \leq |x|(1 + |T_{i_o}|)$$

Taking a limsup,

$$\limsup |T_i x| \leq |x|(1+|T_{i_o}|)$$

This implies that T is bounded, and so is continuous.

Finally, we should see that $Tx = \lim_{i} T_i x$ is the operator-norm limit of the T_i . Given $\varepsilon > 0$, let i_o be sufficiently large so that $|T_i x - T_j x| < \varepsilon$ for all $i, j \ge i_o$ and for all $|x| \le 1$. Then $|Tx - Tx_i| \le \varepsilon$ and

$$\sup_{|x| \le 1} |Tx - T_i x| \le \sup_{|x| \le 1} \varepsilon = \varepsilon$$

giving the desired outcome.

4. Dual spaces of normed spaces

This section considers an important special case of continuous linear maps between normed spaces, namely continuous linear maps from Banach spaces to *scalars*. All assertions are special cases of those for continuous linear maps to general Banach spaces, but deserve special attention.

For X a normed vectorspace with norm ||, a continuous linear map $\lambda : X \to \mathbb{C}$ is a (continuous linear) functional on X. Let

$$X^* = \operatorname{Hom}^o(X, \mathbb{C})$$

denote the collection of all such (continuous) functionals.

As more generally, for any linear map $\lambda: X \to \mathbb{C}$ of a normed vectorspace to \mathbb{C} , the norm $|\lambda|$ is

$$\lambda| = \sup_{|x| \le 1} |\lambda x|$$

where $|\lambda x|$ is the absolute value of the value $\lambda x \in \mathbb{C}$. We allow the value $+\infty$. Such a linear map λ is bounded if $|\lambda| < +\infty$.

As a special case of the corresponding general result:

[4.1] Corollary: For a k-linear map $\lambda : X \to k$ from a normed space X to k, the following conditions are equivalent:

• The map λ is *continuous*.

///

- The map λ is continuous at one point.
- The map λ is bounded.

Proof: These are special cases of the earlier proposition where the target was a general Banach space.

The dual space

$$X^* = \operatorname{Hom}^o(X, \mathbb{C})$$

of X is the collection of *continuous* linear functionals on X. This dual space has a natural structure of vectorspace by

$$(\alpha\lambda)(x) = \alpha \cdot (\lambda x)$$
 and $(\lambda + \mu)x = \lambda x + \mu x$

for $\alpha \in \mathbb{C}$, $\lambda, \mu \in X^*$, and $x \in X$. It is easy to check that the norm

$$|\lambda| = \sup_{|x| \le 1} |\lambda x|$$

really is a norm on X^* , in that it meets the conditions

• Positivity: $|\lambda| \ge 0$ with equality only if $\lambda = 0$.

• Homogeneity: $|\alpha\lambda| = |\alpha| \cdot |\lambda|$ for $\alpha \in k$ and $\lambda \in X^*$. As a special case of the discussion of the uniform norm on linear maps, we have

[4.2] Corollary: The dual space X^* of a normed space X, with the natural norm, is a Banach space. That is, with respect to the natural norm on continuous functionals, it is *complete*. ///

5. Extensions by continuity

The following is a very general and important pattern. In particular, it is often applied in situations where the underlying set of X is the same as the underlying set of Y, but the norms are different.

[5.1] Theorem: Let $T: X \to Y$ be a continuous linear map from one normed space to another. Let \widetilde{X} be the completion of X, and \widetilde{Y} the completion of Y, both with respect to the metrics attached to their respective norms. Then a map $\widetilde{T}: \widetilde{X} \to \widetilde{Y}$ apparently given by

$$\widetilde{T}(\widetilde{X} - \lim_{n} x_n) = \widetilde{Y} - \lim_{n} T(x_n)$$

is a well-defined, continuous, linear map, and $\widetilde{T}|_X = T$.

Proof: To prove that \widetilde{T} is well-defined, by subtraction is suffices to show that if $\widetilde{X} - \lim x_n = 0$, then $\widetilde{Y} - \lim T(x_n) = 0$. Indeed, since T is continuous, it is *bounded* in the sense that there is $0 < C < +\infty$ such that $|Tx_n| \leq C \cdot |x|$ for all $x \in X$. Since $x_n \to 0$, for all $\varepsilon > 0$ there is n_o such that $n \geq n_o$ implies $|x_n| < \varepsilon$. For such n, $|Tx_n| \leq C \cdot \varepsilon$. Thus, $Tx_n \to 0$ in Y, hence in \widetilde{Y} , and \widetilde{T} is well-defined.

In fact, the previous also shows that \widetilde{T} is bounded with any bound that applies to T, so \widetilde{T} is continuous.

Since limits are homogeneous (degree one) and linear, the obvious computations will show that \widetilde{T} is linear. Just to be clear: for scalar α and vectors $x_n \in X$,

$$\widetilde{T}(\alpha \cdot \lim x_n) = \widetilde{T}(\lim \alpha \cdot x_n) = \lim T(\alpha \cdot x_n) = \lim \alpha \cdot T(x_n) = \alpha \cdot \lim T(x_n) = \alpha \cdot \widetilde{T}(\lim_n x)$$

and for $x_n, x'_n \in X$,

Paul Garrett: 01b. Norms and metrics (October 2, 2018)

$$\widetilde{T}(\lim x_n + \lim x'_n) = \widetilde{T}(\lim (x_n + x'_n)) = \lim T(x_n + x'_n)$$
$$= \lim (T(x_n) + T(x'_n)) = \lim T(x_n) + \lim T(x'_n) = \widetilde{T}(\lim x_n) + \widetilde{T}(\lim x'_n)$$

For $x \in X \subset \widetilde{X}$, we can take the constant sequence $x_n = x$, and

$$\widetilde{T}(x) = \widetilde{T}(\lim x_n) = \lim T(x_n) = \lim T(x) = T(x)$$

so \widetilde{T} does simply extend T to the completions.

///