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1. Boundedness, continuity, operator norms

A linear (not necessarily continuous) map T : X → Y from one Hilbert space to another is bounded if, for
all ε > 0, there is δ > 0 such that |Tx|Y < ε for all x ∈ X with |x|X < δ.

[1.1] Proposition: For a linear, not necessarily continuous, map T : X → Y of Hilbert spaces, the following
three conditions are equivalent:
(i) T is continuous
(ii) T is continuous at 0
(iii) T is bounded

Proof: For T continuous as 0, given ε > 0 and x ∈ X, there is small enough δ > 0 such that |Tx′ − 0|Y < ε
for |x′ − 0|X < δ. For |x′′ − x|X < δ, using the linearity,

|Tx′′ − Tx|X = |T (x′′ − x)− 0|X < δ

That is, continuity at 0 implies continuity.

Since |x| = |x− 0|, continuity at 0 is immediately equivalent to boundedness. ///

[1.2] Definition: The kernel kerT of a linear (not necessarily continuous) linear map T : X → Y from one
Hilbert space to another is

kerT = {x ∈ X : Tx = 0 ∈ Y }

[1.3] Proposition: The kernel of a continuous linear map T : X → Y is closed.

Proof: For T continuous

kerT = T−1{0} = X − T−1(Y − {0}) = X − T−1(open) = X − open = closed

since the inverse images of open sets by a continuous map are open. ///

[1.4] Definition: The operator norm |T | of a linear map T : X → Y is

operator norm T = |T | = sup
x∈X : |x|X≤1

|Tx|Y

[1.5] Corollary: A linear map T : X → Y is continuous if and only if its operator norm is finite. ///
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2. Adjoints

An adjoint T ∗ of a continuous linear map T : X → Y from a pre-Hilbert space X to a pre-Hilbert space Y
(if T ∗ exists) is a continuous linear map T ∗ : Y → X such that

〈Tx, y〉Y = 〈x, T ∗y〉X

[2.1] Remark: When a pre-Hilbert space X is not complete, that is, is not a Hilbert space, an operator
T : X → Y may fail to have an adjoint.

[2.2] Theorem: A continuous linear map T : X → Y from a Hilbert space X to a Hilbert space Y has a
unique adjoint T ∗.

[2.3] Remark: In fact, the target space of T need not be a Hilbert space, that is, need not be complete,
but we will not use this.

Proof: For each y ∈ Y , the map
λy : X −→ C

given by
λy(x) = 〈Tx, y〉

is a continuous linear functional on X. By Riesz-Fréchet, there is a unique xy ∈ X so that

〈Tx, y〉 = λy(x) = 〈x, xy〉

Try to define T ∗ by T ∗y = xy. This is a well-defined map from Y to X, and has the adjoint property
〈Tx, y〉Y = 〈x, T ∗y〉X .

To prove that T ∗ is continuous, prove that it is bounded. From Cauchy-Schwarz-Bunyakowsky

|T ∗y|2 = |〈T ∗y, T ∗y〉X | = |〈y, TT ∗y〉Y | ≤ |y| · |TT ∗y| ≤ |y| · |T | · |T ∗y|

where |T | is the operator norm. For T ∗y 6= 0, divide by it to find

|T ∗y| ≤ |y| · |T |

Thus, |T ∗| ≤ |T |. In particular, T ∗ is bounded. Since (T ∗)∗ = T , by symmetry |T | = |T ∗|. Linearity of T ∗

is easy. ///

[2.4] Corollary: For a continuous linear map T : X → Y of Hilbert spaces, T ∗∗ = T . ///

An operator T ∈ End(X) commuting with its adjoint is normal, that is,

TT ∗ = T ∗T

This only applies to operators from a Hilbert space to itself. An operator T is self-adjoint or hermitian if
T = T ∗. That is, T is hermitian when

〈Tx, y〉 = 〈x, Ty〉 (for all x, y ∈ X)

An operator T is unitary when

TT ∗ = identity map on Y T ∗T = identity map on X
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There are simple examples in infinite-dimensional spaces where TT ∗ = 1 does not imply T ∗T = 1, and vice-
versa. Thus, it does not suffice to check something like 〈Tx, Tx〉 = 〈x, x〉 to prove unitariness. Obviously
hermitian operators are normal, as are unitary operators, using the more careful definition.

3. Stable subspaces and complements

Let T : X → X be a continuous linear operator on a Hilbert space X. A vector subspace Y is T -stable or
T -invariant if Ty ∈ Y for all y ∈ Y . Often one is most interested in the case that the subspace be closed in
addition to being invariant.

[3.1] Proposition: For T : X → X a continuous linear operator on a Hilbert space X, and Y a T -stable
subspace, Y ⊥ is T ∗-stable.

Proof: For z ∈ Y ⊥ and y ∈ Y ,
〈T ∗z, y〉 = 〈z, T ∗∗y〉 = 〈z, Ty〉

since T ∗∗ = T , from above. Since Y is T -stable, Ty ∈ Y , and this inner product is 0, and T ∗z ∈ Y ⊥.
///

[3.2] Corollary: For continuous self-adjoint T on a Hilbert space X, and Y a T -stable subspace, both Y
and Y ⊥ are T -stable. ///

[3.3] Remark: Normality of T : X → X is insufficient to assure the conclusion of the corollary, in general.
For example, with the two-sided `2 space

X = {{cn : n ∈ Z} :
∑
n∈Z
|cn|2 < ∞}

the right-shift operator
(Tc)n = cn−1 (for n ∈ Z)

has adjoint the left shift operator

(T ∗c)n = cn+1 (for n ∈ Z)

and
T ∗T = TT ∗ = 1X

So this T is not merely normal, but unitary. However, the T -stable subspace

Y = {{cn} ∈ X : ck = 0 for k < 0}

is not T ∗-stable, nor is its orthogonal complement T -stable.

On the other hand, adjoint-stable collections of operators have a good stability result:

[3.4] Proposition: Suppose for every T in a set A of bounded linear operators on a Hilbert space V the
adjoint T ∗ is also in A. Then, for an A-stable subspace W of V , the orthogonal complement W⊥ is also
A-stable.

Proof: For y in W⊥ and T ∈ A, for x ∈W ,

〈x, Ty〉 = 〈T ∗x, y〉 ∈ 〈W, y〉 = {0}

since T ∗ ∈ A. ///

3



Paul Garrett: 09a. Operators on Hilbert spaces (April 3, 2019)

4. Spectrum, eigenvalues

For a continuous linear operator T ∈ End(X), the λ-eigenspace of T is

Xλ = {x ∈ X : Tx = λx}

If this space is not simply {0}, then λ is an eigenvalue.

[4.1] Proposition: An eigenspace Xλ for a continuous linear operator T on X is a closed and T -stable
subspace of X. For normal T the adjoint T ∗ acts by the scalar λ on Xλ.

Proof: The λ-eigenspace is the kernel of the continuous linear map T −λ, so is closed. The stability is clear,
since the operator restricted to the eigenspace is a scalar operator. For v ∈ Xλ, using normality,

(T − λ)T ∗v = T ∗(T − λ)v = T ∗ · 0 = 0

Thus, Xλ is T ∗-stable. For x, y ∈ Xλ,

〈(T ∗ − λ)x, y〉 = 〈x, (T − λ)y〉 = 〈x, 0〉

Thus, (T ∗ − λ)x = 0. ///

[4.2] Proposition: For T normal, for λ 6= µ, and for x ∈ Xλ, y ∈ Xµ, always 〈x, y〉 = 0. For T self-adjoint,
if Xλ 6= 0 then λ ∈ R. For T unitary, if Xλ 6= 0 then |λ| = 1.

Proof: Let x ∈ Xλ, y ∈ Xµ, with µ 6= λ. Then

λ〈x, y〉 = 〈Tx, y〉 = 〈x, T ∗y〉 = 〈x, µy〉 = µ〈x, y〉

invoking the previous result. Thus,
(λ− µ)〈x, y〉 = 0

giving the result. For T self-adjoint and x a non-zero λ-eigenvector,

λ〈x, x〉 = 〈x, T ∗x〉 = 〈x, Tx〉 = 〈x, λx〉 = λ〈x, x〉

Thus, (λ−λ)〈x, x〉 = 0. Since x is non-zero, the result follows. For T unitary and x a non-zero λ-eigenvector,

〈x, x〉 = 〈T ∗Tx, x〉 = 〈Tx, Tx〉 = |λ|2 · 〈x, x〉

///

In what follows, for a complex scalar λ write simply λ for scalar multiplication by λ on a Hilbert space X.

[4.3] Definition: The spectrum σ(T ) of a continuous linear operator T : X → X on a Hilbert space X is
the collection of complex numbers λ such that T − λ does not have a continuous linear inverse.

[4.4] Definition: The discrete spectrum σdisc(T ) is the collection of complex numbers λ such that T − λ
fails to be injective. In other words, the discrete spectrum is the collection of eigenvalues.

[4.5] Definition: The continuous spectrum σcont(T ) is the collection of complex numbers λ such that
T − λ · 1X is injective, does have dense image, but fails to be surjective.

[4.6] Definition: The residual spectrum σres(T ) is everything else: neither discrete nor continuous spectrum.
That is, the residual spectrum of T is the collection of complex numbers λ such that T − λ · 1X is injective,
and fails to have dense image (so is certainly not surjective).
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[4.7] Remark: To see that there are no other possibilities, note that the Closed Graph Theorem implies that
a bijective, continuous, linear map T : X → Y of Banach spaces has continuous inverse. Indeed, granting
that the inverse exists as a linear map, its graph is

graph of T−1 = {(y, x) ∈ Y ×X : (x, y) in the graph of T ⊂ X × Y }

Since the graph of T is closed, the graph of T−1 is closed, and by the Closed Graph Theorem T−1 is
continuous.

The potential confusion of residual spectrum does not occur in many situations of interest”

[4.8] Proposition: A normal operator T : X → X has empty residual spectrum.

Proof: The adjoint of T − λ is T ∗ − λ, so consider λ = 0 to lighten the notation. Suppose that T does not
have dense image. Then there is non-zero z such that

0 = 〈z, Tx〉 = 〈T ∗z, x〉 (for every x ∈ X)

Therefore T ∗z = 0, and the 0-eigenspace Z of T ∗ is non-zero. Since T ∗(Tz) = T (T ∗z) = T (0) = 0 for z ∈ Z,
T ∗ stabilizes Z. That is, Z is both T and T ∗-stable. Therefore, T = (T ∗)∗ acts on Z by (the complex
conjugate of) 0, and T has non-trivial 0-eigenvectors, contradiction. ///

5. Generalities on spectra

It is convenient to know that spectra of continuous operators are non-empty, compact subsets of C.

Knowing this, every non-empty compact subset of C is easily made to appear as the spectrum of a continuous
operator, even normal ones, as below.

[5.1] Proposition: The spectrum σ(T ) of a continuous linear operator T : V → V on a Hilbert space V is
bounded by the operator norm |T |op.

Proof: For |λ| > |T |op, an obvious heuristic suggests an expression for the resolvent Rλ = (T − λ)−1:

(T − λ)−1 = −λ−1 ·
(
1− T

λ

)−1
= −λ−1 ·

(
1 +

T

λ
+
(T
λ

)2
+ . . .

)
The infinite series converges in operator norm for |T/λ|op < 1, that is, for |λ| > |T |op. Then

(T − λ) · (−λ−1) ·
(

1 +
T

λ
+
(T
λ

)2
+ . . .

)
= 1

giving a continuous inverse (T − λ)−1, so λ 6∈ σ(T ). ///

[5.2] Remark: The same argument applied to Tn shows that σ(Tn) is inside the closed ball of radius |Tn|op.
By the elementary identity

Tn − λn = (T − λ) · (Tn−1 + Tn−2λ+ . . .+ Tλn−2 + λn−2)

(T − λ)−1 exists for |λn| > |Tn|op, that is, for |λ| > |Tn|1/nop . That is, σ(T ) is inside the closed ball of radius

infn≥1 |Tn|1/nop . The latter expression is the spectral radius of T . This notion is relevant to non-normal
operators, such as the Volterra operator, whose spectral radius is 0, while its operator norm is much larger.

[5.3] Proposition: The spectrum σ(T ) of a continuous linear operator T : V → V on a Hilbert space V is
compact.
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Proof: That λ 6∈ σ(T ) is that there is a continuous linear operator (T−λ)−1. We claim that for µ sufficiently
close to λ, (T − µ)−1 exists. Indeed, a heuristic suggests an expression for (T − µ)−1 in terms of (T − λ)−1.
The algebra is helpfully simplified by replacing T by T + λ, so that λ = 0. With µ near 0 and granting
existence of T−1, the heuristic is

(T − µ)−1 = (1− µT−1)−1 · T−1 =
(

1 + µT−1 + (µT−1)2 + . . .
)
· T−1

The geometric series converges in operator norm for |µT−1|op < 1, that is, for |µ| < |T−1|−1op . Having found
the obvious candidate for an inverse,

(1− µT−1) ·
(

1 + µT−1 + (µT−1)2 + . . .
)

= 1

and
(T − µ) ·

(
1 + µT−1 + (µT−1)2 + . . .

)
· T−1 = 1

so there is a continuous linear operator (T − µ)−1, and µ 6∈ σ(T ). Having already proven that σ(T ) is
bounded, it is compact. ///

[5.4] Proposition: The spectrum σ(T ) of a continuous linear operator on a Hilbert space V 6= {0} is
non-empty.

Proof: The argument reduces the issue to Liouville’s theorem from complex analysis, that a bounded entire
(holomorphic) function is constant. Further, an entire function that goes to 0 at ∞ is identically 0.

Suppose the resolvent Rλ = (T − λ)−1 is a continuous linear operator for all λ ∈ C. The operator norm is
readily estimated for large λ:

|Rλ|op = |λ|−1 ·
∣∣∣1 +

T

λ
+
(T
λ

)2
+ . . .

∣∣∣
op

≤ |λ|−1 ·
(

1 +
∣∣T
λ

∣∣
op

+
∣∣T
λ

∣∣2
op

+ . . .
)

=
1

|λ|
· 1

1− |T |op
|λ|

This goes to 0 as |λ| → ∞. Hilbert’s identity asserts the complex differentiability as operator-valued function:

Rλ −Rµ
λ− µ

= Rλ ·
(T − µ)− (T − λ)

λ− µ
·Rµ = Rλ ·Rµ −→ R2

λ (as µ→ λ)

since µ→ Rµ is continuous for large µ, by the same identity:

|Rλ −Rµ|op ≤ |λ− µ| · |Rµ ·Rλ|op

Thus, the scalar-valued functions λ→ 〈Rλv, w〉 for v, w ∈ V are complex-differentiable, and satisfy

|〈Rλv, w〉| ≤ |Rλv| · |w| ≤ |Rλ|op · |v| · |w| ≤
1

|λ|
· 1

1− |T |op
|λ|

· |v| · |w|

By Liouville, 〈Rλv, w〉 = 0 for all v, w ∈ V , which is impossible. Thus, the spectrum is not empty. ///

[5.5] Proposition: The entire spectrum, both point-spectrum and continuous-spectrum, of a self-adjoint
operator is a non-empty, compact subset of R. The entire spectrum of a unitary operator is a non-empty,
compact subset of the unit circle.

6



Paul Garrett: 09a. Operators on Hilbert spaces (April 3, 2019)

Proof: For self-adjoint T , we claim that the imaginary part of 〈(T − µ)v, v〉 is at least 〈v, v〉 times the
imaginary part of µ. Indeed, 〈Tv, v〉 is real, since

〈Tv, v〉 = 〈v, T ∗v〉 = 〈v, Tv〉 = 〈Tv, v〉

so
〈(T − µ)v, v〉 = 〈Tv, v〉 − µ · 〈v, v〉

and
|Im〈(T − µ)v, v〉| = |Imµ| · 〈v, v〉

and by Cauchy-Schwarz-Bunyakowsky

|(T − µ)v| · |v| ≥ |〈(T − µ)v, v〉| ≥ |Imµ| · 〈v, v〉 = |Imµ| · |v|2

Dividing by |v|,
|(T − µ)v| ≥ |Imµ| · |v|

This inequality shows more than the injectivity of T − µ. Namely, the inequality gives a bound on the
operator norm of the inverse (T − µ)−1 defined on the image of T − µ. The image is dense since µ is not an
eigenvalue and there is no residual spectrum for normal operators T . Thus, the inverse extends by continuity
to a continuous linear map defined on the whole Hilbert space. Thus, T − µ has a continuous linear inverse,
and µ is not in the spectrum of T .

For T unitary, |Tv| = |v| for all v implies T |op = 1. Thus, σ(T ) is contained in the unit disk, by the general
bound on spectra in terms of operator norms. From (T − λ)∗ = T ∗ − λ, the spectrum of T ∗ is obtained by
complex-conjugating the spectrum of T . Thus, for unitary T , the spectrum of T−1 = T ∗ is also contained
in the unit disk. At the same time, the natural

T − λ = −T · (T−1 − λ−1) · λ

gives
(T − λ)−1 = −λ−1 · (T−1 − λ−1)−1 · T−1

so λ−1 ∈ σ(T−1) exactly when λ ∈ σ(T ). Thus, the spectra of both T and T ∗ = T−1 are inside the unit
circle. ///

[5.6] Remark:

6. Positive examples

Let `2 be the usual space of square-summable sequences (a1, a2, . . .), with standard orthonormal basis

ej = (0, . . . , 0, 1, 0, . . .)︸ ︷︷ ︸
1 at jth position

[6.1] Multiplication operators with specified eigenvalues Given a countable, bounded list of complex
numbers λj , the operator T : `2 → `2 by

T : (a1, a2, . . .) −→ (λ1 · a1, λ2 · a2, . . .)

has λj-eigenvector the standard basis element ej . Clearly

T ∗ : (a1, a2, a3, . . .) −→ (λ1 · a1, λ2 · a2, λ3 · a3, . . .)
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so T is normal, in the sense that TT ∗ = T ∗T . To see that there are no other eigenvalues, suppose Tv = µ · v
with µ not among the λj . Then

µ · 〈v, ej〉 = 〈Tv, ej〉 = 〈v, T ∗ej〉 = 〈v, λjej〉 = λj · 〈v, ej〉

Thus, (µ− λj) · 〈v, ej〉 = 0, and 〈v, ej〉 = 0 for all j. Since ej form an orthonormal basis, v = 0. ///

[6.2] Every compact subset of C is the spectrum of an operator Grant for the moment a countable

dense subset {λj} of a non-empty compact subset [1] C of C, and as above let

T : (a1, a2, a3, . . .) −→ (λ1 · a1, λ2 · a2, λ3 · a3, . . .)

We saw that there are no further eigenvalues. Since spectra are closed, the closure C of {λj} is contained in
σ(T ).

It remains to show that the continuous spectrum is no larger than the closure C of the eigenvalues, in this
example. That is, for µ 6∈ C, exhibit a continuous linear (T − µ)−1.

For µ 6∈ C, there is a uniform lower bound 0 < δ ≤ |µ − λj |. That is, supj |µ − λj |−1 ≤ δ−1. Thus, the
naturally suggested map

(a1, a2, . . .) −→
(

(λ1 − µ)−1 · a1, (λ2 − µ)−1 · a2, . . .
)

is a bounded linear map, and gives (T − µ)−1.

[6.3] Two-sided shift has no eigenvalues Let V be the Hilbert space of two-sided sequences
(. . . , a−1, a0, a1, . . .) with natural inner product

〈(. . . , a−1, a0, a1, . . .), (. . . , b−1, b0, b1, . . .)〉 = . . .+ a−1b−1 + a0b0 + a1b1 + . . .

The right and left two-sided shift operators are

(R · a)n = an−1 (L · a)n = an+1

These operators are mutual adjoints, mutual inverses, so are unitary. Being unitary, their operator norms
are 1, so their spectra are non-empty compact subsets of the unit circle.

They have no eigenvalues: indeed, for Rv = λ · v, if there is any index n with vn 6= 0, then the relation
Rv = λ · v gives vn+k+1 = λ · vn+k for k = 0, 1, 2, . . .. Since |λ| = 1, such a vector is not in `2.

Nevertheless, we claim that λ ∈ σ(L) for every λ with |λ| = 1, and similarly for R. Indeed, for λ not in the
spectrum, there is a continuous linear operator (L − λ)−1, so |(L − λ)v| ≥ δ · |v| for some δ > 0. It is easy
to make approximate eigenvectors for L for any |λ| = 1: let

v(`) = (. . . , 0, . . . , 0, 1, λ, λ2, λ3, . . . , λ`, 0, 0, . . .)

Obviously it doesn’t matter where the non-zero entries begin. From

(L− λ)v(`) = (. . . , 0, . . . , 0, 1, 0, . . . , 0, λ`+1, 0, 0, . . .)

|(L−λ)v(`)| =
√

1 + 1, while |v(`)| =
√
`+ 1. Thus, |(L−λ)v(`)|/|v(`)| −→ 0, and there can be no (L−λ)−1.

Thus, every λ on the unit circle is in σ(R).

[1] To make a countable dense subset of C, for n = 1, 2, . . . cover C by finitely-many disks of radius 1/n, each meeting

C, and in each choose a point of C. The union over n = 1, 2, . . . of these finite sets is countable and dense in C.

8



Paul Garrett: 09a. Operators on Hilbert spaces (April 3, 2019)

[6.4] Compact multiplication operators on `2 For a sequence of complex numbers λn → 0, we claim
that the multiplication operator

T : (a1, a2, . . .) −→ (λ1 · a1, λ2 · a2, . . .)

is compact. We already showed that it has eigenvalues exactly λ1, λ2, . . ., and spectrum the closure of {λj}.
Thus, the spectrum includes 0, but 0 is an eigenvalue only when it appears among the λj , which may range
from 0 times to infinitely-many times.

To prove that the operator is compact, we prove that the image of the unit ball is pre-compact, by showing
that it is totally bounded. Given ε > 0, take k such that |λi| < ε for i > k. The ball in Ck of radius
max{|λj | : j ≤ k} is precompact, so has a finite cover by ε-balls, centered at points v1, . . . , vN . For
v = (v1, v2, . . .) with |v| ≤ 1,

Tv = (λ1v1, λ2v2, . . . , λkvk, 0, 0, . . .) + (0, . . . , 0, λk+1vk+1, λk+2vk+2, . . .)

With vj the closest of the v1, . . . , vN to (λ1v1, λ2v2, . . . , λkvk, 0, 0, . . .),

|Tv−vj | < ε+|(0, . . . , 0, λk+1vk+1, λk+2vk+2, . . .)| < ε + ε·|(0, . . . , 0, vk+1, vk+2, . . .)| ≤ ε+ε·|v| ≤ 2ε

Thus, the image of the unit ball under T is covered by finitely-many 2ε-balls. ///

[6.5] Multiplication operators on L2[a, b] For ϕ ∈ Co[a, b], we claim that the multiplication operator

Mϕ : L2[a, b] −→ L2[a, b]

by
Mϕf(x) = ϕ(x) · f(x)

is normal, and has spectrum the image ϕ[a, b] of ϕ. The eigenvalues are λ such that ϕ(x) = λ on a subset of
[a, b] of positive measure. The normality is clear, so, beyond eigenvalues, we need only examine continuous
spectrum, not residual.

On one hand, if ϕ(x) = λ on a set of positive measure, there is an infinite-dimensional sub-space of L2[0, 1]
of functions supported there, and all these are eigenvectors. On the other hand, if f 6= 0 in L2[0, 1] and
ϕ(x) · f(x) = λ · f(x), even if f is altered on a set of measure 0, it must be that ϕ(x) = λ on a set of positive
measure.

To understand the continuous spectrum, for ϕ(xo) = λ make approximate eigenvectors by taking L2 functions
f supported on [xo− δ, xo+ δ], where δ > 0 is small enough so that |ϕ(x)−ϕ(xo)| < ε for |x−xo| < δ. Then

|(Mϕ − λ)f |2L2 =

∫
|ϕ(x)− λ|2 · |f(x)|2 dx ≤ ε2 · |f |2L2

Thus, inff 6=0 |(Mϕ − λ)f |L2/|f |L2 = 0, so Mϕ − λ is not invertible. If λ is not an eigenvalue, it is in the
continuous spectrum. On the other hand, if ϕ(x) 6= λ, then there is some δ > 0 such that |ϕ(x)− λ| ≥ δ for
all x ∈ [0, 1], by the compactness of [0, 1]. Then

|(Mϕ − λ)f |2L2 =

∫ 1

0

|ϕ(x)− λ|2 · |f(x)|2 dx ≥
∫ 1

0

δ2 · |f(x)|2 dx = δ2 · |f |2L2

Thus, there is a continuous inverse (Mϕ − λ), and λ is not in the spectrum.
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7. Cautionary examples: non-normal operators

[7.1] Shift operators on one-sided `2 We claim the following: The right-shift

R : (a1, a2, . . .) −→ (0, a1, a2, . . .)

and the left-shift
L : (a1, a2, a3, . . .) −→ (a2, . . .)

are mutual adjoints. These operators are not normal, since L ◦R = 1`2 but

R ◦ L : (a1, a2, . . .) −→ (0, a2, . . .)

The eigenvalues of the left-shift L are all complex numbers in the open unit disk in C. In particular, there
is a continuum of eigenvalues and eigenvectors, so they cannot be mutually orthogonal. The spectrum σ(L)
is the closed unit disk.

The right-shift R has no eigenvalues, has continuous spectrum the unit circle, and residual spectrum the
open unit disk with 0 removed.

Indeed, suppose
(0, a1, a2, . . .) = R(a1, a2, . . .) = λ · (a1, a2, . . .)

With n the lowest index such that an 6= 0, the nth component in the eigenvector relation gives 0 = an−1 =
λ · an, so λ = 0. Then, the (n+ 1)th component gives an = λ · an+1 = 0, contradiction. This proves that R
has no eigenvalues.

Oppositely, for |λ| < 1,
L(1, λ, λ2, . . .) = (λ, λ2, . . .) = λ · (1, λ, λ2, . . .)

so every such λ is an eigenvector for L. On the other hand, for |λ| = 1, in an eigenvector relation

(a2, . . .) = L(a1, a2, . . .) = λ · (a1, a2, . . .)

let n be the smallest index n with an 6= 0. Then an+1 = λ · an, an+2 = λ · an+1, . . ., so

(a1, a2, . . .) = (0, . . . , 0, an, λan, λ
2an, . . .)

But this is not in `2 for |λ| = 1 and an 6= 0, so λ on the unit circle is not an eigenvalue.

For |λ| = 1, we can make approximate λ-eigenvectors for L by

v[N ] = (1, λ, λ2, . . . , λN , 0, 0, . . .)

since

(L− λ) v[N ] = (λ, λ2, . . . , λN , 0, 0, 0, . . .)− λ · (1, λ, λ2, . . . , λN , 0, 0, . . .) = (0, 0, . . . , 0, 0, λN+1, 0, 0, . . .)

Since
|(L− λ)v[N ]|
|v[N ]

=
|λ|N+1

(1 + |λ|2 + . . .+ |λ|2N )1/2
=

1√
N + 1

−→ 0

there can be no continuous (L − λ)−1. Thus, λ on the unit circle is in the spectrum, but not in the point
spectrum.
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That the unit circle is in the spectrum also follows from the observation above that all λ with |λ| < 1 are
eigenvalues, and the fact that the spectrum is closed.

The spectrum of L is bounded by the operator norm |L|op, and |L|op is visibly 1, so is nothing else in the
spectrum.

To see that the unit circle is the continuous spectrum of L, as opposed to residual, we show that L− λ has
dense image for |λ| = 1. Indeed, for w such that, for all v ∈ `2,

0 = 〈(L− λ)v, w〉 = 〈v, (L∗ − λ)w〉 = 〈v, (R− λ)w〉

we would have (R − λ)w = 0. However, we have seen that R has no eigenvalues. Thus, L − λ always has
dense image, and the unit circle is continuous spectrum for L.

Reversing that discussion, every λ with |λ| < 1 is in the residual spectrum of R, because such λ is not an
eigenvalue, and R− λ does not have dense image: for w a λ-eigenvector for L,

〈(R− λ)v, w〉 = 〈v, (R∗ − λ)w〉 = 〈v, (L− λ)w〉 = 〈v, 0〉 = 0

That is, the image (R− λ)`2 is in the orthogonal complement to the eigenvector w. The same computation
shows that the unit circle is continuous spectrum for R, because it is not eigenvalues for L.

[7.2] Volterra operator We will show that the Volterra operator V f(x) =
∫ x
0
f(t) dt on L2[0, 1] is not

self-adjoint, that its spectrum is {0}, and that it has no eigenvalues.

As in the next chapter, since the Volterra operator is given by an L2 integral kernel, it is Hilbert-Schmidt,
hence compact.

A relation Tf = λ · f for f ∈ L2 and λ 6= 0 implies f is continuous:

|λ| · |f(x+ h)− f(x)| = |Tf(x+ h)− Tf(x)| ≤
∫ x+h

x

1 · |f(t)| dt = ≤ |h| 12 · |f |L2

The fundamental theorem of calculus would imply f is continuously differentiable and λ · f ′ = (Tf)′ = f .
Thus, f would be a constant multiple of ex/λ, by the mean value theorem. However, by Cauchy-Schwarz-
Bunyakowsky, for a λ-eigenfunction

|λ| · |f(x)| ≤ |x| 12 · |f |L2

No non-zero multiple of the exponential satisfies this. Thus, there are no eigenvectors for non-zero
eigenvalues.

For f ∈ L2[0, 1] and Tf = 0 ∈ L2[0, 1], Tf is almost everywhere 0. Since x → Tg(x) is unavoidably
continuous, Tf(x) is 0 for all x. Thus, for all x, y in the interval,

0 = 0− 0 = Tf(y)− Tf(x) =

∫ y

x

f(t) dt

That is, x → Tf(x) is orthogonal in L2[0, 1] to all characteristic functions of intervals. Finite linear
combinations of these are dense in Co[0, 1] in the L2 topology, and Co[0, 1] is dense in L2[0, 1]. Thus
f = 0, and there are no eigenvectors for the Volterra operator.

To see that the spectrum is at most {0}, show that the spectral radius is 0:

Tnf(x) =

∫ x

0

∫ xn−1

0

. . .

∫ x2

0

∫ x1

0

f(t) dt dx1 . . . dxn−1 =

∫ x

0

f(t)
(∫ x

t

∫ xn−1

t

. . .

∫ x2

t

dx1 . . . dxn−1

)
dt

=

∫ x

0

f(t) · (x− t)n−1

(n− 1)!
dt
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From this, |Tn|op ≤ 1
n! , and

log lim
2n

( 1

(2n)!

)1/2n
= − lim

2n

1

2n
· log(2n)! = − lim

2n

1

2n

∑
1≤k≤2n

log k

= − lim
2n

1

2n

∑
1≤k≤n

(log k + log(2n− k + 1)) ≤ − lim
2n

1

2n

∑
1≤k≤n

k

(log k + log(2n− k + 1))

≤ − lim
2n

1

2n

∑
1≤k≤n

k

log 2n = − lim
2n

log 2n

2
= −∞

since k(2n − k) ≥ 2n for 1 ≤ k ≤ n, noting the sign. That is, limn |Tn|1/nop = 0, so the spectral radius is 0.
Since the spectrum is non-empty, it must be exactly {0}.

8. Weyl’s criterion for continuous spectrum

H. Weyl gave a criterion for continuous spectrum analogous to the definition of discrete spectrum. This
criterion is decisive for normal operators.

For λ ∈ C, a sequence {vn} of vectors (normalized so that all their lengths are 1 or at least bounded away
from 0) in the Hilbert space V such that (T − λ)vn → 0 as n→ +∞ is an approximate eigenvector for λ.

[8.1] Theorem: For λ not an eigenvalue for T , and for (T − λ)V not closed, λ is in the spectrum of T if
and only if λ has an approximate eigenvector.

[8.2] Remark: This criterion is not uniformly reliable for detecting residual spectrum, which is why we must

impose a further condition. [2] For example, we have seen that, for T : V → V a norma linear operator, for
λ in the spectrum but not an eigenvalue, (T −λ)V is dense in V but is not all of V . Thus, the hypothesis of
the theorem is met for normal T . We give an example of failure to detect residual spectrum after the proof.

Proof: Certainly if λ is an eigenvector, with non-zero eigenvalue v, the constant sequence v, v, v, . . . fits the
requirement.

For general spectrum, let S = T − λ. For v1, v2, . . . with |vn| = 1 and Svn → 0, any alleged (continuous [3] )
S−1 would give, interchanging S−1 and the limit by continuity,

0 = S−1(lim
n
Svn) = lim

n
S−1Svn = lim

n
vn

contradiction. Thus, existence of an approximate eigenvector for T − λ implies that T − λ is not invertible.

Conversely, for S = T − λ not invertible, but λ not an eigenvector, then S is injective but not surjective.
We further assume that the image of S is not closed. [4] In that case, S is injective, not surjective, and

[2] Recall that residual spectrum of T is λ such that T − λ is injective, but does not have dense image.

[3] Recall that when there is an everywhere-defined, linear inverse S−1 to S, necessarily S is a continuous bijection,

and by the open mapping theorem S is open. That is, there is δ > 0 such that |Sv| ≥ δ · |v| for all v. This exactly

asserts the boundedness of S−1, so S−1 is continuous.

[4] The image is not closed, for example, when T (hence S) has no residual spectrum, which is the case when T

(hence S) is normal, or self-adjoint.
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by non-closedness of the image there is vo (with |vo| = 1) not in the image of S, and v1, v2, . . . such that
Sv1, Sv2, . . .→ vo. If {vn} were a Cauchy sequence, then it would have a limit, and by continuity of S

vo = lim
n
Svn = S(lim

n
vn)

and vo would be in the image of S, contradicting our assumption. Thus, {vn} is not Cauchy. In particular,
we can replace {vn} by a subsequence such that there is δ > 0 such that |vm − vn| ≥ δ for all m 6= n. Then
wn = vn − vn+1 forms an approximate 0-eigenvector, since their lengths are bounded away from 0, and

Swn = S(vn − vn+1) = Svn − Svn+1 −→ vo − vo = 0

as desired. ///

[8.3] Remark: As noted, the case that λ is not an eigenvector, T − λ is not surjective, and/but the image
of S = T − λ is closed, can only occur for non-normal T . For example, T : `2 → `2 by

T (c1, c2, . . .) = (c1, 0, c2, 0, c3, 0, . . .)

is injective, not surjective, and has closed image. It is not invertible, but there is no approximate eigenvector
for 0, so the criterion fails in this (non-normal) example.
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