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1. A good trick using uniform boundedness

The following sort of claim may seem nearly obviously true, but there is a missing key ingredient:

[1.1] Claim: Let b = (b1, b2, . . .) be a sequence of complex numbers such that
∑
n bncn is convergent for

every c = (c1, c2, . . .) ∈ `2. Then b ∈ `2.

Proof: Notably, the assumumption that the indicated sums are finite (convergent) does not directly give
enough information to conclude that the map λ(c) =

∑
n bncn is a continuous linear functional on `2. The

uniform boundedness theorem is needed to reach this conclusion.

Namely, let λN (c) =
∑
n≤N bncn. These functionals are continuous on `2. By uniform boundedness, either

there is a uniform bound β < +∞ such that supN |λN (c)| ≤ β · |c| for all c ∈ `2, or there is a dense (hence,
non-empty) Gδ such that supN |λN (c)|/|c| = +∞. But the assumption is that all the latter sups are finite.
Thus, there must be a uniform bound, so λ(c) =

∑
n bncn is a continuous linear functional. By Riesz-Fréchet,

it is given by an element of `2. ///

[1.2] Remark: If we know that the dual of Lp is Lq for σ-finite measure spaces X, then the same sort of
argument applies.

2. Fourier series of Co functions can diverge

The density of finite Fourier series in Co(T) makes no claim about which finite Fourier series approach a
given f ∈ Co(T). Indeed, the density proof given via the Féjer kernel uses finite Fourier series quite distinct
from the finite partial sums of the Fourier series of f itself, namely,

N th Féjer sum =
1

N

∑
|n|≤N

(N − |n|) · f̂(n) · e2πinx

The Banach-Steinhaus/uniform-boundedness theorem has a decisive corollary about convergence failure of
Fourier series of Co(T) functions:

[2.1] Corollary: There is f ∈ Co(T) whose Fourier series∑
n∈Z

f̂(n) einx (with f̂(n) = 1
2π

∫ 2π

0
e−inx f(x) dx)

diverges at 0. In fact, the divergence can be arranged for a dense Gδ of continuous functions, and at any
given countable set of points on T.
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Proof: To invoke Banach-Steinhaus, consider the functionals given by partial sums of the Fourier series of
f , evaluated at 0:

λN (f) =
∑
|n|≤N

f̂(n) =
∑
|n|≤N

f̂(n) · e2πin·0

There is an easy upper bound

|λN (f)| ≤
∫ 1

0

∣∣∣ ∑
|n|≤N

e−2πinx
∣∣∣ · ∣∣f(x)

∣∣ dx ≤ |f |Co ·
∫ 1

0

∣∣∣ ∑
|n|≤N

e−2πinx
∣∣∣ dx = |f |Co ·

∣∣∣ ∑
|n|≤N

e−2πinx
∣∣∣
L1(T)

We will show that equality holds, namely, that

|λN | =
∣∣∣ ∑
|n|≤N

e−2πinx
∣∣∣
L1

and show that the latter L1-norms go to ∞ as N →∞.

Summing the finite geometric series and rearranging:

∑
|n|≤N

e−2πinx =
e−2πiNx − e−2πi(−N−1)x

e−2πix − 1
=

e2πi(N+ 1
2 )x − e−2πi(N+ 1

2 )x

eπix − e−πix
=

sin 2π(N + 1
2 )x

sin 2πx
2

The elementary inequality | sin t| ≤ |t| gives a lower bound

∫ 1

0

∣∣∣∣ sin 2π(N + 1
2 )x

sin 2πx
2

∣∣∣∣ dx ≥ ∫ 1

0

∣∣∣ sin 2π(N + 1
2 )x
∣∣∣ · 2

2πx
dx =

∫ 2π(N+
1
2 )

0

| sinx| · 2

2πx
dx

≥
N∑
`=1

1

π`

∫ 2π`

2π(`−1)
| sinx| dx ≥

N∑
`=1

1

π`
−→ +∞ (as N →∞)

Thus, the L1-norms do go to ∞.

We claim that the norm of the functional is the L1-norm of the kernel: let g(x) be the sign of the Dirichlet
kernel ∑

|n|≤N

e−2πinx =
sin 2π(N + 1

2 )x

sin 2πx
2

Let gj be a sequence of periodic continuous functions with |gj | ≤ 1 and going to g pointwise. By dominated
convergence

lim
j
λN (gj) = lim

j

∫ 1

0

gj(x)
∑
|n|≤N

e−2πinx dx =

∫ 1

0

g(x)
∑
|n|≤N

e−2πinx dx =

∫ 1

0

|
∑
|n|≤N

e−2πinx| dx

By Banach-Steinhaus for the Banach space Co(T), since (as demonstrated above) there is no uniform bound
|λN | ≤M for all N , there exists f in the unit ball of Co(T) such that

sup
N
|λN v| = +∞

In fact, the collection of such v is dense in the unit ball, and is an intersection of a countable collection of
dense open sets (a Gδ). That is, the Fourier series of f does not converge at 0.
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The result can be strengthened by using Baire’s theorem again. For a dense countable set of points xj in the
interval, let λj,N be the continuous linear functionals on Co(T) defined by evaluation of finite partial sums
of the Fourier series at xj ’s:

λj,N (f) =
∑
|n|≤N

f̂(n) e2πinxj

As in the previous, the set Ej of functions f where

sup
N
|λj,Nf | = +∞

is a dense Gδ, so the intersection E =
⋂
j Ej is a dense Gδ, and, in particular, not empty. ///

3. Riemann-Lebesgue for f → f̂ on L1(T) and L1(R)
The space co of two-sided sequences vanishing at infinity is

co = {{an : n ∈ Z} : lim
|n|→∞

an = 0}

The space co is a Banach space with norm |{an}|co = supn |an|. Parametrizing the circle T by the interval
[0, 1] by the exponential map x → e2πix, the Banach space L1(T) = L1[0, 1] is measurable functions f on

[0, 1] with finite integrals
∫ 1

0
|f | (modulo the equivalence relation of equality almost everywhere). The space

L1[0, 1] contains and is strictly larger than L2[0, 1]. On L2[0, 1], Fourier transform is an isometry to `2(Z), by

Parseval’s theorem, and a relatively trivial form of a Riemann-Lebesgue lemma is that f̂ ∈ co for f ∈ L2[0, 1].
The version for L1 is less trivial:

[3.1] Lemma: (Riemann-Lebesgue) f̂ ∈ co for f ∈ L1(T).

Proof: Finite linear combinations of exponentials are dense in Co(T), for example by Féjer’s argument,
and Co(T) is dense in L1(T), essentially by the definition of integral and Urysohn’s lemma. Thus, given
f ∈ L1 there is g ∈ Co(T) such that |f − g|L1 < ε and a finite linear combination h of exponentials such
that |g − h|Co < ε. Then |f − h|L1 < 2π · 2ε.

Given such h, for large-enough n the Fourier coefficients are 0, by orthogonality of distinct exponentials.
Thus,

|f̂(n)| =
1

2π

∣∣∣ ∫ 2π

0

(f(x)− h(x)) e−inx dx
∣∣∣ ≤ |f − h|L1

2π
< 2ε (for n large, depending on f)

This proves this Riemann-Lebesgue Lemma. ///

4. Non-surjection of L1[0, 1]→ co by f → f̂

Baire theorem and open mapping prove this.

[4.1] Corollary: (of Baire and Open Mapping) Not every sequence in co is the collection of Fourier coefficients
of an L1(T) function.

Proof: The Fourier-coefficient map

Tf = {f̂(n) : n ∈ Z} ∈ c0
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does map L1[0, 1]→ co, by Riemann-Lebesgue. The obvious inequality

|f̂(n)| =

∣∣∣∣∫ 1

0

f(x) e−2πinx dx

∣∣∣∣ ≤ ∫ 1

0

|f(x)| dx = |f |L1

shows |T | ≤ 1, so T is continuous. Taking f(x) = 1 shows |T | = 1.

The density of finite Fourier series in Co and density of Co in L1, as in the proof of the Riemann-Lebesgue
lemma, shows that T is injective. If T were also surjective, then the open mapping theorem would guarantee
δ > 0 such that for every L1 function f

|f̂ |sup ≥ δ · |f |L1

However, this is impossible: with

fN (x) =
∑
|n|≤N

e−2πinx

the sup norm of f̂N is certainly 1, yet the computation about divergence of Fourier series above shows that
the L1 norm of fN goes to ∞ like logN as N → +∞. Thus, there is no such δ > 0. Thus, T cannot be
surjective. ///

5. C∞(T) is dense in Co(T)
Féjer’s argument proves that the Cesaro-summed finite partial sums of Fourier series of a continuous function
converge to that function in the Co(T) topology (that is, uniformly poinwise). These finite partial sums, as
well as their Cesaro-summed forms, are in C∞(T). Thus,

[5.1] Corollary: C∞(T) is dense in Co(T). ///

6. Typical Co functions are nowhere differentiable

[6.1] Claim: In Co[a, b], there is (at least) a dense Gδ of functions which at every point fail to be
differentiable.

Proof: Anticipating the application of Baire’s theorem, we present everywhere-not-differentiable functions
as a countable intersection of dense opens. First, for fixed large n > 0 and small h 6= 0, let

Xn,h = {f ∈ Co[a, b] : |f(x+ h)− f(x)| > n · |h|, for all x ∈ [a, b] such that x+ h ∈ [a, b]}

To show that Xn,h is open, we observe that for a given f ∈ Xn,h, the function |f(x+ h)− f(x)| − n · |h| is
continuous in x, and is positive. Thus, since the function is continuous on the compact interval [a, b], its inf
is strictly positive. Thus, for g with |g − f |Co sufficiently small, |g(x + h) − g(x)| − n · |h| is still positive.
That is, g ∈ Xn,h.

Next, each union

Yn,h =
⋃

h′ 6=0, |h′|<|h|

Xn,h′

= {f ∈ Co[a, b] : for every x ∈ [a, b], there is 0 < h′ < h such that |f(x+ h′)− f(x)| > n · |h′|}

(where implicitly x+ h′ ∈ [a, b]) is a union of opens, so is open.

Density of Yn,h in Co[a, b] is that, for given f ∈ Co[a, b], there is g ∈ Yn,h near f . To prove this, first
approximate f to within ε > 0 in sup norm by g ∈ C1[a, b]. Among the several possible ways to do this,
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we choose the following. First, adjust f by subtracting a polynomial to make f(a) = f(b). Extending f by
periodicity, Féjer’s Cesaro-summed version of the finite partial sums of its Fourier series converge to it in
sup norm. These finite approximations are all C∞, in fact, proving that we can approximate f to within
ε > 0 in sup norm by a C1 function g.

In particular, the derivative of g is a continuous function on [a, b], so is bounded in absolute value, say by β.

Next, we use auxiliary piecewise-C1 functions ϕN,ε in Co[a, b] with sup norms less than a given ε > 0, but
with absolute values of derivatives strictly greater than a given N , for any pair ε,N . For example, we can
easily make piecewise-linear continuous functions ϕN,ε with slopes ±(N + 1), changing sign so often that
they stay strictly between ±ε. For N > β, g + ϕ2N,ε is in YN,h for all h > 0, and

|f − (g + ϕ2N,ε)|Co ≤ |f − g|Co + |ϕ2N,ε|Co < ε+ ε

This proves the density of every open YN,h in Co[a, b].

By Baire’s theorem, the countable intersection
⋂
n=1,2,... Yn, 1n of dense compacts is still dense. ///
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