Basic applications of Banach space ideas

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/~garrett/

[This document is http://www.math.umn.edu/~garrett/m/real/notes_2018-19/07b_apply_Bsp.pdf]

- 1. A good trick using uniform boundedness
- 2. Fourier series of C^{o} functions can diverge
- **3**. Riemann-Lebesgue for $f \to f$ on $L^1(\mathbb{T})$ and $L^1(\mathbb{R})$
- **4**. Non-surjection of $\ell^1 \to c_o$ by $f \to \hat{f}$
- 5. $C^{\infty}(\mathbb{T})$ is dense in $C^{o}(\mathbb{T})$
- **6**. Typical C^{o} functions are nowhere differentiable

1. A good trick using uniform boundedness

The following sort of claim may seem nearly obviously true, but there is a missing key ingredient:

[1.1] Claim: Let $b = (b_1, b_2, ...)$ be a sequence of complex numbers such that $\sum_n b_n c_n$ is convergent for every $c = (c_1, c_2, ...) \in \ell^2$. Then $b \in \ell^2$.

Proof: Notably, the assumumption that the indicated sums are finite (convergent) does not directly give enough information to conclude that the map $\lambda(c) = \sum_{n} b_n c_n$ is a *continuous* linear functional on ℓ^2 . The uniform boundedness theorem is needed to reach this conclusion.

Namely, let $\lambda_N(c) = \sum_{n \leq N} b_n c_n$. These functionals are continuous on ℓ^2 . By uniform boundedness, either there is a uniform bound $\beta < +\infty$ such that $\sup_N |\lambda_N(c)| \leq \beta \cdot |c|$ for all $c \in \ell^2$, or there is a dense (hence, non-empty) G_{δ} such that $\sup_N |\lambda_N(c)|/|c| = +\infty$. But the assumption is that all the latter sups are finite. Thus, there must be a uniform bound, so $\lambda(c) = \sum_n b_n c_n$ is a continuous linear functional. By Riesz-Fréchet, it is given by an element of ℓ^2 .

[1.2] Remark: If we know that the dual of L^p is L^q for σ -finite measure spaces X, then the same sort of argument applies.

2. Fourier series of C^o functions can diverge

The density of finite Fourier series in $C^o(\mathbb{T})$ makes no claim about which finite Fourier series approach a given $f \in C^o(\mathbb{T})$. Indeed, the density proof given via the Féjer kernel uses finite Fourier series quite distinct from the finite partial sums of the Fourier series of f itself, namely,

$$N^{th}$$
 Féjer sum $= \frac{1}{N} \sum_{|n| \le N} (N - |n|) \cdot \widehat{f}(n) \cdot e^{2\pi i n x}$

The Banach-Steinhaus/uniform-boundedness theorem has a decisive corollary about convergence failure of Fourier series of $C^{o}(\mathbb{T})$ functions:

[2.1] Corollary: There is $f \in C^{o}(\mathbb{T})$ whose Fourier series

$$\sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{inx} \qquad (\text{with } \widehat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} e^{-inx} f(x) \, dx)$$

diverges at 0. In fact, the divergence can be arranged for a dense G_{δ} of continuous functions, and at any given countable set of points on \mathbb{T} .

Proof: To invoke Banach-Steinhaus, consider the functionals given by partial sums of the Fourier series of f, evaluated at 0:

$$\lambda_N(f) = \sum_{|n| \le N} \hat{f}(n) = \sum_{|n| \le N} \hat{f}(n) \cdot e^{2\pi i n \cdot 0}$$

There is an easy upper bound

$$|\lambda_N(f)| \leq \int_0^1 \Big| \sum_{|n| \leq N} e^{-2\pi i n x} \Big| \cdot |f(x)| \, dx \leq |f|_{C^o} \cdot \int_0^1 \Big| \sum_{|n| \leq N} e^{-2\pi i n x} \Big| \, dx = |f|_{C^o} \cdot \Big| \sum_{|n| \leq N} e^{-2\pi i n x} \Big|_{L^1(\mathbb{T})} + \int_0^1 |f(x)| \, dx \leq |f|_{C^o} \cdot \int_0^1 |f(x)| \, dx = |f|_{C^o} \cdot \Big| \sum_{|n| \leq N} e^{-2\pi i n x} \Big|_{L^1(\mathbb{T})} + \int_0^1 |f(x)| \, dx \leq |f|_{C^o} \cdot \int_0^1 |f(x)| \, dx = |f|_{C^o} \cdot \Big| \sum_{|n| \leq N} e^{-2\pi i n x} \Big|_{L^1(\mathbb{T})} + \int_0^1 |f(x)| \, dx \leq |f|_{C^o} \cdot \int_0^1 |f(x)| \, dx = |f|_{C^o} \cdot \Big| \sum_{|n| \leq N} e^{-2\pi i n x} \Big|_{L^1(\mathbb{T})} + \int_0^1 |f(x)| \, dx = |f|_{C^o} \cdot \int_0^1 |f(x)| \, dx = |f|_{C^o}$$

We will show that equality holds, namely, that

$$|\lambda_N| = \left| \sum_{|n| \le N} e^{-2\pi i n x} \right|_{L^1}$$

and show that the latter L^1 -norms go to ∞ as $N \to \infty$.

Summing the finite geometric series and rearranging:

$$\sum_{|n| \le N} e^{-2\pi i nx} = \frac{e^{-2\pi i Nx} - e^{-2\pi i (-N-1)x}}{e^{-2\pi i x} - 1} = \frac{e^{2\pi i (N+\frac{1}{2})x} - e^{-2\pi i (N+\frac{1}{2})x}}{e^{\pi i x} - e^{-\pi i x}} = \frac{\sin 2\pi (N+\frac{1}{2})x}{\sin \frac{2\pi x}{2}}$$

The elementary inequality $|\sin t| \le |t|$ gives a lower bound

$$\int_{0}^{1} \left| \frac{\sin 2\pi (N + \frac{1}{2})x}{\sin \frac{2\pi x}{2}} \right| dx \ge \int_{0}^{1} \left| \sin 2\pi (N + \frac{1}{2})x \right| \cdot \frac{2}{2\pi x} dx = \int_{0}^{2\pi (N + \frac{1}{2})} |\sin x| \cdot \frac{2}{2\pi x} dx$$
$$\ge \sum_{\ell=1}^{N} \frac{1}{\pi \ell} \int_{2\pi (\ell-1)}^{2\pi \ell} |\sin x| dx \ge \sum_{\ell=1}^{N} \frac{1}{\pi \ell} \longrightarrow +\infty \qquad (\text{as } N \to \infty)$$

Thus, the L^1 -norms do go to ∞ .

We claim that the norm of the *functional* is the L^1 -norm of the *kernel*: let g(x) be the *sign* of the Dirichlet kernel

$$\sum_{|n| \le N} e^{-2\pi i nx} = \frac{\sin 2\pi (N + \frac{1}{2})x}{\sin \frac{2\pi x}{2}}$$

Let g_j be a sequence of periodic continuous functions with $|g_j| \leq 1$ and going to g pointwise. By *dominated* convergence

$$\lim_{j} \lambda_{N}(g_{j}) = \lim_{j} \int_{0}^{1} g_{j}(x) \sum_{|n| \le N} e^{-2\pi i n x} dx = \int_{0}^{1} g(x) \sum_{|n| \le N} e^{-2\pi i n x} dx = \int_{0}^{1} |\sum_{|n| \le N} e^{-2\pi i n x}| dx$$

By Banach-Steinhaus for the Banach space $C^{o}(\mathbb{T})$, since (as demonstrated above) there is *no* uniform bound $|\lambda_N| \leq M$ for all N, there exists f in the unit ball of $C^{o}(\mathbb{T})$ such that

$$\sup_N |\lambda_N v| = +\infty$$

In fact, the collection of such v is *dense* in the unit ball, and is an intersection of a *countable* collection of dense open sets (a G_{δ}). That is, the Fourier series of f does not converge at 0.

The result can be strengthened by using Baire's theorem again. For a dense countable set of points x_j in the interval, let $\lambda_{j,N}$ be the continuous linear functionals on $C^o(\mathbb{T})$ defined by evaluation of finite partial sums of the Fourier series at x_j 's:

$$\lambda_{j,N}(f) = \sum_{|n| \le N} \hat{f}(n) e^{2\pi i n x_j}$$

As in the previous, the set E_j of functions f where

$$\sup_{N} |\lambda_{j,N} f| = +\infty$$

is a dense G_{δ} , so the intersection $E = \bigcap_{i} E_{j}$ is a dense G_{δ} , and, in particular, not empty.

///

///

3. Riemann-Lebesgue for $f \to \widehat{f}$ on $L^1(\mathbb{T})$ and $L^1(\mathbb{R})$

The space c_o of two-sided sequences vanishing at infinity is

$$c_o = \{\{a_n : n \in \mathbb{Z}\} : \lim_{|n| \to \infty} a_n = 0\}$$

The space c_o is a Banach space with norm $|\{a_n\}|_{c_o} = \sup_n |a_n|$. Parametrizing the circle \mathbb{T} by the interval [0,1] by the exponential map $x \to e^{2\pi i x}$, the Banach space $L^1(\mathbb{T}) = L^1[0,1]$ is measurable functions f on [0,1] with finite integrals $\int_0^1 |f|$ (modulo the equivalence relation of equality almost everywhere). The space $L^1[0,1]$ contains and is strictly larger than $L^2[0,1]$. On $L^2[0,1]$, Fourier transform is an isometry to $\ell^2(\mathbb{Z})$, by Parseval's theorem, and a relatively trivial form of a Riemann-Lebesgue lemma is that $\hat{f} \in c_o$ for $f \in L^2[0,1]$. The version for L^1 is less trivial:

[3.1] Lemma: (*Riemann-Lebesgue*) $\widehat{f} \in c_o$ for $f \in L^1(\mathbb{T})$.

Proof: Finite linear combinations of exponentials are dense in $C^o(\mathbb{T})$, for example by Féjer's argument, and $C^o(\mathbb{T})$ is dense in $L^1(\mathbb{T})$, essentially by the definition of integral and Urysohn's lemma. Thus, given $f \in L^1$ there is $g \in C^o(\mathbb{T})$ such that $|f - g|_{L^1} < \varepsilon$ and a finite linear combination h of exponentials such that $|g - h|_{C^o} < \varepsilon$. Then $|f - h|_{L^1} < 2\pi \cdot 2\varepsilon$.

Given such h, for large-enough n the Fourier coefficients are 0, by orthogonality of distinct exponentials. Thus,

$$\left|\widehat{f}(n)\right| = \frac{1}{2\pi} \left| \int_0^{2\pi} \left(f(x) - h(x) \right) e^{-inx} dx \right| \le \frac{|f - h|_{L^1}}{2\pi} < 2\varepsilon \qquad \text{(for n large, depending on f)}$$

This proves this Riemann-Lebesgue Lemma.

4. Non-surjection of
$$L^1[0,1] \to c_o$$
 by $f \to \hat{f}$

Baire theorem and open mapping prove this.

[4.1] Corollary: (of Baire and Open Mapping) Not every sequence in c_o is the collection of Fourier coefficients of an $L^1(\mathbb{T})$ function.

Proof: The Fourier-coefficient map

$$Tf = \{\widehat{f}(n) : n \in \mathbb{Z}\} \in c_0$$

does map $L^1[0,1] \to c_o$, by Riemann-Lebesgue. The obvious inequality

$$|\widehat{f}(n)| = \left| \int_0^1 f(x) e^{-2\pi i n x} dx \right| \le \int_0^1 |f(x)| dx = |f|_{L^1}$$

shows $|T| \leq 1$, so T is continuous. Taking f(x) = 1 shows |T| = 1.

The density of finite Fourier series in C^o and density of C^o in L^1 , as in the proof of the Riemann-Lebesgue lemma, shows that T is injective. If T were also *surjective*, then the open mapping theorem would guarantee $\delta > 0$ such that for every L^1 function f

$$|\widehat{f}|_{\sup} \geq \delta \cdot |f|_{L^1}$$

However, this is impossible: with

$$f_N(x) = \sum_{|n| \le N} e^{-2\pi i n x}$$

the sup norm of \hat{f}_N is certainly 1, yet the computation about divergence of Fourier series above shows that the L^1 norm of f_N goes to ∞ like $\log N$ as $N \to +\infty$. Thus, there is no such $\delta > 0$. Thus, T cannot be surjective. ///

5. $C^{\infty}(\mathbb{T})$ is dense in $C^{o}(\mathbb{T})$

Féjer's argument proves that the Cesaro-summed finite partial sums of Fourier series of a continuous function converge to that function in the $C^{o}(\mathbb{T})$ topology (that is, uniformly poinwise). These finite partial sums, as well as their Cesaro-summed forms, are in $C^{\infty}(\mathbb{T})$. Thus,

[5.1] Corollary: $C^{\infty}(\mathbb{T})$ is dense in $C^{o}(\mathbb{T})$.

6. Typical C^o functions are nowhere differentiable

[6.1] Claim: In $C^{o}[a, b]$, there is (at least) a dense G_{δ} of functions which at every point fail to be differentiable.

Proof: Anticipating the application of Baire's theorem, we present everywhere-not-differentiable functions as a countable intersection of dense opens. First, for fixed large n > 0 and small $h \neq 0$, let

 $X_{n,h} = \{ f \in C^{o}[a,b] : |f(x+h) - f(x)| > n \cdot |h|, \text{ for all } x \in [a,b] \text{ such that } x+h \in [a,b] \}$

To show that $X_{n,h}$ is open, we observe that for a given $f \in X_{n,h}$, the function $|f(x+h) - f(x)| - n \cdot |h|$ is continuous in x, and is positive. Thus, since the function is continuous on the compact interval [a, b], its inf is strictly positive. Thus, for g with $|g - f|_{C^o}$ sufficiently small, $|g(x+h) - g(x)| - n \cdot |h|$ is still positive. That is, $g \in X_{n,h}$.

Next, each union

$$Y_{n,h} = \bigcup_{h' \neq 0, \ |h'| < |h|} X_{n,h'}$$

 $= \{ f \in C^{o}[a, b] : \text{for every } x \in [a, b], \text{ there is } 0 < h' < h \text{ such that } |f(x + h') - f(x)| > n \cdot |h'| \}$

(where implicitly $x + h' \in [a, b]$) is a union of opens, so is open.

Density of $Y_{n,h}$ in $C^{o}[a, b]$ is that, for given $f \in C^{o}[a, b]$, there is $g \in Y_{n,h}$ near f. To prove this, first approximate f to within $\varepsilon > 0$ in sup norm by $g \in C^{1}[a, b]$. Among the several possible ways to do this,

///

we choose the following. First, adjust f by subtracting a polynomial to make f(a) = f(b). Extending f by periodicity, Féjer's Cesaro-summed version of the finite partial sums of its Fourier series converge to it in sup norm. These finite approximations are all C^{∞} , in fact, proving that we can approximate f to within $\varepsilon > 0$ in sup norm by a C^1 function g.

In particular, the derivative of g is a continuous function on [a, b], so is bounded in absolute value, say by β .

Next, we use auxiliary piecewise- C^1 functions $\varphi_{N,\varepsilon}$ in $C^o[a, b]$ with sup norms less than a given $\varepsilon > 0$, but with absolute values of derivatives strictly greater than a given N, for any pair ε, N . For example, we can easily make piecewise-*linear* continuous functions $\varphi_{N,\varepsilon}$ with slopes $\pm (N + 1)$, changing sign so often that they stay strictly between $\pm \varepsilon$. For $N > \beta$, $g + \varphi_{2N,\varepsilon}$ is in $Y_{N,h}$ for all h > 0, and

$$|f - (g + \varphi_{2N,\varepsilon})|_{C^o} \leq |f - g|_{C^o} + |\varphi_{2N,\varepsilon}|_{C^o} < \varepsilon + \varepsilon$$

This proves the density of every open $Y_{N,h}$ in $C^{o}[a,b]$.

By Baire's theorem, the countable intersection $\bigcap_{n=1,2,\dots} Y_{n,\frac{1}{n}}$ of dense compacts is still dense. ///