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Hilbert spaces are possibly-infinite-dimensional analogues of the familiar finite-dimensional Euclidean spaces.
In particular, Hilbert spaces have inner products, so notions of perpendicularity (or orthogonality), and
orthogonal projection are available. Reasonably enough, in the infinite-dimensional case we must be careful
not to extrapolate too far based only on the finite-dimensional case.

Unfortunately, few naturally-occurring spaces of functions are Hilbert spaces. Given the intuitive geometry
of Hilbert spaces, this is disappointing, suggesting that physical intuition is a little distant from the behavior
of natural spaces of functions. However, a little later we will see that suitable families of Hilbert spaces can
capture what we want. Such ideas were developed by Beppo Levi (1906), Frobenius (1907), and Sobolev
(1930’s). These ideas do fit into Schwartz’ (c. 1950) formulation of his notion of distributions, but it seems
that they were not explicitly incorporated, or perhaps were viewed as completely obvious at that point. We
will see that Levi-Sobolev ideas offer some useful specifics in addition to Schwartz’ over-arching ideas.

Most of the geometric results on Hilbert spaces are corollaries of the minimum principle.

Most of what is done here applies to vector spaces over either R or C.

1. Cauchy-Schwarz-Bunyakowski inequality
2. Example: `2

3. Completions, infinite sums
4. Minimum principle, orthogonality
5. Parseval equality, Bessel inequality
6. Riemann-Lebesgue lemma
7. Gram-Schmidt process
8. Linear maps, linear functionals, Riesz-Fréchet theorem
9. Adjoint maps

1. Cauchy-Schwarz-Bunyakowsky inequality

Just to be safe, we review some basics.

A complex vector space V with a complex-valued function

〈, 〉 : V × V →→ C

of two variables on V is a (hermitian) inner product space or pre-Hilbert space, and 〈, 〉 is a (hermitian) inner
product, when we have the usual conditions

〈x, y〉 = 〈y, x〉 (the hermitian-symmetric property)
〈x+ x′, y〉 = 〈x, y〉+ 〈x′, y〉 (additivity in first argument)
〈x, y + y′〉 = 〈x, y〉+ 〈x, y′〉 (additivity in second argument)
〈x, x〉 ≥ 0 (and equality only for x = 0: positivity)
〈αx, y〉 = α〈x, y〉 (linearity in first argument)
〈x, αy〉 = ᾱ〈x, y〉 (conjugate-linearity in second argument)

Among other easy consequences of these requirements, for all x, y ∈ V

〈x, 0〉 = 〈0, y〉 = 0

where inside the angle-brackets the 0 is the zero-vector, and outside it is the zero-scalar.
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The associated norm | | on V is defined by

|x| = 〈x, x〉1/2

with the non-negative square-root. Even though we use the same notation for the norm on V as for the usual
complex value ||, context will make clear which is meant. The metric on a Hilbert space is d(v, w) = |v−w|:
the triangle inequality follows from the Cauchy-Schwarz-Bunyakowsky inequality just below.

For two vectors v, w in a pre-Hilbert space, if 〈v, w〉 = 0 then v, w are orthogonal or perpendicular, sometimes
written v ⊥ w. A vector v is a unit vector if |v| = 1.

There are several essential algebraic identities, variously and ambiguously called polarization identities. First,
there is

|x+ y|2 + |x− y|2 = 2|x|2 + 2|y|2

which is obtained simply by expanding the left-hand side and cancelling where opposite signs appear. In a
similar vein,

|x+ y|2 − |x− y|2 = 2〈x, y〉+ 2〈y, x〉 = 4Re〈x, y〉

Therefore,
(|x+ y|2 − |x− y|2) + i(|x+ iy|2 − |x− iy|2) = 4〈x, y〉

These and closely-related identites are of frequent use.

[1.1] Theorem: (Cauchy-Schwarz-Bunyakowsky inequality)

|〈x, y〉| ≤ |x| · |y|

with strict inequality unless x, y are collinear, i.e., unless one of x, y is a multiple of the other.

Proof: Suppose that x is not a scalar multiple of y, and that neither x nor y is 0. Then x− αy is not 0 for
any complex α. Consider

0 < |x− αy|2

We know that the inequality is indeed strict for all α since x is not a multiple of y. Expanding this,

0 < |x|2 − α〈x, y〉 − ᾱ〈y, x〉+ αᾱ|y|2

Let
α = µt

with real t and with |µ| = 1 so that
µ〈x, y〉 = |〈x, y〉|

Then
0 < |x|2 − 2t|〈x, y〉|+ t2|y|2

The minimum of the right-hand side, viewed as a function of the real variable t, occurs when the derivative
vanishes, i.e., when

0 = −2|〈x, y〉|+ 2t|y|2

Using this minimization as a mnemonic for the value of t to substitute, we indeed substitute

t =
|〈x, y〉|
|y|2

into the inequality to obtain

0 < |x|2 +

(
|〈x, y〉|
|y|2

)2

· |y|2 − 2
|〈x, y〉|
|y|2

· |〈x, y〉|
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which simplifies to
|〈x, y〉|2 < |x|2 · |y|2

as desired. ///

[1.2] Corollary: (Triangle inequality) For v, w in a Hilbert space V , we have |v+w| ≤ |v|+ |w|. Thus, with
distance function d(v, w) = |v − w|, we have the triangle inequality

d(x, z) = |x− z| = |(x− y) + (y − z)| ≤ |x− y|+ |y − z| = d(x, y) + d(y, z)

Proof: Squaring and expanding, noting that 〈v, w〉+ 〈w, v〉 = 2Re〈v, w〉,

(|v|+ |w|)2−|v+w|2 =
(
|v|2 + 2|v| · |w|+ |w|2

)
−
(
|v|2 + 〈v, w〉+ 〈w, v〉+ |w|2

)
≥ 2|v| · |w|−2|〈v, w〉| ≥ 0

giving the asserted inequality. ///

An inner product space complete with respect to the metric arising from its inner product (and norm) is a
Hilbert space.

[1.3] Continuity issues

The map
〈, 〉 : V × V −→ C

is continuous as a function of two variables. Indeed, suppose that |x − x′| < ε and |y − y′| < ε for
x, x′, y, y′ ∈ V . Then

〈x, y〉 − 〈x′, y′〉 = 〈x− x′, y〉+ 〈x′, y〉 − 〈x′, y′〉 = 〈x− x′, y〉+ 〈x′, y − y′〉

Using the triangle inequality for the ordinary absolute value, and then the Cauchy-Schwarz-Bunyakowsky
inequality, we obtain

|〈x, y〉 − 〈x′, y′〉| ≤ |〈x− x′, y〉|+ |〈x′, y − y′〉| ≤ |x− x′||y|+ |x′||y − y′|

< ε(|y|+ |x′|)

This proves the continuity of the inner product.

Further, scalar multiplication and vector addition are readily seen to be continuous. In particular, it is easy
to check that for any fixed y ∈ V and for any fixed λ ∈ C× both maps

x→ x+ y

x→ λx

are homeomorphisms of V to itself.

3



Paul Garrett: 02. Hilbert spaces (October 2, 2018)

2. Example: `2

Before further abstract discussion, we note that, up to isomorphism, there is essentially just one infinite-
dimensional Hilbert space occurring in practice, namely the space `2 constructed as follows. Most infinite-
dimensional Hilbert spaces occurring in practice have a countable dense subset, because the Hilbert spaces
are completions of spaces of continuous functions on topological spaces with a countably-based topology.

Lest anyone be fooled, often subtlety is in the description of the isomorphisms and mappings among such
Hilbert spaces.

Let `2 be the collection of sequences f = {f(i) : 1 ≤ i < ∞} of complex numbers meeting the constraint

∞∑
i=1

|f(i)|2 < +∞

For two such sequences f and g, the inner product is

〈f, g〉 =
∑
i

f(i)g(i)

[2.1] Claim: `2 is a vector space. The sum defining the inner product on `2 is absolutely convergent.

Proof: That `2 is closed under scalar multiplication is clear. For f, g ∈ `2, by Cauchy-Schwarz-Bunyakowsky,∣∣∣ ∑
n≤N

f(i) · g(i)
∣∣∣ ≤ ∑

n≤N

|f(i)| · |g(i)| ≤
∣∣∣ ∑
n≤N

|f(i)|2
∣∣∣ 12 · ∣∣∣ ∑

n≤N

|g(i)|2
∣∣∣ 12 ≤ |f |`2 · |g|`2

giving the absolute convergence of the infinite sum for 〈f, g〉. Then, expanding,∑
n≤N

|f(i) + g(i)|2 ≤
∑
n≤N

|f(i)|2 + 2|f(i)| · |g(i)|+ |g(i)|2 < +∞

by the previous. ///

[2.2] Claim: `2 is complete.

Proof: Let {fn} be a Cauchy sequence of elements in `2. For every i ∈ {1, 2, 3, . . .},

|fm(i)− fn(i)|2 ≤
∑
i≥1

|fm(i)− fn(i)|2 = |fm − fn|2`2

so f(i) = limn fn(i) exists for every i, and is the obvious candidate for the limit in `2. It remains to see that
this limit is indeed in `2. This will follow from an easy case of Fatou’s lemma:∑

i

|f(i)|2 =
∑
i

| lim
n
fn(i)| =

∑
i

| lim inf
n

fn(i)| ≤ lim inf
n

∑
i

|fn(i)| = lim inf
n
|fn|2`2

Since {fn} is a Cauchy sequence, certainly limn |fn|2`2 exists. ///

[2.3] Remark: A similar result holds for L2(X,µ) for general measure spaces X,µ, but requires more
preparation.
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3. Completions, infinite sums

An arbitrary pre-Hilbert space can be completed as metric space, giving a Hilbert space. Since metric spaces
have countable local bases for their topology (e.g., open balls of radii 1, 12 ,

1
3 ,

1
4 , . . .) all points in the completion

are limits of Cauchy sequences (rather than being limits of more complicated Cauchy nets). The completion
inherits an inner product defined by a limiting process

〈lim
m
xm, lim

n
yn〉 = lim

m,n
〈xm, yn〉

It is not hard to verify that the indicated limit exists (for Cauchy sequences {xm}, {yn}), and gives a
hermitian inner product on the completion. The completion process does nothing to a space which is already
complete.

In a Hilbert space, we can consider infinite sums ∑
α∈A

vα

for sets {vα : α ∈ A} of vectors in V . Not wishing to have a notation that only treats sums indexed by
1, 2, 3, . . ., we can consider the directed system A of all finite subsets of A. Consider the net of finite partial
sums of

∑
vα indexed by A by

s(Ao) =
∑
α∈Ao

vα

where Ao ∈ A. This is a Cauchy net if, given ε > 0, there is a finite subset Ao of A so that for any two finite
subsets A1, A2 of A both containing Ao we have

|s(A1)− s(A2)| < ε

If the net is Cauchy, then by the completeness there is a unique v ∈ V , the limit of the Cauchy net, so that
for all ε > 0 there is a finite subset Ao of A so that for any finite subset A1 of A containing Ao we have

|s(A1)− v| < ε

4. Minimum principle, orthogonality

This fundamental minimum principle, that a non-empty closed convex [1] set in a Hilbert space has a unique
element of least norm, is essential in the sequel. It generally fails in more general types of topological vector
spaces.

[4.1] Theorem: A non-empty closed convex subset of a HIlbert space has a unique element of least norm.

Proof: For two elements x, y in a closed convex set C inside a Hilbert space with both |x| and |y| within
ε > 0 of the infimum µ of the norms of elements of C,

|x−y|2 = 2|x|2+2|y|2−|x+y|2 = 2|x|2+2|y|2−4
( |x+ y|

2

)2
≤ 2(µ+ε)2+2(µ+ε)2−4µ2 = ε·(8µ+4ε)

since x+y
2 ∈ C by convexity of C. Thus, any sequence (or net) in C with norms approaching the inf is

a Cauchy sequence (net). Since C is closed, such a sequence converges to an element of C. Further, the

[1] Recall that a set C in a vector space is convex when tx+ (1− t)y ∈ C for all x, y ∈ C and for all 0 ≤ t ≤ 1.

5



Paul Garrett: 02. Hilbert spaces (October 2, 2018)

inequality shows that any two Cauchy sequences (or nets) converging to points minimizing the norm on C
have the same limit. Thus, the minimizing point is unique. ///

[4.2] Corollary: Given a closed, convex, non-empty subset E of a Hilbert space V , and a point v ∈ V not
in E, there is a unique point w ∈ E closest to v.

Proof: Since v 6∈ E, the set E − v does not contain 0. The map x → x − v is a homeomorphism, because
non-zero scalar multiplication and vector addition are continuous, and have continuous inverses. Thus, E−v
is closed. It is also still convex. Thus, there is a unique element xo − v ∈ E − v of smallest norm. That is,
|xo − v| < |x− v| for all x 6= xo in E. That is, the distance from xo is the minimum. ///

[4.3] Orthogonal projections to closed subspaces Existence of orthogonal projections makes essential
use of the minimization principle. Let W be a complex vector subspace of a Hilbert space V . If W is closed
in the topology on V then, reasonably enough, we say that W is a closed subspace. For an arbitrary complex
vector subspace W of a Hilbert space V , the topological closure W̄ is readily checked to be a complex vector
subspace of V , so is a closed subspace. Because it is necessarily complete, a closed subspace of a Hilbert space
is a Hilbert space in its own right.

Let W be a closed subspace of a Hilbert space V . Let v ∈ V . From the corollary just above, the closed
convex subset W contains a unique element wo closest to v.

[4.4] Claim: The element wo is the orthogonal projection of v to W , in the sense that wo ∈W is the unique
element in W such that 〈v − wo, w〉 = 0 for all w ∈W .

Proof: For two vectors w1, w2 ∈W so that

〈v − wi, w〉 = 0 (for both i = 1, 2 and for all w ∈W )

by subtracting, we would have
〈w1 − w2, w〉 = 0

for all w ∈W . In particular, with w = w1−w2, necessarily w1−w2 = 0, proving uniqueness of the orthogonal
projection.

With wo the unique element of W closest to v, for any w ∈W , since wo + w is still in W ,

|v − wo|2 < |v − (wo + w)|2

Expanded slightly, this is

|v − wo|2 ≤ |v − wo|2 − 〈v − wo, w〉 − 〈w, v − wo〉+ |w|2

which gives
〈v − wo, w〉+ 〈w, v − wo〉 ≤ |w|2

Replacing w by µw with µ a complex number with |µ| = 1 and

〈v − wo, µw〉 = |〈v − wo, w〉|

this gives
2|〈v − wo, w〉| ≤ |w|2 (for w 6= 0)

Replacing w by tw with t > 0 gives
2t|〈v − wo, w〉| ≤ t2|w|2

Dividing by t and letting t→ 0+, this gives

|〈v − wo, w〉| ≤ 0

6



Paul Garrett: 02. Hilbert spaces (October 2, 2018)

as required. ///

[4.5] Orthogonal complements W⊥ Let W be a vector subspace of a Hilbert space V . The orthogonal
complement W⊥ of W is

W⊥ = {v ∈ V : 〈v, w〉 = 0, ∀w ∈W}

It is easy to check that W⊥ is a complex vector subspace of V . Since for each w ∈W the set

w⊥ = {v ∈ V : 〈v, w〉 = 0}

is the inverse image of the closed set {0} of C under the continuous map

v → 〈v, w〉

it is closed. Thus, the orthogonal complement W⊥ is the intersection of a family of closed sets, so is closed.

One point here is that if the topological closure W̄ of W in a Hilbert space V is properly smaller than V
then W⊥ 6= {0}. Indeed, if W̄ 6= V then we can find y 6∈ W̄ . Let py be the orthogonal projection of y to
W̄ . Then yo = y − py is non-zero and is orthogonal to W , so is orthogonal to W̄ , by continuity of the inner
product. Thus, as claimed, W⊥ 6= {0}.

As a corollary, for any complex vector subspace W of the Hilbert space V , the topological closure of W in V
is the subspace

W̄ = W⊥⊥

One direction of containment, namely that
W̄ ⊂W⊥⊥

is easy: it is immediate that W ⊂W⊥⊥, and then since the latter is closed we get the asserted containment.
If W⊥⊥ were strictly larger than W̄ , then there would be y in it not lying in W̄ . Now W⊥⊥ is a Hilbert space
in its own right, in which W̄ is a closed subspace, so the orthogonal complement of W̄ in W⊥⊥ contains a
non-zero element z, from above. But then z ∈W⊥, and certainly

W⊥ ∩ (W⊥)⊥ = {0}

contradiction. ///

[4.6] Orthonormal sets, separability A set {eα : α ∈ A} in a pre-Hilbert space V is orthogonal if

〈eα, eβ〉 = 0 (for all α 6= β)

When
|eα| = 1

for all indices the set is orthonormal. An orthogonal set of non-zero vectors is turned into an orthonormal
one by replacing each eα by eα/|eα|.

We claim that not only are the elements eα in an orthonormal set linearly independent in the usual purely
algebraic sense, but, further, in a convergent infinite sum

∑
α∈A cαeα with complex cα with∑

α

cαeα = 0

then all coefficients cα are 0. Indeed, given ε > 0 take a large-enough finite subset Ao of A so that for any
finite subset A1 ⊃ Ao

|
∑
α∈A1

cαeα| < ε

7



Paul Garrett: 02. Hilbert spaces (October 2, 2018)

For any particular index β we may as well enlarge A1 to include β, and by Cauchy-Schwarz-Bunyakowsky.∣∣∣〈∑
α∈A1

cαeα, eβ〉
∣∣∣ ≤ ∣∣∣ ∑

α∈A1

cαeα

∣∣∣ · |eβ | < ε · |eβ | = ε

On the other hand, using the orthonormality,∣∣∣〈∑
α∈A1

cαeα, eβ〉
∣∣∣ = |cβ | · |eβ |2 = |cβ |

Together, |cβ | < ε. This holds for all ε > 0, so cβ = 0. This holds for all indices β. ///

A maximal orthonormal set in a pre-Hilbert space is called an orthonormal basis. The property of maximality
of an orthonormal set {eα : α ∈ A} is the natural one, that there be no other unit vector e perpendicular to
all the eα.

Let {eα : α ∈ A} be an orthonormal set in a Hilbert space V . Let Wo be the complex vector space of all
finite linear combinations of vectors in {eα : α ∈ A}. Then we claim that {eα : α ∈ A} is an orthonormal
basis if and only if Wo is dense in V . Indeed, if the closure W of Wo were a proper subspace of V , then it
would have a non-trivial orthogonal complement, so we could make a further unit vector, so {eα : α ∈ A}
could not have been maximal. On the other hand, if {eα : α ∈ A} is not maximal, let e be a unit vector
orthogonal to all the eα. Then e is orthogonal to all finite linear combinations of the eα, so is orthogonal to
Wo, and thus to W by continuity. That is, Wo cannot be dense. ///

Next, we show that any orthonormal set can be enlarged to be an orthonormal basis. To prove this requires
invocation of an equivalent of the Axiom of Choice. Specifically, we want to order the collection X of
orthonormal sets (containing the given one) by inclusion, and note that any totally ordered collection of
orthonormal sets in X has a supremum, namely the union of all. Thus, we are entitled to conclude that there
are maximal orthonormal sets containing the given one. If such a maximal one were not an orthonormal
basis, then (as observed just above) we could find a further unit vector orthogonal to all vectors in the
orthonormal set, contradicting the maximality within X. ///

If a Hilbert space has a countable orthonormal basis, then it is called separable. Most Hilbert spaces of
practical interest are separable, but at the same time most elementary results do not make any essential use
of separability so there is no compulsion to worry about this at the moment.

5. Bessel inequality, Parseval isomorphism

Let {eα : α ∈ A} be an orthonormal basis in a Hilbert space V . Granting for the moment that v ∈ V has an
expression

v =
∑
α

cαeα

we can determine the coefficients cα, as follows. By the continuity of the inner product, this equality yields

〈v, eβ〉 = 〈
∑
α

cαeα, eβ〉 =
∑
α

cα〈eα, eβ〉 = cβ

An expression

v =
∑
α

cα eα =
∑
α

〈v, eα〉 eα

is an abstract Fourier expansion. The coefficients cα = 〈v, eα〉 are the (abstract) Fourier coefficients in terms
of the orthonormal basis. When the orthonormal basis {eα : α ∈ A} is understood, we may write v̂(α) for
〈v, eα〉.
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[5.1] Remark: We have not quite proven that every vector has such an expression. We do so after proving
a necessary preparatory result.

[5.2] Claim: (Bessel’s inequality) Let {eβ : β ∈ B} be an orthonormal set in a Hilbert space V . Then

|v|2 ≥
∑
β∈B

|〈v, eβ〉|2

Proof: Just using the positivity (and continuity) and orthonormality

0 ≤ |v−
∑
β∈B

〈v, eβ〉 eβ |2 = |v|2−
∑
β∈B

〈v, eβ〉〈v, eβ〉−
∑
β∈B

〈v, eβ〉〈v, eβ〉+
∑
β∈B

|〈v, eβ〉|2 = |v|2−
∑
β∈B

|〈v, eβ〉|2

This gives the desired inequality. ///

[5.3] Claim: Every vector v ∈ V has a unique expression as

v =
∑
α∈A

cαeα

More precisely, for v ∈ V and for each finite subset B of A let

vB = projection of v to
∑
α∈B C · eα =

∑
α∈B
〈v, eα〉 eα

Then the net
{vB : B finite, B ⊂ A}

is Cauchy and has limit v.

Proof: Uniqueness follows from the previous discussion of the density of the subspace Vo of finite linear
combinations of the eα.

Bessel’s inequality

|v|2 ≥
∑
α∈B

|〈v, eα〉|2

implies that the net is Cauchy, since the tails of a convergent sum must go to 0. Let w be the limit of this
net. Given ε > 0, let B be a large enough finite subset of A such that for finite subset C ⊃ B |w − vC | < ε.
Given α ∈ A enlarge B if necessary so that α ∈ B. Then

|〈v − w, eα〉| ≤ |〈v − vB , eα〉|+ |〈w − vB , eα〉| ≤ 0 + |w − vB | < ε

since 〈v − vB , eα〉 = 0 for α ∈ B. Thus, if v 6= w, we can construct a further vector of length 1 orthogonal
to all the eα, namely a unit vector in the direction of v − w. This would contradict the maximality of the
collection of eα. ///

[5.4] Remark: If V were only a pre-Hilbert space, that is, were not complete, then a maximal collection of
mutually orthogonal vectors of length 1 may not have the property of the theorem. That is, the collection of
(finite) linear combinations may fail to be dense. This is visible in the proof above, wherein we needed to be
able to take the limit that yielded the auxiliary vector w. For example, inside the standard `2 let e1, e2, . . .
be the usual e1 = (1, 0, 0, . . .), e1 = (0, 1, 0, . . .), (etc.) and let

v1 = (1,
1

2
,

1

3
,

1

4
,

1

5
, . . .)
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Let V be pre-Hilbert space which is the (algebraic) span of v1, e2, e3, . . . Certainly

B = {e2, e3, . . .}

is an orthonormal set. In fact, this collection is a maximal orthonormal set in V , but v1 is not in the closure
of the span of B.

For v ∈ V , write
v̂ = 〈v, eα〉

[5.5] Corollary: (Parseval isomorphism) With orthonormal basis {eα : α ∈ A}, the map v → v̂ is an
isomorphism of Hilbert spaces V → `2(A). That is, the map is an isomorphism of complex vector spaces, is
a homeomorphism of topological spaces, and

〈v, w〉 = 〈v̂, ŵ〉 |v|2 = |v̂|2`2(A)

where the inner product on the left is that in V and the inner product on the right is that in `2(A).) That
is,

|v|2 =
∑
α∈A
|〈v, eα〉|2

Proof: Expand any vector v in terms of the given orthonormal basis as

v =
∑
α

v̂(α) eα =
∑
α

〈v, eα〉 eα

The assertion that 〈v, w〉 = 〈v̂, ŵ〉 is a consequence of the expansion in terms of the orthonormal basis,
together with continuity. That v̂ lies in `2(A), and in fact has norm equal to that of v, is the assertion of
Parseval.

The only thing of any note is the point that any {cα} ∈ `2(A) can actually occur as the (abstract) Fourier
coefficients of some vector in V . That is, for f ∈ `2(A), we want to show that the net of finite sums∑

α∈Ao

f(α)eα

(for Ao a finite subset of A) is Cauchy. Since f ∈ `2(A), for given ε > 0 there is large-enough finite Ao so
that ( ∑

α∈A−Ao

|f(α)|2
)1/2

=
∣∣∣ ∑
α∈A−Ao

f(α)eα

∣∣∣ < ε

(using the orthonormality). Then for A1, A2 both containing Ao,∣∣∣ ∑
α∈A1

f(α)eα −
∑
α∈A2

f(α)eα

∣∣∣2 =
∑

α∈(A1∪A2)−Ao

|f(α)eα|2 ≤
∑

α∈A−Ao

|f(α)|2 < ε2

From this the Cauchy property follows. ///
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6. Riemann-Lebesgue lemma

The result of this section is an essentially trivial consequence of previous observations, and is certainly much
simpler to prove than the genuine Riemann-Lebesgue lemma for Fourier transforms.

Let {eα : α ∈ A} be an orthonormal basis for a Hilbert space V . For v ∈ V , write

v̂(α) = 〈v, eα〉

The Riemann-Lebesgue lemma relevant here is

lim
α
|v̂(α)| = 0

More explicitly, this means that for given ε > 0 there is a finite subset Ao of A so that for α 6∈ Ao we have

|v̂(α)| < ε

This follows from the fact that the infinite sum ∑
α

|v̂(α)|2

is convergent.

7. Gram-Schmidt process

Let S = {vn : n = 1, 2, 3, . . .} be a well-ordered set of vectors in a pre-Hilbert space V . For simplicity, we
are also assuming that S is countable. Let Vo be the collection of all finite linear combinations of S, and
suppose that Vo is dense in V . Then we can obtain an orthonormal basis from S by the following procedure,
called the Gram-Schmidt process:

Let vn1
be the first of the vi which is non-zero, and put

e1 =
vn1

|vn1
|

Let vn2
be the first of the vi which is not a multiple of e1. Put

f2 = vn2
− 〈vn2

, e1〉e1

and

e2 =
f2
|f2|

Inductively, suppose we have chosen e1, . . . , ek which form an orthonormal set. Let vnk+1
be the first of the

vi not expressible as a linear combination of e1, . . . , ek. Put

fk+1 = vnk+1
−
∑

1≤i≤k

〈vnk+1
, ei〉ei

and

ek+1 =
fk+1

|fk+1|

11
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Then induction on k proves that the collection of all finite linear combinations of e1, . . . , ek is the same as
the collection of all finite linear combinations of vn1 , vn2 , vn3 , . . . , vnk

. Thus, the collection of all finite linear
combinations of the orthonormal set e1, e2, . . . is dense in V , so this is an orthonormal basis.

8. Linear maps, linear functionals, Riesz-Fréchet theorem

We consider maps T : V → W from one Hilbert space to another which are not only linear, but also
continuous. The linearity is

T (av + bw) = a · Tv + b · Tw (for scalars a, b and v, w ∈ V )

and the continuity is as expected for a map from one metric space to another: given v ∈ V and given ε > 0,
there is small enough δ > 0 such that for v′ ∈ V with |v′ − v|V < δ, we have |Tv − Tv′|W < ε.

A (continuous, linear) functional λ on a Hilbert space V is a continuous linear map λ : V → C.

The kernel or nullspace of a linear map T is

kerT = {v ∈ V : Tv = 0}

A linear map T : V →W is bounded when there is a finite real constant C so that, for all v ∈ V ,

|Tv|W < C|v|V (for all v ∈ V )

The collection of all continuous linear functionals on a Hilbert space V is denoted by V ∗.

[8.1] Claim: Continuity of a linear map T : V →W is equivalent to boundedness.

Proof: Continuity at zero is the assertion that for all ε > 0 there is an open ball B = {v ∈ V : |v|V < δ}
(with δ > 0) such that |Tv|W < ε for v ∈ B. In particular, take δ > 0 so that for |v| < δ we have

|Tv| < 1

For arbitrary 0 6= x ∈ V we have

| δ
2|x|
· x| < δ

Therefore, ∣∣∣T( δ

2|x|
· x
)∣∣∣
W

< 1

By the linearity of T ,

|Tx|W <
2

δ
· |x|V

That is, continuity implies boundedness.

On the other hand, suppose that there is a finite real constant C so that, for all x ∈ V ,

|Tx| < C|x|

For |x− y| < ε/C

|Tx− Ty|W = |T (x− y)|W < C|x− y|V < C · ε
C

= ε

showing that boundedness implies continuity. Thus, boundedness and continuity are equivalent. ///
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For a pre-Hilbert space V with completion V̄ , a continuous linear functional λ on V has a unique extension
to a continuous linear functional on V̄ , defined by

λ̄(lim
n
xn) = lim

n
λ(xn)

It is not difficult to check that this formula gives a well-defined function (due to the continuity of the original
λ), and is additive and linear.

The dual V ∗ has a natural norm

|λ|V ∗ = sup
v∈V :|v|≤1

|λ(v)| (for λ ∈ V ∗)

By the minimum principle, the sup is attained.

[8.2] Theorem: (Riesz-Fréchet) Every continuous linear functional λ on a Hilbert space V is of the form

λ(x) = 〈x, yλ〉

for a uniquely-determined yλ in V . Further, |yλ|V = |λ|V ∗ . Thus, the map V → V ∗ by v → λv defined by
λv(w) = 〈w, v〉V is a conjugate-linear isomorphism V → V ∗: it preserves vector addition and preserves the
metric, but scalar multiplication is conjugated: yaλ = a · yλ for a ∈ C.

Proof: The kernel kerλ of a non-zero continuous linear functional λ is a proper closed subspace. From
above, there is a non-zero element z ∈ (kerλ)⊥. Replace z by z/λ(z) so that λ(z) = 1 without loss of
generality. For any v ∈ V ,

λ(v − λ(v)z) = λ(v)− λ(v) · 1 = 0

so v − λ(v)z ∈ kerλ. Therefore,
0 = 〈v − λ(v)z, z〉

Thus,
〈v, z〉 = λ(v) · 〈z, z〉

so that
〈v, z

〈z, z〉
〉 = λ(v)

proving existence. For uniqueness, when 〈x, z〉 = 〈x, z′〉 for specific z, z′ and for all x, then 〈x, z − z′〉 = 0
for all x gives z = z′, giving uniqueness.

Of course, every y ∈ V gives a continuous linear functional by x → 〈x, y〉V . This is the inverse map to
λ→ yλ, so both are bijections. Addition is preserved:

〈v, yλ+µ〉V = (λ+ µ)(v) = λv + µv = 〈v, yλ〉V + 〈v, yµ〉V = 〈v, yλ + yµ〉V (for all v)

The conjugation of scalars follows similarly, from the hermitian-ness of 〈, 〉V :

〈v, yaλ〉V = (aλ)(v) = a · λv = a〈v, yλ〉V = 〈v, a · yλ〉V

as claimed. ///

[8.3] Corollary: The dual V ∗ has a natural Hilbert space structure, given by

〈λ, µ〉V ∗ = 〈yλ, yµ〉V (where λ(v) = 〈v, yλ〉V and µ(v) = 〈v, yµ〉V , for all v ∈ V )

Proof: Checking the pre-Hilbert space properties is straightforward. Completeness follows from the property
|yλ|V = |λ|V ∗ . ///
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[8.4] Corollary: V ≈ (V ∗)∗ as Hilbert spaces, given by map ϕ : V → V ∗∗ by ϕ(v)(λ) = λv.

Proof: One checks directly that ϕ gives a continuous, injective, complex-linear map V → V ∗∗. We claim
that it is composite of the two conjugate-linear isomorphisms V → V ∗ and V ∗ → (V ∗)∗. Let v → λv = 〈−, v〉
be the map V → V ∗, and µ→ Λmu = 〈−, µ〉V ∗ the map V ∗ → (V ∗)∗. For v, w ∈ V ,

ϕ(v)(λw) = λw(v) = 〈v, w〉V = 〈v, w〉V = 〈λw, λv〉V ∗ = Λλv
(λw)

By Riesz-Fréchet, the vectors λw fill out V ∗ for w ∈ V . Thus, ϕ(v) = Λλv , as claimed. ///

9. Adjoints

[9.1] Claim: Given a continuous linear map T : V → W of Hilbert spaces, there is a unique continuous
linear T ∗ : W ∗ → V ∗ characterized by

(T ∗µ)(v) = µ(Tv) (for µ ∈W ∗, for all v ∈ V )

Proof: The map V → C by v → Tv → µ(Tv) is a composite of continuous functions, so is continuous. It is
linear for the same reason. Call it T ∗µ ∈ V ∗. To show that µ→ T ∗µ is continuous, it is convenient to look
at bounds: since T is continuous, it is bounded, so there is C such that |Tv|W ≤ C · |v|V , and then

|(T ∗µ)(v)| = |µ(Tv)| ≤ |µ|W∗ · |Tv|W ≤ |µ|W∗ · C · |v|V

Thus, |T ∗µ|V ∗ ≤ |µ|W∗ · C <∞, so T ∗ is continuous. ///

[9.2] Remark: Somewhat surprisingly, for most continuous linear maps T : V → W of Hilbert spaces, the
Riesz-Fréchet conjugate-linear isomorphisms αV : V → V ∗ and αW : W → W ∗ are not compatible with
adjoints. That is, it is rare that the following square commutes:

V
T //

αV

��

W

αW

��
V ∗ W ∗

T∗
oo

In fact, the only situation in which such a square commutes is when T is an isometry to its image.
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