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1. Prototypical Sobolev imbedding theorem

The simplest case of a Levi-Sobolev imbedding theorem asserts that the +1-index Levi-Sobolev Hilbert space
H'[a,b] described below is inside C°[a, b]. This is a corollary of a Levi-Sobolev inequality asserting that the
C°|a,b] norm is dominated by the H'[a,b] norm. All that is used is the fundamental theorem of calculus and
the Cauchy-Schwarz-Bunyakowsky inequality. The point is that there is a large Hilbert space H'[a,b] inside
the Banach space C°[a,b].

We will do much more with this idea subsequently.

We can think of L?[a,b] as

b 1/2
L*[a,b] = completion of C°[a,b] with respect to |f|z> = (/ |f ()2 dt)

The +1-index Levi-Sobolev space] H[a, b] is

1/
H'[a,b] = completion of C*[a,b] with respect to |f|g1 = (|f|%2[a)b] + |f’|2L2[a7b])

[1.1] Theorem: (Levi-Sobolev inequality) On C*[a,b], the H'[a, b]-norm dominates the C°[a, b]-norm. That
is, there is a constant C' depending only on a, b such that |f|copas < C - |f|g1[e, for every f € Clla,b).

Proof: For a <z <y <b, for f € C*[a,b], the fundamental theorem of calculus gives

() \/f )t < /|f o) dt < /|f ) i) 2.(/;16#)”2

< |JN|L2 : |$ _y|§ < |f’|L2 . |a—b|§
Using the continuity of f € Cl[a,b], let y € [a,b] be such that |f(y)| = min,|f(z)|. Using the previous
inequality,
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f /-1

_pl3
‘a b‘ + |f |L ‘Cl ‘2
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1f e la=bE < (1flaa 110 ) (la=b =% +la—b)?)

(1 . also denoted W12 [a, b], where the superscript 2 refers to L2, rather than LP. Beppo Levi noted the importance
of taking Hilbert space completion with respect to this norm in 1906, giving a correct formulation of Dirichlet’s
principle. Sobolev’s systematic development of these ideas was in the mid-1930’s.



Paul Garrett: Introduction to Levi-Sobolev spaces (February 19, 2019)
Thus, on C'[a,b] the H! norm dominates the C°-norm. ///
[1.2] Corollary: (Levi-Sobolev imbedding) H*[a,b] C C°[a,b).
Proof: Since H'[a,b] is the H'-norm completion of C'[a,b], every f € H'[a,b] is an H'-limit of functions
fn € CYa,b]. That is, |f — Jnlm1[a,p) = 0. Since the H'-norm dominates the C°-norm, |f — Jnlcofas) — 0.

A C° limit of continuous functions is continuous, so f is continuous. ///

In fact, we have a stronger conclusion than continuity, namely, a Lipschitz condition with exponent %:

[1.3] Corollary: (of proof of theorem) |f(z) — f(y)| < |f’|p> - |z —y|? for f € H'[a,b]. ///

2. Sobolev theorems on T"

For 0 < k € Z and f € C>®(T"), the k*" Sobolev norm can be defined in terms of L? norms of all its
derivatives up through order k:
[l = 2 17

la| <K
where as usual « is summed over multi-indices « = (a1,...,@,) of non-negative integers «;, with
o] = a1+ ...+ ap, and
(o5} Qi
o= O
Ox{" Oxp™

Then one way to define the k*" Sobolev space is
H*(T™) = completion of C°°(T™) with respect to | - |gx

In this context, H~*(T") for —k < 0 is defined to be the dual of H*(T"), with H°(T") = L?(T") identified
with itself via Riesz-Fréchet (and pointwise conjugation, so that Riesz-Fréchet gives a C-linear isomorphism
rather than C-conjugate-linear). From the inclusion H**' — HF for 0 < k € Z dualizing gives a dual/adjoint
map H™* — H=*"1 Let

H®(T") = kmny — 3 k

(T") = () H*(T") lim H*(T")
k=0

and

H=>(T") = | JH™T") = colim;H *(T")
k=0

AH\/A

H>®(T") —> ... —— HYT") — H°(T") —— H Y(T") —— ... ——= H~>°(T")

The picture is

[2.1] Claim: All arrows are continuous injections with dense images.

Proof: [... iou ...] /1]

A spectral characterization of Sobolev norms is often useful, and directly defines H*(T™) for all s € R: for

~

f € C=(T"), with Fourier coefficients f(£),

e = S IF P a+g?)°

Eeln



Paul Garrett: Introduction to Levi-Sobolev spaces (February 19, 2019)
and H*(T™) is the completion of C°°(T™) with this norm.

[2.2] Claim: The spectral characterization gives the same topology on H* as the characterization in terms
of L? norms of derivatives, for 0 < k € Z.

Proof: [... iou ...] /1]

Sometimes it is convenient to give the derivative characterization slightly differently, as

[flEe = (1= D)F, f)ra

[2.3] Claim: The latter characterization gives the same topology on H¥ as do the two previous
characterizations, for 0 < k € Z.

Proof: [.. iou ...] /1
[2.4] Theorem: (Sobolev imbedding theorem) H*(T™) C C*(T™) for s > 2.

Proof: [... iou ..] /1
[2.5] Corollary: H>(T™) c C(T™), and H~>°(T") = C>(T")*.

Proof: [.. iou ...] /1]

[2.6] Theorem: The duality pairing H* x H~* — C can also be given by an extension of Plancherel, namely,

for y¢(z) = €26
<Z§:a£% Zﬁ:b£¢£>stH_s = zﬁ:as@

Proof: [... iou ...] /1]

That is, distributions on T™ admit Fourier expansions with coefficients of moderate growth, and evaluation
of distributions on smooth functions can be done by a natural extension of Plancherel.

3. Sobolev theorems on R"

The general shape of the discussion on R" is similar to that on T™, with some unsurprising complications due
to the non-compactness of R. In particular, Fourier series are replaced by Fourier transforms and inversion.

For 0 < k € Z and f € C*(R"), the k' Sobolev norm can be defined in terms of L? norms of all its
derivatives up through order k:
[l = 2 17

lo| <k
One way to define the k' Sobolev space is
H*(R™) = completion of C°(R™) with respect to | - | g«

In this context, H~*(R") for —k < 0 is defined to be the dual of H*(R"), with H°(R™) = L?(R") identified
with itself via Riesz-Fréchet (and pointwise conjugation, so that Riesz-Fréchet gives a C-linear isomorphism
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rather than C-conjugate-linear). From the inclusion H**! — HP* for 0 < k € Z dualizing gives a dual/adjoint
map H™ % — H=#~1. Let

H>(R") = ﬁH’“(R”) = 11131}1’6(11@“)
k=0

and

H™®R") = | JH*R") = colim,H*(R")
k=0

The picture is th%
_— /“A

H®R") —> ... —— H'(R") —= HO(R") —= H}(R") — ... —= H—(R")

[3.1] Claim: All arrows are continuous injections with dense images.

Proof: [... iou ...] /1]

A spectral characterization of Sobolev norms is often useful, and directly defines H*(R™) for all s € R: for

o~

f € C*(R™), with Fourier transform f(£),

e = [ IF@P- Iy de

and H*(R"™) is the completion of C'°(R™) with this norm.

[3.2] Claim: The spectral characterization gives the same topology on H” as the characterization in terms
of L? norms of derivatives, for 0 < k € Z.

Proof: [... iou ...] /1!

[3.3] Corollary: Distributions u in H~°°(R"™) have Fourier transforms that are in weighted L? spaces, with
pointwise values almost everywhere.

Proof: [... iou ...] /1!

Sometimes it is convenient to give the derivative characterization slightly differently, as

[flEe = (1= 2)F, f)ra

[3.4] Claim: The latter characterization gives the same topology on H¥ as do the two previous
characterizations, for 0 < k € Z.

Proof: [... iou ...] /1]
[3.5] Theorem: (Sobolev imbedding theorem) H*(R"™) C C*(R") for s > 5

Proof: [... iou ...] /1]

Since R™ is non-compact, the conclusion of the following is weaker than for T™, since C°°(R™) is not equal
to .Z(R™) or D(R™):

[3.6] Corollary: H>(R"™) c C>(R") and H~>*(R") D C>=(R")*.
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Proof: [.. iou ...] /!

[3.7] Corollary: If we know that £(R™)* = C(R™)* is exactly compactly-supported distributions, then we
can conclude that H~°°(R"™) contains compactly-supported distributions. ///

[3.8] Theorem: The duality pairing H*x H~* — C can also be given by an extension of Plancherel, namely,
for 1115(56) — 62#1’5.90,

~ =

<f7F>HS><H—S = - f(g)F(g) dg

Proof: [... iou ...] /1]

That is, evaluation of distributions in H~°°(R™) on smooth functions in H*°(R™) can be done by a natural
extension of Plancherel.




