
(February 17, 2019)

08. Introduction to generalized functions (distributions)

Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ g̃arrett/

[This document is
http://www.math.umn.edu/ g̃arrett/m/real/notes 2018-19/08 intro distributions.pdf]

1. D(Rn) ⊂ S (Rn) ⊂ E(Rn)
2. Extensions/Duals
3. Topological details: families of seminorms
4. Examples of continuous linear functionals (distributions)
5. Weak dual topologies (weak ∗-topologies)
6. Differentiation of generalized functions (distributions)
7. Multiplication of generalized functions by smooth functions
8. Fourier transforms of tempered distributions
9. ...

1. D(Rn) ⊂ S (Rn) ⊂ E(Rn)

On Rn there are many useful spaces of functions. There are at least three distinct concepts of nice functions:
test functions = D(Rn) = C∞c (Rn) = {f ∈ C∞(Rn) : f has compact support}

Schwartz functions = S (Rn) = {f ∈ C∞(Rn) : supx∈Rn(1 + |x|)m|fα(x)| <∞ for all m,α}

smooth functions = E(Rn) = C∞(Rn)

As usual, description of the topologies on these spaces of functions is necessary, otherwise we have no idea
what limits stay in the space, or fall outside. But, having acknowledged that debt, we can usefully continue.

2. Extensions/duals

Here, dual V ∗ of a topological vector space V means continuous dual, which means the collection of continuous
linear maps from V to scalars.

The duals of the above basic spaces of nice functions have names:
distributions = D(Rn)∗ = C∞c (Rn)∗

tempered distributions = S (Rn)∗

compactly-supported distributions = E(Rn)∗ = C∞(Rn)∗

Distributions are also called generalized functions, since their utility mostly lies in the possibility of
interpreting them as extensions of the notion of function, rather than as being in dual spaces.

In general there is no natural continuous inclusion of a topological vector space V into its dual V ∗, so V ∗ is
in no natural sense an extension of V . In contrast, for D and S , we have inclusions D ⊂ D∗ and S ⊂ S ∗

by ϕ→ integrate-against-ϕ. That is, ϕ→ uϕ with

uϕ(f) =

∫
Rn

ϕ · f

Via these inclusions, we do think of D∗ and S ∗ as extending D and S , respectively.
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At some point, we will prove that D(Rn) is dense in D(Rn)∗, and in every other space of distributions.
The proof that D(Rn) is dense in S (R) is not difficult: use smooth cut-offs with larger-and-larger compact
support.

Since taking duals is inclusion-reversing, we have E∗ ⊂ S ∗ ⊂ D∗. The suggestion that E∗ does literally
consist of compactly-supported distributions, by calling it that, should be substantiated, which we do below.

Pictorially, with arrows being inclusions, on Rn we have

D // S //

  B
BB

BB
BB

B . . . // L2 // . . . // S ∗ // D∗

E E∗

=={{{{{{{{

Unsurprisingly, all the arrows are continuous maps, as we will subsequently verify.

3. Topological details: families of seminorms

Even though S (Rn) and E(Rn) are complete metric spaces, their topologies are most coherently given not
in terms of those metrics, but in terms of countable families of seminorms, as follows.

Fix a vectorspace V over R or C. A seminorm ν on V is a non-negative R-valued functions on V with
properties  ν(c · v) = |c| · ν(v) (for scalar c and v ∈ V )

ν(v + w) ≤ ν(v) + ν(w) (for v, w ∈ V )

Unlike a genuine norm, we do not require the positive-definiteness property that ν(v) = 0 implies v = 0. To
compensate, we use separating families of seminorms: let X be a set of seminorms on V such that, for all
6= v ∈ V there is ν ∈ X such that ν(v) 6= 0. Since we only want Hausdorff topologies on vector space, we
will only consider separating families of seminorms, so the modifier separating may be dropped.

To describe the topology on V corresponding to a family F of seminorms, first we tell all the (open)

neighborhoods of 0 ∈ V , and to do so we give a local sub-basis at 0: [1] sets

Uν,ε = {v ∈ V : ν(v) < ε} (for ε > 0 and ν ∈ F )

Then make a local sub-basis at v ∈ V by translating opens from 0: a set U containing v is open if and only
if the translated set

U − v = {u− v : u ∈ U}

is an open containing 0. That is, open sets containing v are all of the form U + v for opens containing 0,
and vice-versa.

The topology on S (Rn) is given by the natural countable family of (semi-) norms

νm,n(f) = sup
|α|≤m

sup
x

(1 + |x|)n |f (α)(x)|

The topology on E(Rn) is given by the natural countable family of seminorms

νN,n(f) = sup
|α|≤n

sup
|x|≤N

|f (α)(x)|

[1] Recall that a local sub-basis at a point vo in a topological space V is a set S of opens containing vo, such that

every open containing vo contains a finite intersection of opens from S.
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The topology on test functions is slightly more complicated, and we delay treatment of it. Of course, we
cannot truly understand the spaces of (continuous!) linear functionals on any such space until we know the

topology. Nevertheless, we proceed with an as-yet-unspecified topology on D(Rn). [2]

A topology given by a countable (separating) family of seminorms {ν1, ν2, . . .} can also be given by a metric

d(v, w) =
∑
n≥1

2−n · ν(v − w)

1 + ν(v − w)

This metric still is translation-invariant, meaning that d(v + x,w + x) = d(v, w), but it does not have any
homogeneity properties, unlike the metrics d(v, w) = |v −w| made from a single norm | · |. For that matter,
the constants 2−n and the shape of the expression are not canonical. Thus, it’s better to say that the
topology is metrizable, rather than metric.

When a topology on V is given by a countable family of seminorms, and the associated metric as above is
complete in the usual metric-space sense, V is a Fréchet space.

[3.1] Claim: Both S and E are Fréchet spaces. [... iou ...]

As in other contexts, continuity of linear maps is equivalent to continuity at 0: with V be a vector space
with topology given by seminorms as above, [3]

[3.2] Claim: A linear map λ : V → C is continuous if and only if it is continuous at 0.

Proof: [... iou ...] ///

4. Examples of generalized functions (distributions)

Having specified topologies on S (Rn) and E(Rn), we can illustrate continuity arguments that prove various
natural functionals are in S (Rn)∗ and E(Rn). Without having yet specified the topology on D(Rn), granting
that the inclusion D(Rn)→ S (Rn) is continuous allows proof that a given functional is in D(Rn)∗ by proving
that it is in S (Rn)∗ ⊂ D(Rn)∗.

[4.1] Claim: The Dirac delta functional δ(f) = f(0) is in E∗, so is certainly in S ∗ (and in D∗).

Proof: It suffices to use any of the seminorms νN,0 on E as above, with N > 0. For example, with ν1,0,

|f(0)| ≤ sup
|x|≤1

|f (0)(x)| = ν1,0(f)

Thus, given ε > 0, for f ∈ E with ν1,0(f) < ε,

|f(0)| ≤ sup
|x|≤1

|f (0)(x)| = ν1,0(f) < ε

This proves the continuity. ///

[2] The topology of D(Rn) can be described by a family of semi-norms, as is the case for any locally convex topological

vector space. However, such a description does not make clear that D(Rn) has suitable (non-metric!) completeness.

For the latter, presenting D(Rn) as a strict colimit is better, and we do this later.

[3] Again, all topological vector spaces of interest to us have topologies given by seminorms, since they are locally

convex, meaning that there is a basis at 0 consisting of convex opens.
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[4.2] Claim: For ϕ ∈ L1(Rn) the integrate-against functional uϕ(f) =

∫
R
ϕ(x) f(x) dx is in S ∗.

Proof: Note the elementary inequalities∣∣∣ ∫
R
ϕ(x) f(x) dx

∣∣∣ ≤ ∫
R
|ϕ(x)| · |f(x)| dx ≤

∫
R
|ϕ(x)| dx · sup

x∈R
|f(x)| = |ϕ|L1 · ν0,0(f)

with seminorm on S as above. Thus, it suffices to consider ϕ with |ϕ|L1 6= 0. Given ε > 0, for ν0,0(f) < ε,∣∣∣ ∫
R
ϕ(x) f(x) dx

∣∣∣ ≤ |ϕ|L1 · ν0,0(f) << |ϕ|L1 · ε

Since |ϕ|L1 is just a (non-zero) constant, this gives the continuity. ///

Recall that on Rn the locally integrable functions L1
loc(Rn) are the (measurable) functions f such that∫

K
|f | < ∞ for every compact K. Since we do not yet have a description of the topology on D(Rn), we

cannot give a precise discussion of the following, but it should be recorded as eventually-provable fact:

[4.3] Claim: (Integration against) a function in L1
loc(Rn) gives a distribution, that is, an element of D(Rn)∗.

Proof: [... iou ...] ///

A pointwise-defined function ϕ is of moderate/polynomial growth when there is an exponent N such that

sup
x∈Rn

(1 + |x|2)N · |f(x)| < +∞

[4.4] Claim: (Integration against) an L1
loc function of moderate growth gives a tempered distribution.

Proof: [... iou ...] ///

[4.5] Corollary: The distribution given by integration-against |x|s on Rn for Re(s) > −n is tempered.
///

[4.6] Remark: In particular, as we see below, the distributions |x|s have distributional/generalized
derivatives for Re(s) > −n, even though for Re(s) < 0 they are not classically differentiable at 0. Further,
for Re(s) close to −n, their distributional derivatives are no longer in L1

loc, but nevertheless give tempered
distributions.

5. Weak dual topologies (weak ∗-topologies)

Among other possibilities, we can give dual spaces V ∗ their weak dual topologies (also called weak *-
topologies): for a topological vector space V with (continuous linear) dual V ∗, the weak dual topology
on V ∗ is given by the family of seminorms

νv(λ) = |λ(v)| (for v ∈ V , λ ∈ V ∗)

Thus, in the weak dual topology, λn → λ if and only if |λn(v)− λ(v)| → 0 for all v ∈ V .

[5.1] Claim: Test functions D(Rn) are (sequentially) dense in E(Rn)∗, in S (Rn)∗, and in D(Rn)∗, with their
respective weak dual topologies. That is, the distributions uϕ given by integration against test functions ϕ
are dense.
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Proof: [... iou ...] ///

6. Differentiation of generalized functions (distributions)

A large part of the purpose of generalized functions is to be able to differentiate not-classically-differentiable
functions in a way that nevertheless fits coherently with classical differentiation. That is, as it turns out,
it is possible and useful to differentiate functions even when the (numerical) limits of difference quotients

limh→0
f(x+h)−f(x)

h do not exist.

Granting that E(Rn)∗ ⊂ S (Rn)∗ ⊂ D(Rn)∗, it suffices to define differentiation on D(Rn)∗:

By duality: For u ∈ D(Rn)∗, define( ∂

∂xj
u
)

= −u
( ∂

∂xj
f
)

(for all f ∈ D(Rn))

The sign flip is for compatibility with integration by parts, when u is integration-against a test function
or Schwartz function. That is, the definition by duality is adjusted for consistency with the definition by
extension-by-continuity:

By extension-by-continuity: Granting from above that test functions are (sequentially) dense in S ∗, E∗,
and D∗, for a sequence {un} of test functions that is Cauchy in the corresponding weak dual topology, define

∂

∂xj
(lim
n
un) = lim

n

( ∂

∂xj
un

)
where the left-hand side is defined by the right, where both limits are in the respective weak dual topologies,
and the differentiations on the right-hand side are the classical limits of difference quotients.

In particular, letting uf be the integration-against-f functional,

∂

∂xj
uf = u∂f/∂xj

where the left side is distributional derivative, and ∂f/∂xj is the classical limit-of-difference-quotients. That
is, the distributional differentiation extended-by-continuity genuinely is an extension corresponding to the
inclusions D ⊂ D∗, D ⊂ S ⊂ S ∗, and D ⊂ E∗.

[6.1] Claim: These two definitions give the same maps ∂
∂xj

of D∗, S ∗, and E∗ to themselves. These maps

are continuous in the weak dual topologies.

Proof: [... iou ...] ///

[6.2] Claim: If u ∈ C1(Rn) ∩ L1(Rn), then the tempered distribution given by (integration against) u has
distributional derivative equal to (integration against) the classical derivative of u.

Proof: [... iou ...] ///

The derivative δ′ of the Dirac δ on Rn: On one hand, we can directly define

δ′(f) = −f ′(0) (with sign flip as suggested above)

and verify that this is a compactly supported distribution, since

|δ′(f)| = | − f ′(0)| ≤ sup
|x|≤1

|f ′(x)|
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and the right-hand side is one of the seminorms defining the topology on E(R). On the other hand, the
previous claim systematically bundles-up such arguments, so we know in advance that δ′ is a compactly-
supported distribution.

The derivative of 1/
√
|x| on R: [... iou ...]

Non-moderate growth tempered distributions: Although the idea that (integrate-against) moderate-
growth functions gives tempered distributions is accurate, there are definitely more tempered distributions
than functions with moderate pointwise growth. For example, u(x) = eie

x

is continuous and bounded, so
locally L1. Thus, it gives a tempered distribution. Unsurprisingly, its distributional derivative is correctly
computed by taking classical/pointwise derivatives:

u′ = (integration against) iex eie
x

That function is not of moderate growth, but since u′ is the derivative of a tempered distribution, it is a
tempered distribution. Evidently, the extreme oscillation causes a great deal of cancellation.

7. Multiplication of generalized functions by smooth functions

Another part of the purpose of generalized functions is to be able to multiply them by nicer functions in a
way that cannot literally be pointwise, but nevertheless fits coherently with classical pointwise multiplication.

By duality: For u ∈ D(Rn)∗ and ϕ ∈ E(Rn), define

(ϕ · u)(f) = u(ϕ · f) (for all f ∈ D(Rn))

where ϕ · f is literal pointwise multiplication. Observe that the product ϕ · f is still in D(Rn). Somewhat
similarly, for u ∈ S (Rn)∗ and ϕ ∈ E(Rn) so that it and all its derivatives are of moderate growth, define

(ϕ · u)(f) = u(ϕ · f) (for all f ∈ S (Rn))

where ϕ·f is literal pointwise multiplication, and ϕ·f ∈ S (Rn) by the hypothesis on ϕ. Last, for u ∈ E(Rn)∗

and ϕ ∈ E(Rn), define
(ϕ · u)(f) = u(ϕ · f) (for all f ∈ E(Rn))

where ϕ · f is literal pointwise multiplication, and ϕ · f ∈ E(Rn)∗.

By extension-by-continuity: Granting from above that test functions are (sequentially) dense in S ∗, E∗,
and D∗, for suitable ϕ ∈ E(Rn)∗ and a sequence {un} of test functions Cauchy in the corresponding weak
dual topology, define

ϕ · (lim
n
un) = lim

n
(ϕ · un)

where the left-hand side is defined by the right, where both limits are in the respective weak dual topologies,
and the multiplications on the right-hand side are the pointwise multiplications.

In particular, letting uf be the integration-against-f functional for nice functions f ,

ϕ · uf = uϕ·f

where the left-hand side is distributional multiplication, and on the right-hand side is classical pointwise
multiplication. That is, the distributional multiplication extended-by-continuity is indeed an extension of
classical pointwise multiplication of nice functions.

[7.1] Claim: These two definitions give the same maps of D∗, S ∗, and E∗ to themselves. These maps are
continuous in the weak dual topologies.
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Proof: [... iou ...] ///

Example: x · δ = 0 For f , by the duality definition,

(x · δ)(f) = δ(x · f) = (xf)(0) = 0 · f(0) = 0

8. Fourier transforms of tempered distributions

The Plancherel extension of the literal Fourier transform integral on L1(Rn) is a precursor of the extension
of Fourier transform to tempered distributions.

By duality: For u ∈ S (Rn)∗, ndefine

û(f) = u(f̂) (for all f ∈ S (Rn))

where f̂S (Rn) is the literal Fourier transform integral.

By extension-by-continuity: Granting from above that Schwartz functions are (sequentially) dense in
tempered distributions, for a sequence {un} of Schwartz functions Cauchy in the weak dual topology on
S (Rn)∗, define

(lim
n
un)̂ = lim

n
(ûn)

with the left-hand side is defined by the right, where both limits are in the weak dual topology on S (Rn)∗,
and the Fourier transforms on the right-hand side are the literal integrals.

In particular, letting uf be the integration-against-f functional for nice functions f ,

ûf = uf̂

where the left-hand side is distributional Fourier transform, and on the right-hand side is the literal Fourier
transform integral. That is, the distributional multiplication extended-by-continuity is indeed an extension
of classical pointwise multiplication of nice functions.

[8.1] Claim: These two definitions give the same map of S ∗ to itself, and are continuous in the weak dual
topology.

Proof: [... iou ...] ///

The following amounts to the assertion that the seemingly natural way to compute Fourier transforms of
u ∈ E∗ ⊂ S ∗ is correct:

[8.2] Claim: For u ∈ E(Rn)∗, û is a pointwise-valued function, and û(ξ) = u(e−2πiξ·x), noting that the
exponential functions are in E .

Proof: [... iou ...] ///
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