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Although many of the inequalities here can be stated in much more general terms after the basics about
measure and integration are developed, the mechanisms for these inequalities do not depend on any
integration theory beyond Riemann’s.

Therefore, for clarity, we state both integral forms of the inequalities, as well as discrete forms, although
these seemingly disparate cases will be unified under the umbrella of abstract integration.

1. Cauchy-Schwarz-Bunyakowsky inequality

One more time, we recall:

[1.1] Claim: (Cauchy-Schwarz-Bunyakowsky inequality) For x, y an inner product space V ,

|〈x, y〉| ≤ |x| · |y|

Assuming that neither x nor y is 0, strict inequality holds unless x and y are scalar multiples of each other.

Proof: For clarity, we first prove this for a real vector space V , with real-valued inner product. If |y| = 0,
the assertions are trivially true. Thus, take y 6= 0. With real t, consider the quadratic polynomial function

f(t) = |x− ty|2 = |x|2 − 2t〈x, y〉+ t2|y|2

Certainly f(t) ≥ 0 for all t ∈ R, since |x − ty| ≥ 0. Its minimum occurs where f ′(t) = 0, namely, where
−2〈x, y〉+ 2t|y|2 = 0. This is where t = 〈x, y〉/|y|2. Thus,

0 ≤ (minimum) ≤ f(〈x, y〉/|y|2) = |x|2 − 2
〈x, y〉
|y|2

〈x, y〉+
( 〈x, y〉
|y|2

)2
· |y|2 = |x|2 −

( 〈x, y〉
|y|2

)2
· |y|2

Multiplying out by |y|2,
0 ≤ |x|2 · |y|2 − 〈x, y〉2

which gives the inequality. Further, for the inequality to be an equality, it must be that |x− ty| = 0, so x is
a multiple of y.

Using complex scalars and hermitian complex-valued inner product introduces a minor technical complica-
tion, which is not so interesting. ///
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2. Young’s inequality

[2.1] Claim: (Numerical Young’s inequality)

ab ≤ ap

p
+
bq

q
(for a, b > 0 and

1

p
+

1

q
= 1, p, q > 0)

[2.2] Remark: The p = q = 2 case has an even simpler proof:

0 ≤ (a− b)2 = a2 − 2ab+ b2

rearranges to

ab ≤ a2

2
+
b2

2
(for a, b ≥ 0)

Proof: The convexity/concavity property of logarithm is that its graph lies above the line segment connecting
two points on the graph:

t · log x+ (1− t) · log y ≤ log(t · x+ (1− t) · y) (for x, y > 0 and 0 ≤ t ≤ 1)

Thus,
1

p
log ap +

1

q
log bq ≤ log

(ap
p

+
bq

q

)
That is,

log a+ log b ≥ log
(ap
p

+
bq

q

)
Exponentiating gives the inequality. ///

We mention the original papers [Young 1912a] and [Young 1912b], since the result has been so well assimilated
that already the extensive bibliography of [Riesz-Nagy 1952] did not list these papers, although others of
Young’s did appear there.

3. Convexity and Jensen’s inequality

A function f on an interval (a, b) ⊂ R is concave upward or convex downward when its graph bends upward,
in the sense that a line segment connecting two points on the graph lies above the graph. That is, when

tf(x) + (1− t)f(y) ≥ f(tx+ (1− t)y) (for 0 ≤ t ≤ 1 and a < x < y < b)

The prototype is the exponential function x→ ex.

[3.1] Remark: It is sufficiently easy to muddle concave/convex up/down that in practice it is best to say
explicitly whether the chord (line segment connecting two points on the graph) lies above, or below the graph.

[3.2] Claim: Convex (up or down) R-valued functions on an open interval (a, b) (allowing a = −∞ and/or
b = +∞) are continuous.

Proof: Let g be continuous on (a, b) and take x ∈ (a, b). Fix any s, t such that a < s < x < t < b. For y in
the range x < y < t, the point (y, g(y)) is on or above the line through (s, g(s)) and (x, g(x)), and is below
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the line through (x, g(x)) and (t, g(t)), so g(y)→ g(x) as y → x+. For s < y < x, the same argument gives
left-continuity. ///

Before enlarging our notion of integrals, it is already very useful to see a preliminary version of Jensen’s
inequality:

[3.3] Theorem: (Jensen) Let g be an R-valued function on [0, 1] with a < g(x) < b, where a, b can also be
−∞ and +∞. For convex f on (a, b),

f
(∫ 1

0

g
)
≤
∫ 1

0

f ◦ g

Proof: First, a < g(x) < b gives a <
∫ 1

0
g < b. The convexity condition on f can be written as the condition

that slopes of secants increase from left to right. Thus, for example,

f(y)− f(x)

y − x
≤ f(z)− f(y)

z − y
(for x < y < z inside (a, b))

Applying this with y =
∫ 1

0
g,

f(
∫
g)− f(x)∫
g − x

≤
f(z)− f(

∫
g)

z −
∫
g

(for all a < x <
∫ 1

0
g and for all

∫ 1

0
g < z < b)

With

S = sup
x:a<x<

∫ 1
0
g

f(
∫ 1

0
g)− f(x)∫ 1

0
g − x

we have

f(
∫ 1

0
g)− f(x)∫ 1

0
g − x

≤ S ≤
f(z)− f(

∫ 1

0
g)

z −
∫ 1

0
g

(for all a < x <
∫ 1

0
g and for all

∫ 1

0
g < z < b)

From the left half of the latter inequality,

f(x) ≥ f(

∫ 1

0

g) + S · (x−
∫ 1

0

g) (for a < x <
∫ 1

0
g)

and from the right half

f(z) ≥ f(

∫ 1

0

g) + S · (z −
∫ 1

0

g) (for
∫ 1

0
g < z < b)

Thus,

f(w) ≥ f(

∫ 1

0

g) + S · (w −
∫ 1

0

g) (for all w in the range a < w < b)

In particular, letting w = g(x) now with x ∈ [0, 1],

f(g(x)) ≥ f(

∫ 1

0

g) + S · (g(x)−
∫ 1

0

g) (for all w in the range a < w < b)

Integrating in x ∈ [0, 1],∫ 1

0

f ◦ g ≥ f(

∫ 1

0

g) + S · (
∫ 1

0

g −
∫ 1

0

g) = f(

∫ 1

0

g) + S · 0
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as claimed. ///

[3.4] Remark: The proof only needed the fact that integration preserves inequalities. Also, no use was

made of the assumption that g was defined on [0, 1], only that
∫ 1

0
1 dx = 1. Thus, the same argument has a

discrete analogue:

[3.5] Theorem: (Jensen) Let X = {1, 2, . . .}, with weights 0 ≤ wn such that
∑

n wn = 1. Let g be an
R-valued function on X with a < g(x) < b, where a, b can also be −∞ and +∞. For convex f on (a, b),

f
(∑

n

wn · g(n)
)
≤
∑
n

wn · (f ◦ g)(n)

For example, in the proof of Hölder’s inequality below, we use g defined on a set with just two points,
assigned weights (measures) 1

p and 1
q with 1

p + 1
q = 1. In that case the statement of Jensen’s inequality

becomes

[3.6] Theorem: (Jensen) Let g be an R-valued function on the two-point set {0, 1} with a < g(x) < b,
where a, b can also be −∞ and +∞. Let 1 < p, q < +∞ be such that 1

p + 1
q = 1. For convex f on (a, b),

f
(g(0)

p
+
g(1)

q

)
≤ f ◦ g(0)

p
+
f ◦ g(1)

q

4. Arithmetic-geometric mean inequality

[4.1] Corollary: (Arithmetic-geometric mean inequality) For positive real numbers a1, . . . , an,

(a1a2 . . . an)1/n ≤ a1 + a2 + . . .+ an
n

Proof: In Jensen’s inequality, take f(x) = ex, take X a finite set with n (distinct) elements {x1, . . . , xn},
with each point having measure 1/n, and g(xi) = log ai. Jensen’s inequality gives

n exp
( log a1 + . . .+ log an

n

)
≤ elog a1 + . . .+ elog an

n

which gives the assertion. ///

5. Hölder inequality

Conjugate exponents are numbers p, q > 1 such that

1

p
+

1

q
= 1

For example, p and q = p
p−1 are conjugate exponents.

[5.1] Remark: In the following, we need to assume that the integrals of the functions f, g exist and have
the expected basic properties. But we do not need an explicit description of the class of functions in which
they lie, nor an explicit description of the integration.
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For the following theorem, let X be [a, b] or R or Rn, or any other space on which we know how to integrate
functions. Generalizing the Cauchy-Schwarz-Bunyakowsky inequality, we have

[5.2] Theorem: (Hölder) For conjugate exponents p, q and [0,+∞]-valued functions f, g on a set X∫
X

f · g ≤
(∫

X

fp
) 1

p ·
(∫

X

gq
) 1

q

Proof: The assertion is trivial if either integral on the right-hand side is +∞ or 0, so suppose the two
quantities

I =
(∫

X

fp
) 1

p

J =
(∫

X

gq
) 1

q

are finite and non-zero. Renormalize by taking ϕ = f/I and ψ = g/J , so that
∫
ϕp = 1 =

∫
ψq. For x ∈ X

with 0 < ϕ(x) <∞ and 0 < ψ(x) <∞, there are real numbers u, v such that eu/p = ϕ(x) and ev/q = ψ(x).
Invoking Jensen’s inequality on a function defined on a set with just two points, with weights (measures) 1

p

and 1
q , using the convexity of the exponential function,

ϕ(x)ψ(x) = e
u
p+ v

q ≤ eu

p
+
ev

q
=

ϕ(x)p

p
+
ψ(x)q

q

Integrating, ∫
X

ϕ · ψ ≤
∫
X

ϕ(x)p

p
+
ψ(x)q

q
=

1

p
+

1

q
= 1

From the renormalization, we are done. ///

Again, the argument uses no specifics about the integration process, and applies as well to discrete sums:

[5.3] Theorem: Let X = {1, 2, . . .}, with weights 0 ≤ wn. For conjugate exponents p, q and [0,+∞)-valued
functions f, g on X,

∑
n

wn · f(n) · g(n) ≤
(∑

n

wn · f(n)p
) 1

p ·
(∑

n

wn · g(n)q
) 1

q

The case that all weights are wn = 1, namely,

[5.4] Theorem: Let X = {1, 2, . . .}. For conjugate exponents p, q and [0,+∞)-valued functions f, g on X,

∑
n

f(n) · g(n) ≤
(∑

n

f(n)p
) 1

p ·
(∑

n

g(n)q
) 1

q

is already useful in showing that the alleged metric on spaces `p satisfies the triangle inequality, via a discrete
form of Minkowski’s inequality (in the next section).

6. Minkowski’s inequality

Again, we assume that functions f, g below have integrals with basic properties. Take X to be [a, b] or R or
Rn, for example.

For the triangle inequality in Lp spaces for general p, we need
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[6.1] Corollary: (Minkowski) For 1 < p < +∞ and [0,+∞]-valued functions f, g on X,(∫
X

(f + g)p
) 1

p ≤
(∫

X

fp
) 1

p

+
(∫

X

gp
) 1

p

Proof: We prove Minkowski’s inequality from Hölder’s, using the conjugate exponents p and q = p
p−1 .∫

(f + g)p =

∫
f · (f + g)p−1 +

∫
g · (f + g)p−1

≤
(∫

fp
) 1

p ·
(∫

(f + g)(p−1)q
) 1

q

+
(∫

gp
) 1

p ·
(∫

(f + g)(p−1)q
) 1

q

=
[( ∫

fp
) 1

p

+
(∫

gp
) 1

p
]
·
(∫

(f + g)p
) p−1

p

Dividing through by
( ∫

(f + g)p
) p−1

p gives Minkowski’s inequality. ///

Since no specifics about the integration were used, we also have discrete forms:

[6.2] Theorem: Let X = {1, 2, . . .}, with weights 0 ≤ wn. For conjugate exponents p, q and [0,+∞)-valued
functions f, g on X,(∑

n

wn · (f(n) + g(n))p
) 1

p ≤
(∑

n

wn · f(n)p
) 1

p

+
(∑

n

wn · g(n)p
) 1

p

[6.3] Theorem: Let X = {1, 2, . . .}. For conjugate exponents p, q and [0,+∞)-valued functions f, g on X,(∑
n

(f(n) + g(n))p
) 1

p ≤
(∑

n

f(n)p
) 1

p

+
(∑

n

g(n)p
) 1

p

7. Example: `p spaces

For 1 ≤ p <∞ the usual `p norm on sequences c = (c1, c2, . . .) of complex numbers is

|c|`p =

(∑
n

|cn|p
)1/p

The `p spaces are
`p = {c = (c1, c2, . . .) : |c|Lp <∞}

with associated metric
d(c, c′) = |c− c′|`p

[7.1] Theorem: `p is a complete metric space.

Proof: For notational purposes, express elements f of `p as functions f from X = {1, 2, . . .} to C. Write∫
X

f =

∞∑
n=1

f(n)
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The triangle inequality for the alleged metric is exactly Minkowski’s inequality. To prove completeness,
choose a subsequence fni such that

|fni
− fni+1

|p < 2−i

and put

gn(x) =
∑

1≤i≤n

|fni+1
(x)− fni

(x)| (for x ∈ X)

and

g(x) =
∑

1≤i<∞

|fni+1
(x)− fni

(x)| (for x ∈ X)

The triangle inequality shows that |gn|p ≤ 1.

A discrete version of Fatou’s Lemma asserts that for [0,∞]-valued functions hi on X = {1, 2, 3, . . .}∫
X

(
lim inf

i
hi

)
≤ lim inf

i

∫
X

hi

Thus, |g|p ≤ 1, so is finite. Thus,

fn1
(x) +

∑
i≥1

(fni+1
(x)− fni

(x))

converges for all x ∈ X.

Now prove that this is the `p-limit of the original sequence. For ε > 0 take N such that |fm − fn|p < ε for
m,n ≥ N . Fatou’s lemma gives ∫

|f − fn|p ≤ lim inf
i

∫
|fni
− fn|p ≤ εp

Thus f − fn is in `p and hence f is in `p. And |f − fn|p → 0. ///

8. Appendix: discrete Fatou lemma and Lebesgue monotone convergence

[8.1] Claim: (Fatou) For [0,+∞]-valued functions fj on {1, 2, 3, . . .},

∞∑
n=1

lim inf
j

fj(n) ≤ lim inf
j

∞∑
n=1

fj(n)

Proof: Letting gj(n) = infi≥j fj(n), certainly gj(n) ≤ fj(n) for all n, and
∑

n gj(n) ≤
∑

n fj(n). Also,
g1(n) ≤ g2(n) ≤ . . . for all n, and limj gj(n) = lim infj fj(n). A discrete form of the Monotone Convergence
Theorem, proven just below, is ∑

n

lim
j
gj(n) = lim

j

∑
n

gj(n)

Thus, ∑
n

lim inf
j

fj(n) =
∑
n

lim
j
gj(n) = lim

j

∑
n

gj(n) = lim inf
j

∑
n

gj(n) ≤ lim inf
j

∑
n

fj(n)

as claimed. ///
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[8.2] Theorem: (Discrete version of Lebesgue’s Monotone Convergence Theorem) For [0,+∞]-valued
functions fj on {1, 2, 3, . . .}, with f1(n) ≤ f2(n) ≤ . . . for all n,

lim
j

∞∑
n=1

fj(n) =

∞∑
n=1

lim
j
fj(n) (allowing value +∞)

Proof: Each non-decreasing sequence f1(n) ≤ f2(n) ≤ . . . has a limit f(n) ∈ [0,+∞]. Similarly, since∑
n fj(n) ≤

∑
n fj+1(n), the non-decreasing sequence of these sums has a limit S = limj

∑
n fj(n). Since

fj(n) ≤ f(n), certainly
∑

n fj(n) ≤
∑

n f(n), and S ≤
∑

n f(n).

Fix N , and put g(n) = f(n) for n ≤ N and g(n) = 0 for n > N . For ε > 0, let

Ej = {n :
∑
n

fj(n) ≥ (1− ε) ·
∑
n

g(n)} (for j = 1, 2, . . .)

Certainly E1 ⊂ E2 ⊂ . . ., since fj+1(n) ≥ fj(n) for all n. We claim that
⋃
Ej = {1, 2, . . .}: for f(n) > 0,

lim
j
fj(n) = f(n) > (1− ε) · f(n) ≥ (1− ε) · g(n) (for all n)

and for f(n) = 0, also g(n) = 0, and

f1(n) ≥ 0 ≥ (1− ε) · g(n)

Then ∑
n

fj(n) ≥
∑
n∈Ej

fj(n) ≥ (1− ε) ·
∑
n∈Ej

g(n)

The set of n for which g(n) is non-zero is finite, so there is jo such that for j ≥ jo∑
n∈Ej

g(n) =
∑
n

g(n) (for all j ≥ jo)

That is, limj

∑
n fj(n) ≥ (1− ε)

∑
n g(n). Then

S = lim
j

∑
n

fj(n) ≥ (1− ε) · lim
j

∑
n∈Ej

g(n) = (1− ε) ·
∑
n

g(n)

This holds for every ε > 0, so S ≥
∑

n g(n) =
∑

n≤N f(n). This holds for every N , so S ≥
∑

n f(n). ///
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