(November 7, 2018)

04c. Riesz-Markov-Kakutani theorem, Lebesgue measure

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is http://www.math.umn.edu/~garrett/m/real/notes_2018-19/04c_Riesz_Markov_Kakutani.pdf]

- 1. Riesz-Markov-Kakutani theorem and regularity
- 2. Lebesgue measure

1. Riesz-Markov-Kakutani theorem and regularity

Let X be a locally compact, Hausdorff, topological space. A map $f \to \lambda(f)$ of continuous, compactly supported functions $C_c^o(X)$ to scalars is *positive* when $\lambda(f) \ge 0$ for $f \in C_c^o(X)$ taking values in $[0, +\infty)$.

[1.1] Theorem: (*Riesz, Markov, Kakutani, independently*) Given a positive functional λ on $C_c^o(X)$, there is a σ -algebra A containing all Borel sets, and a positive measure μ on A, such that

$$\lambda(f) = \int_X f(x) \, d\mu(x) \qquad \text{(for all } f \in C_c^o(X)\text{)}$$

• Outer regularity holds unconditionally, namely, that for $E \in A$, $\mu(E) \inf_{U \supset E} \mu(U)$ where U ranges over open sets containing E.

• Inner regularity is conditional: for open E, and for $\mu(E) < \infty$, $\mu(E) = \sup_{K \subseteq E} \mu(K)$ where K ranges over compact sets contained in E.

• μ is complete, in the sense that $E' \subset E \in A$ and $\mu(E) = 0$ implies that $E' \in A$.

Proof: (Standard... [... iou ...])

With a further mild assumption on the physical space X, including familiar spaces such as \mathbb{R}^n , in fact we have unconditional *regularity*:

///

///

[1.2] Theorem: Suppose further that X is σ -compact, meaning that it is a countable union of compact subsets. Then, in the situation of the previous theorem, μ is unconditionally inner regular: $\mu(E) = \sup_{K \subset E} \mu(K)$ as K ranges over compacts contained in E. Thus, the measure μ is a positive, regular, Borel measure.

Proof: (Standard... [... iou ...])

2. Lebesgue measure

As a corollary of the Riesz-Markov-Kakutani theorem we have a different description of the Lebesgue measure and integral, as an extension of the Riemann integral, with the very useful side effect of proving inner and outer regularity.

In the Riesz-Markov-Kakutani theorem, take $X = \mathbb{R}^n$, and $\lambda(f)$ to be the usual Riemann integral for $f \in C_c^o(\mathbb{R}^n)$, and let Lebesgue measure be the associated *positive*, *regular*, *Borel* measure. With this description of Lebesgue measure, as opposed to the more tangible (but also more awkward) Lebesgue outer measure, we must verify that all the expected properties do hold.

[2.1] Corollary: Let μ be Lebesgue measure, induced by the Riesz-Markov-Kakutani theorem from the Riemann integral on $C_c^o(\mathbb{R}^n)$.

• μ is translation-invariant in the sense that $\mu(E+x) = \mu(E)$ for all $x \in \mathbb{R}^n$.

• The Lebesgue measure of a cube $(a_1, b_1) \times \ldots \times (a_n, b_n)$ is the product $\prod_i |b_i - a_i|$, and similarly for closed and half-open intervals and their products.

Proof: (Standard... [... iou ...])