
(November 7, 2018)

04b. Product measures and Fubini-Tonelli theorem

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ g̃arrett/

[This document is http://www.math.umn.edu/ g̃arrett/m/real/notes 2018-19/04b Fubini-Tonelli.pdf]

1. Product measures
2. Fubini-Tonelli theorem(s)
3. Completions of measures

1. Product measures, completions of measures

Let X,µ and Y, ν be measure spaces with corresponding σ-algebras A,B. Assume X and Y are σ-finite, in
the sense that they are countable unions of finite-measure sets.

First, the product σ-algebra is the σ-algebra in X × Y generated by all products E × F with E ∈ A and
F ∈ B.

For iterated integrals to make sense, we need to check a few things. For E ∈ A× B, for x ∈ X and y ∈ Y ,
let

Ex = {y ∈ Y : (x, y) ∈ E} and Ey = {x ∈ X : (x, y) ∈ E}

As a consistency check, we have

[1.1] Theorem: For E ∈ A × B, for x ∈ X and y ∈ Y , Ex ∈ A and Ey ∈ B. The function x → ν(Ex) is
µ-measurable, y → µ(Ey) is ν-measurable, and∫

X

ν(Ex) dµ(x) =

∫
Y

µ(Ey) dν(y)

Proof: [... iou ...] ///

Then the product measure µ× ν can be defined in the expected fashion: for E ∈ A×B,

(µ× ν)(E) =

∫
X

ν(Ex) dµ(x) =

∫
Y

µ(Ey) dν(y)

2. Fubini-Tonelli theorem(s)

Let X,µ and Y, ν be measure spaces with corresponding σ-algebras A,B. Assume X and Y are σ-finite.

[2.1] Theorem: (Fubini-Tonelli) For complex-valued measurable f, g, if any one of∫
X

∫
Y

|f(x, y)| dµ(x) dν(y)

∫
Y

∫
X

|f(x, y)| dν(y) dµ(x)

∫
X×Y

|f(x, y)| dµ×ν

is finite, then they all are finite, and are equal. For [0,+∞]-valued functions f ,∫
X

∫
Y

f(x, y) dµ(x) dν(y) =

∫
Y

∫
X

f(x, y) dν(y) dµ(x) =

∫
X×Y

f(x, y) dµ×ν

although the values may be +∞.
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Proof: [... iou ...] ///

To explain what the product measure µ × ν should be, and also for a proof of the theorem, we need the
notion of monotone class. A monotone class in a set X is a set M of subsets of X closed under countable
ascending unions and under countable descending intersections. That is, if

M1 ⊂M2 ⊂M3 ⊂ . . .

N1 ⊃ N2 ⊃ N3 ⊃ . . .

are collections of sets in M, then ⋃
i

Mi

⋂
i

Ni

both lie inM, as well. Another characterization of A×B is that it is the smallest monotone class containing
all products E × F with E ∈ A and F ∈ B.

Let f be a A× B-measurable function on X × Y . (Note that this does not depend upon having a ‘product
measure’, but only upon the sigma-algebra!) Then all the functions

x→ f(x, y) (for fixed y ∈ Y

y → f(x, y) (for fixed x ∈ X

are measurable (in appropriate senses). In particular, we could apply this to the characteristic function of a
set G ∈ A× B.

Now we come to the point where the sigma-finiteness of X and Y is necessary. For G ∈ A× B, let

f(x) = ν(Gx) g(y) = µ(Gy)

where Gx, Gy are as above. We have already noted that f, g are measurable. Further,∫
X

f(x) dµ(x) =

∫
Y

g(y) dν(y)

This is proven by showing that the collection of G for which the conclusion is true is a monotone class
containing all products E × F .

In light of the latter equality, we can define the product measure µ× ν on G ∈ A× B by

(µ× ν)(G) =

∫
X

f(x) dµ(x) =

∫
Y

g(y) dν(y)

with notation as just above. The countable additivity follows from a preliminary version of Fubini’s theorem,
namely that if fi are countably-many [0,+∞]-valued functions on a measure space Ω, then∫

Ω

∑
i

fi =
∑
i

∫
Ω

fi

which itself is a little corollary of the monotone convergence theorem.

sectionCompletions of measures

For example, a reasonable measure on Rm × Rn should include many sets not expressible as countable
unions of products E × F where E ⊂ Rm and F ⊂ Rn. For example, diagonal subsets of the form
D = {(x, x) : 0 ≤ x ≤ 1} ⊂ R2 are not countable unions of products, but should surely be measurable.

One way to accomplish this is by completion of the product measure.
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Then the completion of µ× ν further assigns measure 0 to any subset S of T ∈ A×B with (µ× ν)(T ) = 0,
and adjoins all such sets to the σ-algebra A×B.

[2.2] Claim: Lebesgue measure on Rm ×Rn is the completion of the product of Lebesgue measures on Rm

and Rn.

Proof: [... iou ...] ///

Completing a product measure is usually what we want, but it slightly complicates the statement of the
corresponding Fubini-Tonelli theorem:

[2.3] Theorem: Let X,A, µ and Y,B, ν be complete measure spaces, with X,Y σ-finite. Let f be a
function on X × Y measurable with respect to the completion of the product measure. Then x → f(x, y)
and y → f(x, y) are µ-measurable and ν-measurable (only) almost everywhere.

Proof: [... iou ...] ///

[2.4] Remark: To be precise, completeness is a property of σ-algebras, not of measures.
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