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1. A good trick using uniform boundedness

The following sort of claim may seem nearly obviously true, but there is a missing key ingredient:

[1.1] Claim: Let b = (by,bs,...) be a sequence of complex numbers such that > bncy is convergent for
every ¢ = (c1,ca,...) € £2. Then b € (2.

Proof: Notably, the assumumption that the indicated sums are finite (convergent) does not directly give
enough information to conclude that the map A(c) = > b,c, is a continuous linear functional on ¢2. The
uniform boundedness theorem is needed to reach this conclusion.

Namely, let Ay (c) = >, -y bncn. These functionals are continuous on £2. By uniform boundedness, either
there is a uniform bound 3 < +oco such that supy |An(c)| < B |c| for all ¢ € £2, or there is a dense (hence,
non-empty) G5 such that supy [An(c)|/|c| = +oo. But the assumption is that all the latter sups are finite.
Thus, there must be a uniform bound, so A(c) = )" by, is a continuous linear functional. By Riesz-Fréchet,
it is given by an element of ¢2. ///

[1.2] Remark: If we know that the dual of LP is L? for o-finite measure spaces X, then the same sort of
argument applies.

2. Fourier series of C° functions can diverge

The density of finite Fourier series in C°(T) makes no claim about which finite Fourier series approach a
given f € C°(T). Indeed, the density proof given via the Féjer kernel uses finite Fourier series quite distinct
from the finite partial sums of the Fourier series of f itself, namely,

Nth Féjer sum = — Z ‘n| n) . e?ﬂ'inm
\n|<N

The Banach-Steinhaus/uniform-boundedness theorem has a decisive corollary about convergence failure of
Fourier series of C°(T) functions:

[2.1] Corollary: There is f € C°(T) whose Fourier series
Z f(n) e (with f(n) = % f 2 —ina f(z)dz)
nez

diverges at 0. In fact, the divergence can be arranged for a dense Gy of continuous functions, and at any
given countable set of points on T.
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Proof: To invoke Banach-Steinhaus, consider the functionals given by partial sums of the Fourier series of
f, evaluated at O:

W) = 3 ) = Y fm)-emin

In|<N [n|<N
There is an easy upper bound
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We will show that equality holds, namely, that

|)\N| _ ’ Z 672771’7190

1
[n|<N
and show that the latter L'-norms go to co as N — oo.
Summing the finite geometric series and rearranging:
Coming 6727riNz o 6727Ti(7N71)a: e27ri(N+%)z o 672772’(N+%):r sin 27T(N + %)JJ
Z € o e—2mix _ ] - emiT _ o—Tix - sin 2Tz
In|<N 2

The elementary inequality |sint| < |t| gives a lower bound

1 1
I o
0 0

1
sin 27 (N + 1)z 2 2r(N+3) 2
sin2m(N + 3)2 sin27T(N+%)x’-—da: = / |sina:|-2—dx
0 T

sinzﬂTx 2mx
N 1 27l N 1

> —/ |sinz|dz > — — 400 (as N — o0)
ezzlﬂ 2m(0—1) ;M

Thus, the L'-norms do go to oo.

We claim that the norm of the functional is the L'-norm of the kernel: let g(x) be the sign of the Dirichlet
kernel
Z o—2mine _ sin 27 (N + %)x
- \in 27T
=N sin =3
Let g; be a sequence of periodic continuous functions with |g;| < 1 and going to g pointwise. By dominated
convergence

1 1 1
lim Ay (g;) = lim i(x e 2T gy = / x e 2T dp = / e 2mnT| dg;
mn(e) = lm [ @) o) Y DI

In|<N 0 In|<N O jnigN

By Banach-Steinhaus for the Banach space C°(T), since (as demonstrated above) there is no uniform bound
|[An| < M for all N, there exists f in the unit ball of C°(T) such that

sup |Ayv| = 400
N

In fact, the collection of such v is dense in the unit ball, and is an intersection of a countable collection of
dense open sets (a Gs). That is, the Fourier series of f does not converge at 0.
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The result can be strengthened by using Baire’s theorem again. For a dense countable set of points x; in the
interval, let \; x be the continuous linear functionals on C°(T) defined by evaluation of finite partial sums
of the Fourier series at x;’s:

N (f) = D0 f)emne

In|<N

As in the previous, the set E; of functions f where

sup |\jnf] = +oo
N

is a dense Gy, so the intersection £ = ﬂj E; is a dense G5, and, in particular, not empty. ///

3. Riemann-Lebesgue for f — f on LY(T) and L*(R)

The space ¢, of two-sided sequences vanishing at infinity is

¢ = {{an,:neZ} : lim a, =0}
|n|—o0

The space ¢, is a Banach space with norm |{a,}|., = sup,, |a,|. Parametrizing the circle T by the interval
[0,1] by the exponential map x — €27 the Banach space L!(T) = L![0,1] is measurable functions f on
[0, 1] with finite integrals fol | /] (modulo the equivalence relation of equality almost everywhere). The space
L0, 1] contains and is strictly larger than L?[0, 1]. On L?[0, 1], Fourier transform is an isometry to ¢%(Z), by
Parseval’s theorem, and a relatively trivial form of a Riemann-Lebesgue lemma is that f € ¢, for f € L?[0,1].
The version for L! is less trivial:

[3.1] Lemma: (Riemann-Lebesgue) f € ¢, for f € L*(T).

Proof: Finite linear combinations of exponentials are dense in C°(T), for example by Féjer’s argument,
and C°(T) is dense in L!(T), essentially by the definition of integral and Urysohn’s lemma. Thus, given
f € L! there is g € C°(T) such that |f — g|z1 < ¢ and a finite linear combination h of exponentials such
that |g — hlce < e. Then |f — h|p1 < 27 - 2e.

Given such h, for large-enough n the Fourier coefficients are 0, by orthogonality of distinct exponentials.
Thus,

R 1 27 ) _ |
[f(n)| = 2—‘ / (f(z) = h(z))e™™* dm‘ < ‘f27h‘L < 2 (for n large, depending on f)
m 0 s

This proves this Riemann-Lebesgue Lemma. ///

4. Non-surjection of L'[0,1] = ¢, by [ — f
Baire theorem and open mapping prove this.

[4. 1] Corollary: (of Baire and Open Mapping) Not every sequence in ¢, is the collection of Fourier coefficients
of an L(T) function.

Proof: The Fourier-coefficient map

)

~

(n):meZ} € ¢

Tf =A
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does map L'[0,1] — ¢,, by Riemann-Lebesgue. The obvious inequality

Fn)| = / f(@)e 2 4| < / @) dz = |f]

shows |T| < 1, so T is continuous. Taking f(x) =1 shows |T| = 1.

The density of finite Fourier series in C° and density of C° in L', as in the proof of the Riemann-Lebesgue
lemma, shows that T is injective. If T were also surjective, then the open mapping theorem would guarantee
d > 0 such that for every L! function f

|f‘sup >4 |f|L1
However, this is impossible: with

fN(x) — Z 6727rinm

In|<N

the sup norm of fN is certainly 1, yet the computation about divergence of Fourier series above shows that
the L' norm of fy goes to oo like log N as N — +oo. Thus, there is no such § > 0. Thus, 7 cannot be
surjective. ///

5. C*(T) is dense in C°(T)

Féjer’s argument proves that the Cesaro-summed finite partial sums of Fourier series of a continuous function
converge to that function in the C°(T) topology (that is, uniformly poinwise). These finite partial sums, as
well as their Cesaro-summed forms, are in C*°(T). Thus,

[5.1] Corollary: C>(T) is dense in C(T). /1]

6. Typical C° functions are nowhere differentiable

[6.1] Claim: In C°[a,b], there is (at least) a dense Gs of functions which at every point fail to be
differentiable.

Proof: Anticipating the application of Baire’s theorem, we present everywhere-not-differentiable functions
as a countable intersection of dense opens. First, for fixed large n > 0 and small h # 0, let

Xnpn = {f€C%a,b]:|f(x+h)— f(z)| >n-|h|, for all z € [a,b] such that = + h € [a, b]}

To show that X, j, is open, we observe that for a given f € X,, ;,, the function |f(xz + h) — f(z)| —n - |h| is
continuous in x, and is positive. Thus, since the function is continuous on the compact interval [a, b], its inf
is strictly positive. Thus, for g with |g — f|ce sufficiently small, |g(x + h) — g(z)| — n - |h| is still positive.
That is, g € X, p,.

Next, each union

Yn,h = U Xn,h/
h'#0, |h/|<|h]|

= {f € C°[a,b] : for every x € [a,b], there is 0 < b/ < h such that |f(z + ') — f(z)| > n-|h'|}
(where implicitly = + A’ € [a,b]) is a union of opens, so is open.

Density of Y, 5 in C°[a,b] is that, for given f € C°[a,b], there is g € Y,, 5 near f. To prove this, first
approximate f to within e > 0 in sup norm by g € C'[a,b]. Among the several possible ways to do this,
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we choose the following. First, adjust f by subtracting a polynomial to make f(a) = f(b). Extending f by
periodicity, Féjer’'s Cesaro-summed version of the finite partial sums of its Fourier series converge to it in
sup norm. These finite approximations are all C°°, in fact, proving that we can approximate f to within
€ > 0 in sup norm by a C! function g.

In particular, the derivative of g is a continuous function on [a, b], so is bounded in absolute value, say by S.

Next, we use auxiliary piecewise-C' functions ¢y . in C°[a,b] with sup norms less than a given € > 0, but
with absolute values of derivatives strictly greater than a given N, for any pair €, N. For example, we can
easily make piecewise-linear continuous functions ¢y with slopes £(N + 1), changing sign so often that
they stay strictly between +e. For N > 8, g + wan . is in Yy p for all A > 0, and

|f = (g+wane)lce < [f —gloo + |panelce < e+e

This proves the density of every open Yy 5 in C°[a, b].

By Baire’s theorem, the countable intersection (,_; , Y, 1 of dense compacts is still dense. ///
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