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1. Prototypical Sobolev imbedding theorem

The simplest case of a Levi-Sobolev imbedding theorem asserts that the +1-index Levi-Sobolev Hilbert space
H1[a, b] described below is inside Co[a, b]. This is a corollary of a Levi-Sobolev inequality asserting that the
Co[a, b] norm is dominated by the H1[a, b] norm. All that is used is the fundamental theorem of calculus and
the Cauchy-Schwarz-Bunyakowsky inequality. The point is that there is a large Hilbert space H1[a, b] inside
the Banach space Co[a, b].

We will do much more with this idea subsequently.

We can think of L2[a, b] as

L2[a, b] = completion of Co[a, b] with respect to |f |L2 =
(∫ b

a

|f(t)|2 dt
)1/2

The +1-index Levi-Sobolev space [1] H1[a, b] is

H1[a, b] = completion of C1[a, b] with respect to |f |H1 =
(
|f |2L2[a,b] + |f ′|2L2[a,b]

)1/2
[1.1] Theorem: (Levi-Sobolev inequality) On C1[a, b], the H1[a, b]-norm dominates the Co[a, b]-norm. That
is, there is a constant C depending only on a, b such that |f |Co[a,b] ≤ C · |f |H1[a,b] for every f ∈ C1[a, b].

Proof: For a ≤ x ≤ y ≤ b, for f ∈ C1[a, b], the fundamental theorem of calculus gives

|f(y)− f(x)| =
∣∣∣ ∫ y

x

f ′(t) dt
∣∣∣ ≤ ∫ y

x

|f ′(t)| dt ≤
(∫ y

x

|f ′(t)|2 dt
)1/2

·
(∫ y

x

1 dt
)1/2

≤ |f ′|L2 · |x− y| 12 ≤ |f ′|L2 · |a− b| 12

Using the continuity of f ∈ C1[a, b], let y ∈ [a, b] be such that |f(y)| = min x|f(x)|. Using the previous
inequality,

|f(x)| ≤ |f(y)|+ |f(x)− f(y)| ≤
∫ b
a
|f(t)| dt
|a− b|

+ |f(x)− f(y)| ≤
∫ b
a
|f | · 1
|a− b|

+ |f ′|L2 · |a− b| 12

≤
|f |

1
2

L2 · |a− b|
1
2

|a− b|
+ |f ′|L2 · |a−b| 12 =

|f |
1
2

L2

|a− b| 12
+ |f ′|L2 · |a−b| 12 ≤

(
|f |L2 + |f ′|L2

)
·
(
|a−b|− 1

2 + |a−b| 12
)

≤ 2(|f |2 + |f ′|2
)1/2 · (|a− b|− 1

2 + |a− b| 12
)

= |f |H1 · 2
(
|a− b|− 1

2 + |a− b| 12
)

[1] ... also denoted W 1,2[a, b], where the superscript 2 refers to L2, rather than Lp. Beppo Levi noted the importance

of taking Hilbert space completion with respect to this norm in 1906, giving a correct formulation of Dirichlet’s

principle. Sobolev’s systematic development of these ideas was in the mid-1930’s.
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Thus, on C1[a, b] the H1 norm dominates the Co-norm. ///

[1.2] Corollary: (Levi-Sobolev imbedding) H1[a, b] ⊂ Co[a, b].

Proof: Since H1[a, b] is the H1-norm completion of C1[a, b], every f ∈ H1[a, b] is an H1-limit of functions
fn ∈ C1[a, b]. That is, |f − fn|H1[a,b] → 0. Since the H1-norm dominates the Co-norm, |f − fn|Co[a,b] → 0.
A Co limit of continuous functions is continuous, so f is continuous. ///

In fact, we have a stronger conclusion than continuity, namely, a Lipschitz condition with exponent 1
2 :

[1.3] Corollary: (of proof of theorem) |f(x)− f(y)| ≤ |f ′|L2 · |x− y| 12 for f ∈ H1[a, b]. ///

2. Sobolev theorems on Tn

For 0 ≤ k ∈ Z and f ∈ C∞(Tn), the kth Sobolev norm can be defined in terms of L2 norms of all its
derivatives up through order k:

|f |2Hk =
∑
|α|≤k

|f (α)|L2

where as usual α is summed over multi-indices α = (α1, . . . , αn) of non-negative integers αi, with
|α| = α1 + . . .+ αn, and

f (α) =
∂α1

∂xα1
1

. . .
∂αn

∂xαn
n

f

Then one way to define the kth Sobolev space is

Hk(Tn) = completion of C∞(Tn) with respect to | · |Hk

In this context, H−k(Tn) for −k < 0 is defined to be the dual of Hk(Tn), with H0(Tn) = L2(Tn) identified
with itself via Riesz-Fréchet (and pointwise conjugation, so that Riesz-Fréchet gives a C-linear isomorphism
rather than C-conjugate-linear). From the inclusion Hk+1 → Hk for 0 ≤ k ∈ Z dualizing gives a dual/adjoint
map H−k → H−k−1. Let

H∞(Tn) =

∞⋂
k=0

Hk(Tn) = lim
k
Hk(Tn)

and

H−∞(Tn) =

∞⋃
k=0

H−k(Tn) = colimkH
−k(Tn)

The picture is

H∞(Tn) //
++ ((

. . . // H1(Tn) // H0(Tn) //
((

H−1(Tn) //
++

. . . // H−∞(Tn)

[2.1] Claim: All arrows are continuous injections with dense images.

Proof: [... iou ...] ///

A spectral characterization of Sobolev norms is often useful, and directly defines Hs(Tn) for all s ∈ R: for

f ∈ C∞(Tn), with Fourier coefficients f̂(ξ),

|f |2Hs =
∑
ξ∈Zn

|f̂(ξ)|2 · (1 + |ξ|2)s
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and Hs(Tn) is the completion of C∞(Tn) with this norm.

[2.2] Claim: The spectral characterization gives the same topology on Hk as the characterization in terms
of L2 norms of derivatives, for 0 ≤ k ∈ Z.

Proof: [... iou ...] ///

Sometimes it is convenient to give the derivative characterization slightly differently, as

|f |2Hk = 〈(1−∆)kf, f〉L2

[2.3] Claim: The latter characterization gives the same topology on Hk as do the two previous
characterizations, for 0 ≤ k ∈ Z.

Proof: [... iou ...] ///

[2.4] Theorem: (Sobolev imbedding theorem) Hs(Tn) ⊂ Ck(Tn) for s > n
2 .

Proof: [... iou ...] ///

[2.5] Corollary: H∞(Tn) ⊂ C∞(Tn), and H−∞(Tn) = C∞(Tn)∗.

Proof: [... iou ...] ///

[2.6] Theorem: The duality pairing Hs×H−s → C can also be given by an extension of Plancherel, namely,
for ψξ(x) = e2πiξ·x, 〈∑

ξ

aξψξ,
∑
ξ

bξψξ

〉
Hs×H−s

=
∑
ξ

aξ · bξ

Proof: [... iou ...] ///

That is, distributions on Tn admit Fourier expansions with coefficients of moderate growth, and evaluation
of distributions on smooth functions can be done by a natural extension of Plancherel.

3. Sobolev theorems on Rn

The general shape of the discussion on Rn is similar to that on Tn, with some unsurprising complications due
to the non-compactness of R. In particular, Fourier series are replaced by Fourier transforms and inversion.

For 0 ≤ k ∈ Z and f ∈ C∞c (Rn), the kth Sobolev norm can be defined in terms of L2 norms of all its
derivatives up through order k:

|f |2Hk =
∑
|α|≤k

|f (α)|L2

One way to define the kth Sobolev space is

Hk(Rn) = completion of C∞c (Rn) with respect to | · |Hk

In this context, H−k(Rn) for −k < 0 is defined to be the dual of Hk(Rn), with H0(Rn) = L2(Rn) identified
with itself via Riesz-Fréchet (and pointwise conjugation, so that Riesz-Fréchet gives a C-linear isomorphism
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rather than C-conjugate-linear). From the inclusion Hk+1 → Hk for 0 ≤ k ∈ Z dualizing gives a dual/adjoint
map H−k → H−k−1. Let

H∞(Rn) =

∞⋂
k=0

Hk(Rn) = lim
k
Hk(Rn)

and

H−∞(Rn) =

∞⋃
k=0

H−k(Rn) = colimkH
−k(Rn)

The picture is the same as for Tn:

H∞(Rn) //
++ ((

. . . // H1(Rn) // H0(Rn) //
((

H−1(Rn) //
++

. . . // H−∞(Rn)

[3.1] Claim: All arrows are continuous injections with dense images.

Proof: [... iou ...] ///

A spectral characterization of Sobolev norms is often useful, and directly defines Hs(Rn) for all s ∈ R: for

f ∈ C∞c (Rn), with Fourier transform f̂(ξ),

|f |2Hs =

∫
Rn

|f̂(ξ)|2 · (1 + |ξ|2)s dξ

and Hs(Rn) is the completion of C∞c (Rn) with this norm.

[3.2] Claim: The spectral characterization gives the same topology on Hk as the characterization in terms
of L2 norms of derivatives, for 0 ≤ k ∈ Z.

Proof: [... iou ...] ///

[3.3] Corollary: Distributions u in H−∞(Rn) have Fourier transforms that are in weighted L2 spaces, with
pointwise values almost everywhere.

Proof: [... iou ...] ///

Sometimes it is convenient to give the derivative characterization slightly differently, as

|f |2Hk = 〈(1−∆)kf, f〉L2

[3.4] Claim: The latter characterization gives the same topology on Hk as do the two previous
characterizations, for 0 ≤ k ∈ Z.

Proof: [... iou ...] ///

[3.5] Theorem: (Sobolev imbedding theorem) Hs(Rn) ⊂ Ck(Rn) for s > n
2 .

Proof: [... iou ...] ///

Since Rn is non-compact, the conclusion of the following is weaker than for Tn, since C∞(Rn) is not equal
to S (Rn) or D(Rn):

[3.6] Corollary: H∞(Rn) ⊂ C∞(Rn) and H−∞(Rn) ⊃ C∞(Rn)∗.
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Proof: [... iou ...] ///

[3.7] Corollary: If we know that E(Rn)∗ = C∞(Rn)∗ is exactly compactly-supported distributions, then we
can conclude that H−∞(Rn) contains compactly-supported distributions. ///

[3.8] Theorem: The duality pairing Hs×H−s → C can also be given by an extension of Plancherel, namely,
for ψξ(x) = e2πiξ·x,

〈f, F 〉Hs×H−s =

∫
Rn

f̂(ξ) · F̂ (ξ) dξ

Proof: [... iou ...] ///

That is, evaluation of distributions in H−∞(Rn) on smooth functions in H∞(Rn) can be done by a natural
extension of Plancherel.
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