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The Fourier transform of f ∈ L1(R) is [1]

f̂(ξ) =

∫
R
e−2πiξx · f(x) dx

Since f ∈ L1(R), the integral converges absolutely, and uniformly in ξ ∈ R. Similarly, on Rn, with the usual
inner product ξ · x =

∑n
j=1 ξjxj ,

f̂(ξ) =

∫
Rn
e−2πiξ·x · f(x) dx

An immediately interesting feature of Fourier transform is that differentiation is apparently converted to
multiplication: at first heuristically, but rigorously proven below, imagining that we can integrate by parts,

∂f

∂xj
(̂ξ) =

∫
Rn
e−2πiξ·x · ∂

∂xj
f(x) dx =

∫
Rn

∂

∂xj
e−2πiξ·x · f(x) dx =

∫
Rn

(−2πiξj)e
−2πiξ·x · f(x) dx

= (−2πiξj)

∫
Rn
e−2πiξ·x · f(x) dx = (−2πiξj)f̂(ξ)

Thus, the Laplacian ∆ =
∑
j
∂2

∂x2
j

is converted to multiplication by (−2πi)2 ·r2 where r2 = ξ21 +. . .+ξ2n. Thus,

to solve a differential equation such as (∆− λ)u = f , apply Fourier transform to obtain (−4π2r2 − λ)û = f̂ .
Divide through by (−4π2r2 − λ) to obtain

û =
f̂

−4π2r2 − λ

To recover u from û, there is Fourier inversion (proven below):

u(x) =

∫
Rn
e2πiξ·x û(ξ) dξ

There are obvious issues about the integration by parts, the convergence of the relevant integrals, and the
inversion formula. In fact, to extend the Fourier transform to L2(Rn), the integral definition of the Fourier
transform must also be extended to a situation where the literal integral does not converge. Similarly, a bit
later, the Fourier transform on the dual of the Schwartz space S (Rn) (below), the tempered distributions
S (Rn)∗, is only defined by either an extension by continuity or by a duality.

[1] There are other choices of normalizations, that put the 2π in other locations than the exponent, but the differences

are inconsequential, so we pick one normalization and use it consistently throughout.
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1. Basic classes of functions D,S , E and their duals

Even though our immediate discussion will be incomplete, it is worthwhile to introduce some basic, standard
function spaces. Recall that a function F on Rn is of rapid decay when supx∈Rn |x|Nf(x)| < +∞ for all
positive integers N .
D = D(Rn) = test functions = C∞c (Rn)

S = S (Rn) = Schwartz functions = {f ∈ C∞(Rn) : f and all its derivatives are of rapid decay}

E = E(Rn) = smooth functions = C∞(Rn)

The spaces S and E will turn out to be Fréchet spaces, while the appropriate topology on test function D
is somewhat more complicated. Without elaborating on these topologies, the dual spaces, that is, the vector
spaces of continuous linear functionals D → C, S → C, and E → C, are


D∗ = D′ = D(Rn)∗ = distributions

S ∗ = S ′ = S (Rn)∗ = tempered distributions

E∗ = E ′ = E(Rn)∗ = compactly-supported distributions

For the latter name to make better sense, we’d need to describe the support of a distribution, and also prove
that this naming convention is correct.

The obvious inclusions D ⊂ S ⊂ E do turn out to be continuous in the relevant topologies. Thus, we have
inclusion-reversing containments of duals: E∗ ⊂ S ∗ ⊂ D∗.

Thus, tempered distributions really are a kind of distribution, and compactly-supported distributions are a
kind of tempered distribution.

Eventually (below), we refine the chain of containments

D ⊂ S ⊂ L2(Rn) ⊂ S ∗ ⊂ D∗

in various ways. One such refinement is in terms of Sobolev spaces.

2. Example computations

It is useful and necessary to have a stock of explicitly evaluated Fourier transforms, especially on R. In
many cases, it is much less obvious how to go in the opposite direction, so Fourier inversion (below) has
non-trivial content.

[2.1] Characteristic functions of finite intervals It is easy to compute the Fourier transform of the
characteristic function ch[a,b] of an interval [a, b]: at least for ξ 6= 0, but then extending by continuity (see
the Riemann-Lebesgue Lemma below),∫

R
ch[a,b] e

−2πiξx dx =

∫ b

a

e−2πiξx dx =
e−2πiξb − e−2πiξa

−2πiξ

In particular, for a symmetrical interval [−w,w],∫
R

ch[−w,w] e
−2πiξx dx =

e2πiξw − e−2πiξw

2πiξ
=

sin 2πwξ

πξ
= 2w · sin 2πwξ

2πwξ
= 2w · sinc(2πwξ)

2



Paul Garrett: 06. Fourier transforms (November 13, 2018)

where the (naively-normalized) sinc function [2] is sinc(x) = sin x
x . Anticipating Fourier inversion (below),

although sinc(x) is not in L1(R), it is in L2(R), and its Fourier transform is evidently a characteristic function
of an interval. This is not obvious.

[2.2] Tent functions Let f(x) be a piecewise-linear, continuous tent function of width 2w and height h,
symmetrically placed about the origin:

f(x) =


0 (for x ≤ −w)

h− h|x|
w

(for |x| ≤ w)

0 (for x ≥ w)

Breaking the integral into two pieces and integrating by parts twice, for ξ 6= 0 but extending by continuity
(see below), we find that

f̂(ξ) =
h

π2w

( sinπwξ

ξ

)2

[2.3] Gaussians With our normalization of the Fourier transform, the best Gaussian is f(x) = e−πx
2

,
because ∫

R
e−2πiξx e−πx

2

dx = e−πξ
2

The sanest proof of this uses contour shifting from complex analysis:∫
R
e−2πiξx e−πx

2

dx =

∫
R
e−π(x−iξ)

2−πξ2 dx = e−πξ
2

∫
R
e−π(x−iξ)

2

dx = e−πξ
2

∫ −iξ+∞
−iξ−∞

e−πx
2

dx

= e−πξ
2

∫ +∞

−∞
e−πx

2

dx = e−πξ
2

· 1 = e−πξ
2

because
∫ +∞
−∞ e−πx dx = 1. Similarly, in Rn, because the Gaussian and the exponentials both factor over

coordinates, the same identity holds:∫
Rn
e−2πiξ·x e−π|x|

2

dx = e−π|ξ|
2

[2.4] Fourier transforms of rational expressions Often, one-dimensional Fourier transforms of relatively
elementary expressions can be evaluated by residues, meaning via Cauchy’s Residue Theorem from complex
analysis. Thus, for example, ∫

R
e−2πiξx

1

1 + x2
dx = 2πi

e−2πξ

i+ i
= π e−2πξ

by looking at residues in the upper or lower complex half-plane, depending on the sign of ξ. Thinking
of Fourier inversion, it is somewhat less obvious how to go in the other direction, to see that the Fourier
transform of e−|ξ| is essentially 1/(1 + x2). Similarly, for 2 ≤ k ∈ Z,∫

R
e−2πiξx

1

(x− i)k
dx =

 (2πi)(−2πiξ)k−1 e−2π|ξ| (for ξ < 0)

0 (for ξ > 0)

[2] According to http://en.wikipedia.org/wiki/Sinc function, the name is a contraction of the Latin name sinus

cardinalis, bestowed on this function by P. Woodard and I. Davies, Information theory and inverse probability in

telecommunication, Proc. IEEE-part III: radio and communication engineering 99 (1952), 37-44.
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[2.5] Translations are converted to multiplications For f ∈ L1(Rn), for xo ∈ Rn, certainly x→ f(x+xo)
is still in L1(Rn), because Lebesgue measure is translation invariant. Changing variables, replacing x by
x− xo,

f(∗+ xo)̂ (ξ) =

∫
Rn
e−2πiξ·x f(x+ xo) dx =

∫
Rn
e−2πiξ·(x−xo) f(x) dx

= e2πiξ·xo
∫
Rn
e−2πiξ·x f(x) dx = e2πiξ·xo · f̂(ξ)

[2.6] Behavior under dilations A similar change of variables applies to dilations x → t · x with t > 0:
replacing x by x/t,

f(t · ∗)̂ (ξ) =

∫
Rn
e−2πiξ·x f(t · x) dx =

∫
Rn
e−2πiξ·x/t f(x) t−n dx

= t−n
∫
Rn
e−2πi

ξ
t ·x f(x) dx = t−nf̂(t−1 · ξ)

[2.7] Behavior under linear transformations More generally, with an invertible real matrix A, replacing
x by A−1x,

f(A · ∗)̂ (ξ) =

∫
Rn
e−2πiξ·x f(Ax) dx =

∫
Rn
e−2πiξ·A

−1x f(x) (detA)−1 dx

Since ξ ·A−1x = (A−1)>ξ · x, this is

(detA)−1
∫
Rn
e−2πi(A

−1)>ξ·x f(x) dx = (detA)−1f̂((A−1)>ξ)

[2.8] Multiplications are converted to differentiation, and vice-versa For suitable f , so that integration
by parts succeeds,

f̂ ′(ξ) =

∫
R
e−2πiξx

d

dx
f(x) dx = −

∫
R

d

dx
e−2πiξx f(x) dx

= −2πiξ

∫
R
e−2πiξx f(x) dx = −2πiξ f̂(ξ)

Anticipating Fourier inversion, we would know that, symmetrically, multiplication by x is essentially
converted to differentiation. We can also compute this directly, but with a non-trivial issue about moving
the differentiation through the integral: [3]

(̂xf)(ξ) =

∫
R
e−2πiξx xf(x) dx =

∫
R

1

−2πi

d

dξ
e−2πiξx f(x) dx

=
1

−2πi

d

dξ

∫
R
e−2πiξx f(x) dx =

1

−2πi

d

dξ
f̂(ξ)

The issue of moving the differential operator through the integral also arises below in proving that Fourier
transform maps the space S of Schwartz functions to itself.

[3] For f a Schwartz function, that is, smooth and it and all derivatives are of rapid decay (see below), moving the

differentiation through the integral is demonstrably legitimate. However, the best proof, which shows that this is a

special case of a very general pattern of operators commuting with integrals, is not elementary. It uses Gelfand-Pettis

(also called weak) vector-valued integrals, which will be discussed later.
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3. Riemann-Lebesgue lemma for L1(R)
Just to be sure that this result is not overlooked, we recall it:

[3.1] Theorem: (Riemann-Lebesgue) For f ∈ L1(R), the Fourier transform f̂ is in the space Coo (R) of

continuous functions going to 0 at infinity. In fact, the map f → f̂ is a continuous linear map from the
Banach space L1(R) to the Banach space Coo (R), the latter being the sup-norm completion of Coc (R).

Proof: First, for f ∈ L1(R),

|f̂(ξ)| =
∣∣∣ ∫

R
e−2πiξx f(x) dx

∣∣∣ ≤ ∫
R
|e−2πiξx| · |f(x)| dx =

∫
R
|f(x)| dx = |f |L1

Thus, for |f − g|L1 < ε, for all ξ ∈ R, |f̂(ξ) − ĝ(ξ)| < ε. Thus, Fourier transform is a continuous map of
L1(R) to the Banach space Cobdd(R) of bounded continuous functions with sup norm.

For f the characteristic function of a finite interval, the explicit computation above gives |f̂(ξ)| ≤ 1/π|ξ| for
large |ξ|, which certainly goes to 0 at infinity.

The theory of the Riemann integral shows that the space of finite linear combinations of characteristic
functions of intervals is L1-dense in the space Coc (R) of compactly-supported continuous functions, which is
L1-dense in L1(R) itself, by Urysohn’s lemma and the definition of integral. That is, every f ∈ L1(R) is
an L1-limit of finite linear combinations of characteristic functions of finite intervals. The continuity of the
Fourier transform as a map L1(R) → Cobdd(R) shows that f̂ is the sup-norm limit of Fourier transforms of
finite linear combinations of characteristic functions of finite intervals, which are in Coc (R). The sup-norm

completion of the latter is Coo (R), so f̂ ∈ Coc (R). ///

4. Schwartz space S = S (Rn)

The Schwartz space on Rn consists of all f ∈ C∞(Rn) such that

sup
x∈Rn

(|x|2)N · |f (α)(x)| < ∞ (for all N , and for all multi-indices α)

where as usual, for a multi-index α = (α1, . . . , αn) with non-negative integer components,

f (α) =
∂α1

∂xα1
1

∂α2

∂xα2
2

. . .
∂αn

∂xαnn
f

Those supremums
νN,α(f) = sup

x∈Rn
(|x|2)N · |f (α)(x)|

required to be finite for Schwartz functions, are semi-norms, in the sense that they are non-negative real-
valued functions with properties νN,α(f + g) ≤ νN,α(f) + νN,α(g) (triangle inequality)

νN,α(c · f) = |c| · νN,α(f) (homogeneity)

In the present context, in fact, these seminorms are genuine norms, insofar as no one of them is 0 except for the
identically-0 function. This family of seminorms is separating in the reasonable sense that, if νN,α(f −g) = 0
for all N,α, then f = g.
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The natural topology on S associated to this (separating) family of seminorms can be specified by giving a

sub-basis [4] at 0 ∈ S : in a vector space V , we want a topology to be translation-invariant in the sense that
vector addition v → v + vo is a homeomorphism of V to itself. In particular, for every open neighborhood
N of 0, N + vo is an open neighborhood of vo, and vice-versa.

Here, take a sub-basis at 0 indexed by N , α, and ε > 0:

UN,α,ε = {f ∈ S : νN,α(f) < ε}

[4.1] Theorem: With the latter topology, S is a complete metrizable space. [... iou ...]

[4.2] Remark: Since the topology of S is given by seminorms, the topology is also locally convex, meaning
that every point has a basis of neighborhoods consisting of convex sets. This follows from the convexity of
the sub-basis sets, and the fact that an intersection of convex sets is convex. Complete metrizable, locally
convex topological vector spaces (with translation-invariant topology, as expected) are Fréchet spaces. This
is a more general class including Banach spaces. In summary, S is a Fréchet space.

[4.3] Claim: For f ∈ S , ( ∂

∂xj
f
)̂(ξ) = (−2πi) · ξj · f̂(ξ)

Proof: We’ve already sketched the integration by parts argument for this, so now we should check in
detail that f ∈ S is sufficient for that argument to succeed. For notational simplicity, we treat just the
one-dimensional case:

(̂f ′)(ξ) =

∫
R
e−2πiξx

∂

∂x
f(x) dx = lim

N→+∞

∫
|x|≤N

e−2πiξx
∂

∂x
f(x) dx

Integrating by parts, the integral is[
e−2πiξx f(x)

]N
−N
−
∫
|x|≤N

∂

∂x
e−2πiξx · f(x) dx

= e−2πiξN f(N)− e2πiξN f(−N) −
∫
|x|≤N

(−2πiξ) e−2πiξx · f(x) dx

The boundary terms go to 0 as N → +∞, the factor of −2πiξ comes out of the integral, and the limit as
N → +∞ of the integral over |x| ≤ N becomes the integral over R, as claimed. ///

The following claim, essentially the dual or opposite to the previous, sketched earlier, has a more difficult
proof, a part of which we postpone.

[4.4] Claim: For f ∈ S (Rn),
∂

∂ξj
f̂(ξ) = (−2πi) · (xj · f)̂(ξ)

Proof: The point is that for Schwartz functions, the differentiation in ξ can pass inside the integral:

∂

∂ξj
f̂(ξ) =

∂

∂ξj

∫
Rn
e−2πiξ·x f(x) dx =

∫
Rn

∂

∂ξj
e−2πiξ·x f(x) dx

[4] Recall that a set S of sets U 3 xo is a sub-basis at xo when every neighborhood of x contains a finite intersection

of sets from S.
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=

∫
Rn

(−2πixj)e
−2πiξ·x f(x) dx = (−2πi)

∫
Rn
e−2πiξ·x xjf(x) dx = (−2πi) · (xj · f)̂(ξ)

As remarked earlier, passing the differential operator inside the integral is best justified in a more
sophisticated context, so we will not give any elementary-but-unenlightening argument here. ///

Let translation by x on S be written Txf , where

(Txf)(y) = f(y + x)

[4.5] Claim: For each x ∈ Rn, translation by x is a continuous map S → S .

Proof: [... iou ...] ///

5. Fourier inversion on S

In our normalization, the inverse Fourier transform is

f∨(x) =

∫
Rn
e2πiξ·x f(ξ) dξ

Of course, this is only slightly different from the forward Fourier transform, and sources sometimes do not
invent a separate symbol for the inverse transform

[5.1] Theorem: (Fourier inversion) (f̂)∨ = f for f ∈ S .

Proof: [... iou ...] ///

[5.2] Corollary: Fourier transform is a topological vector space isomorphism S → S . [... iou ...]

6. L2-isometry of Fourier transform on S

[6.1] Theorem: (recast by Schwartz, c. 1950) For f, g ∈ S , 〈f, g〉L2 = 〈f̂ , ĝ 〉L2 . In particular, |f̂ |L2 = |f |L2 .

Proof: [... iou ...] ///

7. Isometric extension and Plancherel on L2(Rn)

[7.1] Theorem: (Plancherel, 1910) There is a unique continuous extension of Fourier transform to an
isometry L2(Rn) → L2(Rn). That is, the Fourier transform S → S extends by continuity to a map
F : L2 → L2, with isometry property

〈Ff, Fg〉L2 = 〈f, g〉L2 (for all f, g ∈ L2(Rn))

Proof: The L2 Plancherel theorem on S , and the density of S in L2, give the result. ///

[7.2] Remark: Even though the literal integral for the Fourier transform of typical f ∈ L2 (but not in L1)
need not converge, it is standard to write the Fourier transform as an integral, with the understanding that
it is not the literal integral, but is an extension-by-continuity of the literal integral, via Plancherel.

7



Paul Garrett: 06. Fourier transforms (November 13, 2018)

8. Heisenberg uncertainty principle

This is a theorem about Fourier transforms, once we grant a certain model of quantum mechanics. That is,
there is a mathematical mechanism that yields an inequality, which has an interpretation in physics. [5]

For suitable f on R,

|f |2L2 =

∫
R
|f |2 = −

∫
R
x(f · f )′ = −2 Re

∫
R
xff

′
(integrating by parts)

That is,

|f |2L2 =
∣∣|f |2L2

∣∣ =

∣∣∣∣∫
R
|f |2

∣∣∣∣ =

∣∣∣∣−2 Re

∫
R
xff

′
∣∣∣∣ ≤ 2

∫
R
|xff ′|

Next,

2

∫
R
|xf · f ′| ≤ 2 · |xf |L2 · |f ′|L2 (Cauchy-Schwarz-Bunyakowsky)

Since Fourier transform is an L2-isometry, and since Fourier transform converts derivatives to multiplications,

|f ′|L2 = |f̂ ′|L2 = 2π|ξf̂ |L2

Thus, we obtain the Heisenberg inequality

|f |2L2 ≤ 4π · |xf |L2 · |ξf̂ |L2

More generally, a similar argument gives, for any xo ∈ R and any ξo ∈ R,

|f |2L2 ≤ 4π · |(x− xo)f |L2 · |(ξ − ξo)f̂ |L2

Imagining that f(x) is the probability that a particle’s position is x, and f̂(ξ) is the probability that its
momentum is ξ, Heisenberg’s inequality gives a lower bound on how spread out these two probability
distributions must be. The physical assumption is that position and momentum are related by Fourier
transform.

9. Tempered distributions

Tempered distributions can be first described as the space S ∗ of continuous linear function(al)s λ : S → C.

[9.1] Claim: The Dirac δ, given by δ(ϕ) = ϕ(0) for ϕ ∈ S , is a tempered distribution.

Proof: To prove continuity of ϕ→ ϕ(0), it suffices to prove continuity at 0. The easy inequality

|f(0)| ≤ sup
x∈Rn

|x|0 · |f (0)(x)| = ν0,0(f)

shows that |f(0)| can be made as small as desired by making ν0,0(f) sufficiently small, proving continuity.
///

[5] I think I first saw Heisenberg’s Uncertainty Principle presented as a theorem about Fourier transforms in Folland’s

1983 Tata Lectures on PDE.
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The duality approach does allow an easy definition of Fourier transform û of u ∈ S ∗, not by an integral,
but by

û(ϕ) = u(ϕ̂) (for ϕ ∈ S )

Similarly for inverse Fourier transform, which we’ve shown truly is an inverse to the Fourier transform on
S . It remains to be shown that it is truly an inverse on S ∗. Prior to that, we have a basic example:

[9.2] Claim: δ̂ = 1. That is, the Fourier transform of the Dirac δ is integrate-against 1.

Proof: From the definition of Fourier transform on S ∗ via duality, for ϕ ∈ S ,

δ̂(ϕ) = δ(ϕ̂) = ϕ̂(0) =

∫
Rn
e−2πi 0·x ϕ(x) dx =

∫
Rn

1 · ϕ(x) dx = 1(ϕ)

by the literal integral definition of Fourier transform on S . ///

We can give S ∗ the weak dual topology, also called the weak *-topology, by seminorms νϕ attached to ϕ ∈ S :

νϕ(u) = |u(ϕ)| (for u ∈ S ∗ and ϕ ∈ S )

This is not a topology given by a metric, but is obviously a type of topology that can be given to any dual
space. This characterization of tempered distributions by duality does not explain their usefulness.

[9.3] Theorem: The definition of Fourier transform on S ∗ by duality does map S ∗ to itself, and is an
isomorphism. Fourier inversion for the extended Fourier transform holds on S ∗.

Proof: From above, Fourier transform is a continuous linear map of S to itself. Thus, ϕ→ ϕ̂→ u(ϕ̂) is a
continuous linear functional on S , for any u ∈ S ∗. To prove continuity of u→ û in the weak dual topology,
take ϕ ∈ S , with associated semi-norm νϕ as above, and compute

νϕ(û) = |û(ϕ)| = |u(ϕ̂)| = νϕ̂(u)

Thus, making νϕ̂(u) small makes νϕ(û) small, proving continuity of u→ û in the weak dual topology.

To prove Fourier inversion on S ∗, let F be the extended Fourier transform, and F ′ the extension of the
inverse transform, not denoted F−1, to avoid inadvertently begging the question. Then for ϕ ∈ S ,

(F ′(Fu))(ϕ) = (Fu)(F ′ϕ) = u(F (F ′ϕ)) = u(ϕ)

by Fourier inversion on S . Since both the transform and its inverse are continuous, both are isomorphisms.
///

There is also a characterization of S ∗ as an extension of S . First, there is a inclusion S → S ∗ by taking
ϕ ∈ S to the integrate-against functional uϕ:

uϕ(f) =

∫
Rn
ϕ · f =

∫
Rn
ϕ(x) · f(x) dx (for f ∈ S )

For most topological vector spaces V , there is no natural inclusion V → V ∗, so such inclusions for spaces of
functions V distinguishes them from the general abstract scenario.

[9.4] Claim: The inclusion S → S ∗ is continuous, and has dense image.

Proof: [... iou ...] ///

That is, we can think of S ∗ as a sort of completion or extension of S , in the weak dual topology on S
itself. From this viewpoint, S ∗ consists of generalized functions. Thus, the definition of Fourier transform
on S ∗ should be compatible with that defined by the literal integral on S :

9
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[9.5] Claim: The Fourier transform on S ∗ defined via duality agrees with the integral definition on S ⊂ S ∗.
That is, with uϕ the integrate-against functional attached to ϕ ∈ S ,

ûϕ = uϕ̂

Proof: This compatibility is an easy preliminary form of Plancherel: for f ∈ S ,

ûϕ(f) = uϕ(f̂) =

∫
Rn
ϕ · f̂ =

∫
Rn

∫
Rn
e−2πiξ·xϕ(x) f(ξ) dx dξ =

∫
Rn
ϕ̂ · f = uϕ̂(f)

by Fubini-Tonelli. ///

We can compute Fourier transforms of tempered distributions by taking weak dual topology limits of Schwartz
functions and the literal integral form of the Fourier transform:

[9.6] Claim: For a sequence of Schwartz functions ϕi approaching a tempered distribution u in the weak
dual topology,

(S ∗-) lim
i
ϕ̂i = û

Proof: [... iou ...] ///

We define derivatives of tempered distributions in a fashion compatible with the integrate-against inclusion
S → S ∗, specifically, to be compatible with integration by parts. That is, for ϕ, f ∈ S , and integration-
by-parts distribution uϕ, in one variable,

uϕ′(f) =

∫
Rn
ϕ′ · f = −

∫
Rn
ϕ · f ′ = −uϕ(f ′)

Note the sign. Thus, on Rn, for u ∈ S ∗, define u′ by

∂

∂xi
u(f) = −u(

∂

∂xi
f) (for f ∈ S )

Similarly, multiplication by polynomials can be defined by duality, also in a fashion compatible with S ⊂ S ∗:

(xi · u)(f) = u(xif) (for f ∈ S )

[9.7] Corollary: Differentiation and multiplication by polynomials are continuous maps S ∗ → S ∗, with
the weak dual topology.

Proof: Again, continuity of a linear map is equivalent to continuity at 0. Given ϕ ∈ S and u ∈ S ∗,

νϕ

( ∂

∂xi
u
)

=
∣∣∣ ∂
∂xi

u(ϕ)
∣∣∣ =

∣∣∣− u(
∂

∂xi
ϕ)
∣∣∣ = ν ∂

∂xi
ϕ(u)

as desired. Similarly,
νϕ(xiu) = |(xiu)(ϕ)| = |u(xiϕ)| = νxiϕ(u)

///

[9.8] Corollary: As for Schwartz functions, Fourier transform intertwines differentiation and multiplication
on S ∗.
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Proof: For notational simplicity, let’s do this just on R. For u ∈ S ∗, the Fourier transform of the derivative
is described, for ϕ ∈ S , as

û′(ϕ) = u′(ϕ̂) = −u(
d

dx
ϕ̂) = −u

(
− 2πiξ̂ϕ

)
= 2πi · û(ξϕ) = 2πi ξ · û(ϕ)

That is, û′ = 2πiξ · û. The same sort of computation proves the reverse. ///

[9.9] Remark: Also, this intertwining property can be proven by extending by continuity from S ⊂ S ∗.

[9.10] Polynomials and derivatives of δ From δ̂ = 1 and the intertwining of differentiation and
multiplication by powers of x1, . . . , xn, for a multi-index α,

δ̂(α) = (2πi)|α| xα · δ̂(x) = (2πi)|α| xα · 1 = (2πi)|α| xα

where xα = xα1
1 . . . xαnn , and |α| = α1 + . . .+ αn. By Fourier inversion,

x̂α =
1

(2πi)|a|
· δ(α)

As with differentiation, multiplication by polynomials, and Fourier transform, translation of u ∈ S ∗ is
defined either by duality or by extension-by-continuity from S ⊂ S ∗. Just as the possibly unexpected
−1 in the derivative, to be compatible with integration by parts, we should see how translation behaves
for integrate-against distributions. Let the translate Txf of f ∈ S be defined by Txf(y) = f(y + x). For
ϕ, f ∈ S ,

uTxϕ(f) =

∫
Rn
Txϕ · f =

∫
Rn
Txϕ(y) · f(y) dy =

∫
Rn
ϕ(y + x) · f(y) dy

=

∫
Rn
ϕ(y) · f(y − x) dy = uϕ(T−xf)

by replacing y by y − x. Thus, again, a sign should enter in the definition of translation of a tempered
distribution u:

(Txu)(f) = u(T−xf) (for f ∈ S )
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